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The use of patterned heating in controlling
pressure losses within sloping channels
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The effectiveness of utilizing heating patterns as a drag-reduction tool in sloping channels
is analysed. The usefulness of heating is judged by determining the pressure gradient
required to maintain the same flow rate as in the isothermal case. The key to reducing
pressure loss is the formation of separation bubbles, although these bubbles are washed
away at relatively large Reynolds numbers. The bubbles reduce the direct contact between
the stream and the side walls, thereby reducing the friction experienced by the flow.
Moreover, the fluid inside the bubbles tends to rotate, a motion provoked by longitudinal
temperature gradients. This rotation also seems to reduce the resistance. On the other hand,
the existence of the bubbles tends to obstruct the stream, increasing the flow resistance. In
general, channels oriented close to horizontal experience a relatively small pressure loss,
but this loss grows markedly as the channel inclines towards the vertical. When modest
heating is applied, the pressure loss is approximately proportional to the square of the
associated Rayleigh number. It is also shown that if the heating wavelength is too short
or too long, the heating loses its effectiveness. In certain circumstances, it turns out that
the theoretical pressure-gradient reduction achieved by judicious heating is so large that
it exceeds the pressure gradient required to drive the flow in the isothermal problem. The
conclusion is that in these instances, a pressure gradient of the opposite sign must be
applied to prevent flow acceleration.
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1. Introduction

Ever-increasing energy costs are a primary motivation for the continuing interest in
developing techniques that reduce pressure losses in conduits. Two principal sources
of loss can arise from pressure interaction with any wall topography and the friction
between the fluid and the bounding wall. Mohammadi & Floryan (2012) summarize
the pressure-loss mechanisms, and some techniques for its reduction are known. While
the mechanisms underpinning friction are now well understood, knowledge of effective
methods for its reduction is less well developed. Here, we examine the role that spatially
distributed heating could play in limiting pressure losses.

The friction generated at the wall of a channel by a fluid flowing through it is a joint
function of the fluid viscosity and the wall-normal velocity gradient. Assuming that the
working fluid cannot be changed, the friction can be reduced only by modifying the
near-wall velocity field, and how this might be done depends on whether the flow is
laminar or turbulent. If the flow is turbulent or in danger of becoming turbulent, one
might appeal to a suitable control strategy designed either to relaminarize an already
turbulent flow or to delay the transition. We shall not pursue these ideas but instead
focus on problems in which the flow is laminar. Given this, we further remark that flow
modifications that might reduce friction can be created using either passive or active
processes. There has been considerable research into active systems that rely on various
actuators. Examples of studies include investigations using plasma (Inasawa, Ninomiya
& Asai 2013), sound (Kato, Fukunishi & Kobayashi 1997), piezo elements (Fukunishi
& Ebina 2001) or transpiration (Min et al. 2006; Bewley 2009; Fukagata, Sugiyama &
Kasagi 2009; Hoepffner & Fukagata 2009; Mamori, Iwamoto & Murata 2014; Jiao &
Floryan 2021a,b). Unfortunately, none of these seem able to achieve net energy savings.
More positively, though, it has been shown recently that a combination of transpiration
and an in-plane wall motion (Floryan 2023) may give a better outcome.

One can view these active modulations as propulsion-assisting methods in which
energy is expended on the actuation rather than increasing a classical propulsive force.
Further work on force reduction arises in the emerging field of vibration-based resistance
limitation and/or distributed propulsion, especially the use of small-amplitude fast waves
which rely on the peristaltic effect (Floryan & Zandi 2019; Floryan & Haq 2022; Haq &
Floryan 2022, 2023; Floryan, Haq & Bassom 2023a,b).

In many ways, passive processes might be preferable to active ones as they do not
require any energy input. An obvious way to reduce the friction would be to modify
appropriately the surface topography of the wall. A smooth surface is often thought to
provide the lowest possible friction, as any modifications in surface topography would
increase the wetted area. If the surface were perturbed away from being flat, an overall
lessening of friction could only be achieved if the increase in the friction area was
compensated for by a sufficiently large reduction in the shear. Longitudinal grooves are
known to reduce drag through changes in the distribution of the bulk flow (Mohammadi
& Floryan 2013a, 2014, 2015; Moradi & Floryan 2013). The topography of the grooves
can be optimized (Mohammadi & Floryan 2013b; Moradi & Floryan 2013) with the ideal
shape determined by the constraints imposed. The stability limits of such flows have been
well documented (Moradi & Floryan 2013, 2014; Mohammadi, Moradi & Floryan 2015).
Another class of grooves, known as riblets (Walsh 1983), is characterized by being of very
short wavelength, but these are prone to contamination. This contamination can result in
clogging and destruction if exposed to shear for extended periods. Riblets are often used
in turbulent flows but are rarely chosen in laminar circumstances (Mohammadi & Floryan
2013a).
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The use of patterned heating in controlling pressure losses

Superhydrophobic effects (Rothstein 2010) offer an alternative route for passive drag
reduction. These surfaces trap gas bubbles in micropores, thereby replacing direct
liquid–solid contact with gas–liquid contact, which in turn reduces the friction experienced
by the liquid. This method is intrinsically limited to two-phase flows, and its effectiveness
is limited by the pressure drag associated with surface irregularities (Ou, Perot & Rothstein
2004; Joseph et al. 2006; Truesdell et al. 2006; Aljallis et al. 2013; Park, Park & Kim
2013; Srinivasan et al. 2013; Park, Sun & Kim 2014). Its potency can be increased in
several ways: there is an advantage to be gained by suitably shaping the surface pores,
enhancing the hydrophobicity through surface chemistry, increasing the surface tension,
fixing the position of contact points through geometric means or controlling the contact
angles (Quéré 2008; Reyssat, Yeomans & Quéré 2008; Samaha, Tafreshi & Gad-el-Hak
2011, 2012). Caution needs to be exercised as there is the potential for shear-driven or
interfacial instabilities to occur, and excess hydrostatic pressure can lead to a collapse of
the gas bubbles. In this case, the liquid is directly exposed to the rough surface (Poetes et al.
2010; Bocquet & Lauga 2011; Zhou et al. 2011; Aljallis et al. 2013). The micropores need
to be extremely small to provide stable interfaces, which, as noted earlier in the context
of riblets, makes them prone to damage through clogging. If the gas is replaced with
some other immiscible liquid, this prevents bubble collapse and gives rise to liquid-infused
surfaces (Wong et al. 2011). An overall drag reduction is still possible despite the infusing
liquid having a much higher viscosity than the gas it replaces (Solomon, Khalil & Varanasi
2014, 2016; Rosenberg et al. 2016). This technique suffers from the drawback that the
pressure variations along the surface are liable to wash away the infusing liquid (Van
Buren & Smits 2017).

Our primary interest in this work is in using spatial heating patterns to influence the
friction on the wall through the generation of convection rolls. Three effects come into
play. First, the rolls reduce the direct contact between the stream and the bounding walls,
reducing resistance. Moreover, density gradients drive the fluid rotation inside the rolls
and provide a propulsive force that promotes fluid movement. Unfortunately, the rolls also
reduce the cross-sectional area of the flow, so it is difficult to predict the net result a priori.
Several studies in horizontal channels found reduced pressure losses (Hossain, Floryan &
Floryan 2012; Hossain & Floryan 2014, 2016; Floryan & Floryan 2015; Inasawa, Taneda
& Floryan 2019). When used in vertical channels, the reductions strongly depend on the
Prandtl number as the flow-induced break of thermal symmetries generates a buoyancy
force acting along the flow (Floryan, Wang & Bassom 2023d). It is not known how
flows in inclined channels may react to the patterned heating as the magnitude of the
axial component of the buoyancy force changes markedly with the channel inclination
angle. The addition of a groove pattern amplifies this effect if the location of the grooves
is carefully chosen relative to the positions of the rolls (Abtahi & Floryan 2017a,b,
2018; Floryan & Inasawa 2021; Inasawa, Hara & Floryan 2021). This enhancement is a
demonstration of the so-called pattern interaction effect (Abtahi & Floryan 2017a,b, 2018;
Floryan & Inasawa 2021; Inasawa et al. 2021), whose magnitude has been detailed by
Hossain & Floryan (2020). Spatial heating patterning has been shown to reduce the forces
between plates in relative motion (Floryan, Shadman & Hossain 2018), creating propulsion
(Floryan, Panday & Aman 2023c; Floryan et al. 2023d; Floryan, Aman, & Panday 2024)
and the ability for fluid pumping (Hossain & Floryan 2023). Information about the stability
limits of such flows is sparse (Hossain & Floryan 2013b, 2015b, 2022).

Spatial heating patterning can be used to create the so-called chimney effect in
non-vertical openings. This effect involves using natural convection in vertical channels
to evacuate combustion gases from fireplaces (Putnam 1882). It is of significant interest
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in architectural design as it provides passive ventilation, whereby heated air flows upward
and draws in cool air at the base of a structure (Linden 1999; Wong & Heryanto 2004;
Mortensen et al. 2011; Nagler 2021). A reverse effect can also occur when relatively hot
air is brought down from above into a cooler environment. Vertical openings are important
in designing various fire prevention measures owing to the possibility of controlling the
intensification of combustion and the spreading of fires (Song et al. 2020). Upright fault
lines are known to be significant in the context of thermal recovery processes (Tournier,
Gethon & Rabinowicz 2000). More contemporary uses of the chimney effect include the
passive cooling of electronic components (Naylor, Floryan & Tarasuk 1991; Straatman,
Tarasuk & Floryan 1993; Straatman et al. 1994; Novak & Floryan 1995; Shahin & Floryan
1999; Andreozzi, Buonomo & Manca 2005) as well as in the design of passively cooled
nuclear reactors (Weil 2012). There is an obvious interest in assessing the effectiveness of
the chimney effect in oblique openings.

Fundamental studies of vertical natural convection can be traced back to Zeldovich’s
(1937) and Batchelor’s (1954) work, involving bounding surfaces kept at a constant
temperature. They were followed by an analysis of the possible transition to secondary
states (Vest & Arpaci 1969; Lee & Korpela 1983; Hall 2012), turbulent convection (Ng
et al. 2015) and the effect of wall roughness (Shishkina & Wagner 2011; Toppaladoddi,
Succi & Wettlaufer 2017). Further work has examined the modifications created by ratchet
surfaces (Jiang et al. 2019). Using heating patterns to promote the chimney effect has
attracted recent interest (Floryan et al. 2022a,c, 2023c,d; Floryan, Haq & Panday 2022b).

Given that these previous studies have demonstrated that reduced losses can be achieved
using the chimney effect, we intend to characterize the flow response in a channel
inclined to gravity and subjected to patterned heating. Such heating does not alter the
mean temperature of channel walls but produces spatial modulations that may lead to the
lowering of friction experienced by the fluid stream. Patterned heating is of interest as
only relatively small heating levels can be sufficient to reduce significantly the pressure
gradient required to maintain the desired flow rate.

The remainder of this paper is organized as follows. In § 2, we formulate the model
problem that quantifies the flow response and discuss the numerical methods used later in
the work. Section 3 describes the flow responses of the configuration when the applied
heating is of a wavelength comparable to the width of the channel. The calculations
here are restricted to when one of the walls is heated, but this is extended to account
for both walls being heated; this is done in § 4. It is also noted that our problem can be
analysed analytically when the applied heating is either of a long wavelength or of a short
wavelength. These two limits are considered in §§ 5 and 6, respectively. We show excellent
agreement between the theory and the computations in the appropriate limits, reinforcing
confidence in both. The paper closes in § 7 with a summary of the main conclusions and
some further remarks.

Lastly, we mention that it is well known that the quantitative details of convection are
affected by the choice of the Prandtl number Pr (Hossain & Floryan 2022; Floryan et al.
2023d). All our calculations are conducted with Pr = 0.71, which is the value appropriate
to air; consequently, should the value of Pr be altered, the finer details of the results are
likely to change, but the global features are unlikely to be altered.

2. Formulation

Consider the steady, two-dimensional pressure-gradient-driven flow of a Boussinesq fluid
in an isothermal channel of width 2h inclined at an angle β to the horizontal, as shown
in figure 1. We align the x and y coordinate axes parallel and perpendicular to the slot
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g

Ω

θL(x)

θR(x)

β

+1

–1

0

y, v

x, u

Figure 1. A schematic of the flow configuration in the slot defined by |y| ≤ 1. The channel is inclined to the
horizontal at an angle β while the two walls are heated by sinusoidal thermal profiles defined by (2.4). These
two profiles are offset by a phase Ω .

and non-dimensionalize all lengths on the half-width h so that the sides of the channel
are given by y = ±1. In the absence of any fluid motion, there is a hydrostatic pressure
ph(x, y) given by the solution of

∂ph

∂x
= −ρg sinβ,

∂ph

∂y
= −ρg cos β, (2.1a,b)

where g is the gravitational acceleration and ρ is the density of the fluid. When the fluid
moves, the basic motion is given by velocity v0(x, y) and pressure p0(x, y) fields, which
are

v0(x, y) = (1 − y2, 0), p0(x, y) = −2x/Re, (2.2a,b)

where the velocity vector v0 = (u0, v0) is scaled on the maximum of the x-velocity umax
and p0 is the pressure in excess of ph based on ρu2

max. The form of p0 depends on the
Reynolds number Re ≡ umaxh/ν with ν the kinematic viscosity. Given this basic flow, it is
straightforward to find the associated stream function Ψ0, the flow rate Q0 through the slot
and the shear force (per unit length and width) FR0 (FL0) acting on the fluid at the right
(left) wall. These quantities are given by

Ψ0 = y − y3

3
+ 2

3
, Q0 = 4

3
and FR0 = FL0 = −2/Re. (2.3a–c)

We next supply sinusoidal heating to both walls so that their scaled temperatures are given
by

y = −1 : θR(x) = 1
2 Rap,R cosαx, (2.4a)

y = 1 : θL(x) = 1
2 Rap,L cos(αx +Ω), (2.4b)

where the subscripts R and L denote the right and left walls, respectively. We remark
that this periodic heating is applied to the surfaces throughout the domain; moreover,
this profile is of wavenumber α (or wavelength λ = 2π/α). We also remark that the two
heating patterns at the two walls are offset by a phase angleΩ . Here θ denotes the relative
temperature defined by T − TR = κνθ/(gΓ h3), where T and TR denote the absolute and
reference base temperature, respectively. Furthermore, κ is the thermal diffusivity and Γ
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is the thermal expansion coefficient, and we assume that fluid density variations follow
the Boussinesq approximation. The appropriate Rayleigh numbers measure the intensity
of the heating at the walls; on the right-hand side, we define Rap,R = gΓ h3θp,R/(κν) ,
where θp,R is the magnitude of the applied heating with an analogous definition for Rap,L
relating to the left-hand edge of the slot. We mention in passing that it is well accepted
that modelling buoyancy using the Boussinesq approach serves as an excellent paradigm
for the underlying physics, especially when the temperature differences involved in the
problem are relatively modest. For a discussion of the validity of this type of modelling,
the interested reader is directed to the recent review by Mayeli & Sheard (2021).

The continuity, Navier–Stokes and energy equations govern the system. Written in terms
of the dimensionless variables, we have

u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∇2u + Pr−1θ sinβ,
∂u
∂x

+ ∂v

∂y
= 0, (2.5a,b)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v + Pr−1θ cosβ, u

∂θ

∂x
+ v

∂θ

∂y
= Pr−1∇2θ, (2.5c,d)

where (u, v) are the velocity components in the (x, y) directions, respectively, scaled on
Uv = ν/h, p is the pressure associated with fluid movement scaled with ρU2

ν and θ is
the temperature; finally, Pr = ν/κ is the Prandtl number. (The generalization of the field
equations to non-Boussinesq fluids may be found in the text by Tritton (1977).) The range
of heating parameters used in the analysis is similar to that used in experiments reported
by Inasawa et al. (2019, 2021) and Floryan & Inasawa (2021). A very good agreement
between experimental data and theory was reported, demonstrating that the Boussinesq
approximation captures a fluid response well. The required boundary conditions are

u(−1) = u(+1) = 0, v(−1) = v(+1) = 0, θ(−1) = θR(x) and θ(+1) = θL(x).

(2.6a–d)

We decompose the flow fields according to

u(x, y) = Re u0( y)+ u1(x, y), v(x, y) = v1(x, y), θ(x, y) = θ1(x, y), (2.7a–c)

p(x, y) = Re2p0(x)+ Bx + p1(x, y), ψ(x, y) = Re ψ0( y)+ ψ1(x, y), (2.7d,e)

so that if no heating were applied to the walls, we would have all quantities with subscript
1 identically zero. Our concern lies in determining whether applied heating can reduce the
pressure gradient required to maintain a specified flow rate. Accordingly, we impose the
mass flow rate constraint of the form

Q(x)|mean =
(∫ 1

−1
u(x, y) dy

)∣∣∣∣∣
mean

= 4
3

Re, (2.8)

and seek information as to the size of the mean pressure gradient

∂p
∂x

∣∣∣∣
mean

= −2Re + B, (2.9)

where positive values of B signify a reduction of pressure losses.
The system (2.3)–(2.7) was solved by expressing the velocity components using a stream

function ψ defined in the usual manner, i.e. u = ∂ψ/∂y, v = −∂ψ/∂x, then eliminating
pressure and using Fourier expansions in the x direction and Chebyshev expansions in
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the y direction. A description of the algorithm and the benchmarking of its accuracy are
described by Hossain et al. (2012); the reader is referred to that paper for extended details.
The pressure field was normalized by bringing the mean value of its periodic component
to zero while the mean Nusselt number Nuav was evaluated using

Nuav = −λ−1
∫ x0+λ

x0

∂θ

∂y

∣∣∣∣
y=−1

dx. (2.10a)

With this definition, a positive value of Nuav means that the right wall is losing energy.
The cost of moving energy within a wall to create the local cold and hot spots is difficult to
assess, but it contributes to the overall energy costs. The quantity of energy that has to be
moved along the wall can be determined by evaluating the horizontal heat fluxes between
the hot and cold wall segments. These fluxes can be quantified in terms of heat leaving
each wall per half-heating wavelength and expressed by the horizontal Nusselt number
defined as

Nuh,R = −2λ−1
∫ λ/4

−λ/4
∂θ

∂y

∣∣∣∣
y=−1

dx − Nuav. (2.10b)

This is not the only possible way to estimate the energy cost. Various alternatives have been
suggested in the literature; the interested reader is directed to the papers by Maxworthy
(1997), Siggers, Kerswell & Balmforth (2004), Hughes & Griffiths (2008) and Winters &
Young (2009).

We remark that the shear forces acting on the fluid at the right and left walls are given
by

FR = −λ−1
∫ λ

0

∂u
∂y

∣∣∣∣
y=−1

dx, FL = λ−1
∫ λ

0

∂u
∂y

∣∣∣∣
y=+1

dx, (2.11a,b)

and heating-induced changes of these forces are given as


FR = FR − Re2FR0, 
FL = FL − Re2 FL0, (2.12a,b)

with negative 
FR and 
FL corresponding to a reduction of these forces. The total
(buoyancy) body force per unit length is given by

Fb = λ−1Pr−1
∫ 1

−1

∫ λ
0
θ dx dy, (2.13)

with its x and y components given by Fbx = Fb sinβ and Fby = Fb cosβ, respectively.
It is noted that the above formulation is restricted to two-dimensional steady flows. There

is always the possibility that the underlying structure may become time-dependent or that
a secondary flow is set up. Some previous computations have addressed the question of the
possibility of secondary structures in flows within horizontal channels (Hossain & Floryan
2013b, 2015b). Those findings suggest that no secondary flow appears unless Rap,R is at
least 2500. The results reported below are restricted to smaller Rayleigh numbers, so the
complications that secondary structures would introduce ought not to arise.

3. Flow properties when one wall is heated

To begin our account of the effect of patterning on the pressure losses experienced along
the channel, we consider the situation in which only one of the walls is heated. Within
our problem, several parameters could be varied, but it is helpful to note that several

996 A5-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.694


J.M. Floryan, W. Wang and A.P. Bassom

3π /4

β π /2

π /4

0
10–1

0
.4 0

.5

–
0
.5

4 2.5

–5

6
.5

–
2
.5

–
7
.5

–
8

–
4

–
1

–
0
.4

4

8

0
0

0

1
1

000

3

–
5

–3 –
1

100 101

π

3π /4

π /2

π /4

0
10–1 100 101

π

3π /4

π /2

π /4

0
10–1 100

α α α
101

π
(b)(a) (c)

Figure 2. The variation of the pressure-gradient correction B as a function of heating wavenumber α and
slot inclination β when only the right wall is heated with Rap,R = 500. In the three cases, the Reynolds
number Re = (a) 1, (b) 5 and (c) 10. The grey shading denotes parameter combinations corresponding to a
reduction in pressure losses (B> 0). The thick dotted, dashed-dotted and dashed lines identify those conditions
for which there are 10 %, 50 % and 100 % reductions of pressure losses, respectively. The circles mark the
parameter choices used in figure 3, while the vertical red lines indicate the values adopted in figure 4. Finally,
the horizontal blue lines identify the flow conditions used in figure 7.

inherent symmetries can be exploited to reduce the task. First, we need not be concerned
about whether the flow is net upwards or downwards. If we transform β → β + π
then the problem specification is unchanged if we switch the sign of θ and translate
the coordinate x → x + (π/α). We conclude that we can restrict the inclination of the
channel β ∈ [0,π]. Furthermore, if one applies the transformations (x, y, u, v, p, θ, β) �→
(x,−y, u,−v, p, θ,π − β) the governing equations are invariant while the boundary
conditions swap over. This means that when it comes to considering the problem when
only one wall is heated, we can examine the case when the patterning is applied to
the right-hand wall so Rap,R /= 0 and Rap,L = 0. We note in passing that these various
symmetry properties have been confirmed by extensive numerical testing when the slot is
horizontal (Hossain & Floryan 2014, 2015a).

The forms of the pressure losses as functions of the inclination angle β and pattern
wavenumber α are illustrated in figure 2 for three values of the Reynolds number
Re = 1, 5 and 10; the interest in these particular values will become apparent as we
proceed. It is noted that a reduction in the pressure losses can be achieved when 0 ≤
β ≤ π/2; further, the critical inclination at which the reduction ceases to be possible is
only weakly dependent on α when the Reynolds number is small (see figure 2a). As Re
is increased so the size of the parameter domain corresponding to a pressure reduction
expands and does so especially at relatively long heating wavelengths; this is evident in
figure 2(b,c). The heating leads to self-pumping at small Re when an opposite pressure
gradient must be applied to slow the fluid if the flow rate is to be maintained.

The forms of the flow and temperature fields as functions of the channel orientation
β and at Reynolds number up to 50 are shown in figure 3. (We point out that the flow
conditions assumed for the three middle rows of this figure are marked with circles in
figure 2.) The flow topology arises from a competition between the uniform isothermal
Poiseuille flow in the positive x direction and the natural convection driven by the applied
periodic heating. Natural convection alone generates counter-rotating rolls, as illustrated
in the first row of figure 3. The structure of these rolls does not change significantly as
the orientation of the conduit is varied; it is seen that the fluid flows downward from cold
spots and upward toward hot spots. The superposition of a small component of Poiseuille
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Figure 3. The flow and temperature fields for one-wall heating with Rap,R = 500 and a wavenumber α = 1.
The five rows of results correspond to Re = 0, 1, 5, 10 and 50, respectively. The downward black arrows
show the direction of gravity force, while the red arrows indicate the direction of pressure-gradient force.
The background colour illustrates the thermal field. The parameter choices used when Re = 1, 5 and 10 are
marked in figure 2 by red circles, in figure 5 by green circles and in figure 7 by blue circles. In all the plots, the
temperature has been normalized with its maximum θmax.

flow generates a thin stream tube that gently meanders between the rolls. As Re grows,
we see an enlargement of the stream tube together with a slight reduction in the intensity
of the rolls adjacent to the unheated wall. Further increase in Re leads to an ongoing
thickening of the stream tube and the complete elimination of the upper rolls. At the point
when these upper rolls completely disappear, those next to the lower (heated) wall have
only undergone a relatively mild weakening, as observed in the Re = 10 results shown in
figure 3. Nevertheless, as the Reynolds number grows further, the lower rolls continue to
shrink until they are eventually destroyed. Once Re = 50, all that remains is a structure
reminiscent of an isothermal Poiseuille flow; this is evident in the bottom row of results
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Figure 4. Flow properties as functions of the inclination angle β when Rap,L = 0, Rap,R = 500 and α = 1
with various Reynolds numbers in the interval Re ∈ [0, 50]. (a) The pressure correction B. (b) The x component
of the buoyancy force Fbx. Also illustrated are the heating-induced changes in the shear forces acting on the
fluid at the (c) right (heated) wall and (d) left (isothermal) wall. The flow conditions when Re = 1, 5, 10 are
marked by the vertical red lines in figure 2.

shown in figure 3. Finally, it is interesting to note that the qualitative forms of the flow
topology seem to be largely independent of the inclination of the channel, and variations
in β only result in relatively minor changes in the global flow properties.

It is already well known that reducing pressure losses is possible in a horizontal channel.
This phenomenon arises owing to a combination of various effects. First, reducing the
direct contact between the walls and the stream lessens the frictional resistance. There is
also a propulsive effect of rotation in the separation bubbles driven by horizontal density
gradients. Finally, bubbles reduce the effective cross-sectional area available to the stream
(Hossain et al. 2012; Floryan & Floryan 2015; Hossain & Floryan 2016). If the slot is
inclined away from horizontal, all these effects remain operative, but now a buoyancy
force acting along the channel also comes into play. The streamwise average of this
additional force is zero when the channel is horizontal, but once β /= 0, a flow-induced
break in periodic symmetry generates a streamwise component (Floryan et al. 2022a,c,
2023d), which affects the pressure loss. A significant reduction in losses is feasible when
0 < β < π/2 for which the buoyancy force assists in the flow direction while a large
increase occurs for π/2 < β < π; now the buoyancy force acts against the flow direction.
These cases are illustrated in figure 3. We also note in connection with figure 3 that an
increase in Re eliminates the separation bubbles by the stage Re = 50, and then the drag
reduction mechanism is turned off.

The interplay between the various forces that affect the fluid motion is illustrated in
figure 4. These results portray how the relative importance of the pressure gradient, the
wall shear and the buoyancy forces evolve as the Reynolds number and inclination angle
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Figure 5. The pressure-gradient correction parameter B as a function of α and Re when Rap,L = 0 and Rap,R =
500. The four plots correspond to slot inclination angles β = (a) 0, (b) π/4, (c) π/2 and (d) 3π/4. The grey
shading indicates those parameter combinations that lead to a reduction in the pressure loss. The thick dotted,
dashed-dotted and dashed lines identify conditions leading to 10 %, 50 % and 100 % reductions in pressure
losses, respectively. The green vertical lines identify the flow conditions used in figure 6, while the green
circles show those in figure 3. The blue lines denote the conditions adopted in figure 7, while the brown lines
and circles identify the parameter combinations used in figure 8.

vary. Figure 4(a) shows the cumulative effect of the three forces. This demonstrates a
reduction in the pressure gradient when β is relatively small; as Re grows, the range of
β over which B > 0 diminishes. It is remarked that the pressure-gradient correction is
not zero when the channel is horizontal (Floryan & Floryan 2015) or vertical (Floryan
et al. 2023d); it is just much smaller than when the channel is inclined. The results
shown in figure 4(c,d) help explain the mechanisms that underpin the heating-induced
pressure-gradient reduction. Changes in the shear force on the heated wall propel fluid
forward when β <∼ π/2 but oppose fluid movement otherwise. Interestingly, the shear
force at the isothermal surface exhibits a contrasting behaviour in as much that it resists
fluid movement for β <∼ π/2 but supports it otherwise. Typically, the magnitudes of the
forces generated at the heated wall are larger. Further insight is gained from figure 4(b),
which shows the variations in the x component of the buoyancy force. It is seen that the
size of this force is significantly larger than that of the shear forces, so it dominates. It
must be remembered that this force cannot affect the pressure losses when the slot is
horizontal since its streamwise-averaged component is precisely zero. In practice, then,
for an inclined channel, it is the buoyancy mechanism that is the principal player in
determining the pressure reduction, but as β → 0 the shear forces increasingly assume
this role. We also note that all the forces associated with heating seem to decrease with Re,
as heating-induced flow modifications gradually weaken and completely disappear once
the stream becomes sufficiently strong to wash out the separation bubbles.

The dependence of the pressure-gradient correction parameter B on the Reynolds
number Re and the heating wavenumber α is considered in figure 5. These results
demonstrate how a drag reduction is replaced by a drag increase as the inclination angle β
increases. As β grows, the range of drag-reducing wavenumbers shrinks and moves toward
long-wavelength modes, an effect we commented upon in our discussion of figure 2.
We notice that when β = 0 or π/4, the most effective heating wavenumber, at least as
far as drag reduction is concerned, appears to be α ≈ 1. The most significant pressure
reduction occurs at longer wavelengths α ≈ 0.3 for a vertical slot, but the decrease in B is
also smaller. Our patterned heating no longer possesses drag-reducing properties once
β = 3π/4. Our results thus far demonstrate that pressure-gradient losses can be
significantly mitigated and, perhaps, even eliminated if a judicious combination of
parameters is made.
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Figure 6. The pressure-gradient correction B as a function of the Reynolds number Re when Rap,L = 0,
Rap,R = 500 and α = 1. Plotted are the values of B for the eight inclinations β = jπ/8 with j = 0, 1, . . . , 7.
The flow conditions for Re = 1, 5, 10 are marked using blue lines in figure 2, while the circles illustrate
the flow conditions used in figure 3. The various levels of grey shading indicate parameter combinations that
reduce pressure losses; the borders between the shadings depict the combinations for which 10 %, 50 % or
100 % pressure-gradient reductions are possible.

Detailed information about the effects of the Reynolds number can be gleaned from
the data displayed in figure 6. It is clear that the pressure-gradient correction approaches
a constant, inclination-dependent limit as Re → 0, corresponding to the pure natural
convection that Floryan et al. (2022a) considered. Our analysis here is based on the
assumption of the prescribed flow rate constraint (2.8), which, in the limit Re → 0
corresponds to a zero flow rate. As heating generates a net longitudinal flow, its
elimination necessitates the imposition of a pressure gradient, as suggested by figure 6.
The pressure-gradient correction approaches a limit that approaches zero as Re → ∞
irrespective of the inclination angle. This limit is reached when Re exceeds about 100, and
the separation bubbles have been completely destroyed. Furthermore, the flow loses any
dependence on the heating and acquires characteristics akin to an isothermal Poiseuille
flow. We emphasize that obtaining a significant reduction in pressure losses for smaller
Reynolds numbers is possible.

Detailed information concerning the effects of varying the heating wavenumber can
be inferred from figure 7. Heating seems to have the most marked influence on the
pressure losses when α = O(1); naturally, the details depend on the inclination angle.
The magnitude of these losses decreases in both the long- and short-heating-wavelength
limits. In particular, it may be shown that B ∝ α2 as α → 0 while B ∝ α−3 when α → ∞,
at least when the slot is inclined, and the details of these limits are discussed in §§ 5 and
6. Horizontal and vertical channels are somewhat special cases, as the results in figure 7
suggest. It seems that heating always reduces the pressure losses in horizontal channels
irrespective of the heating wavenumber but only reduces losses in vertical channels if
the wavelength is sufficiently long. There are cases of heating wavenumbers that are
so effective that an opposite-signed pressure gradient must be imposed to prevent flow
acceleration.

The evolution of flow structures when α = O(1) has already been discussed in
connection with figure 3. We observed that the structures changed slightly as the
inclination angle altered. To complement these findings, in figure 8, we present evidence
as to the form of the flow structures in the small- and large-wavenumber limits. There is
a dramatic change in the flow topology at long wavelengths as the slot is inclined at an
angle increasing from horizontal. The long-wavelength structures can be analysed, and
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Figure 7. The pressure-gradient correction B when Rap,L = 0 and Rap,R = 500 for the four channel
inclinations β = jπ/4 with j = 0, 1, 2, 3. Shown are the results for two Reynolds numbers: (a) Re = 1 and
(b) Re = 10. The flow conditions used in this figure are shown using blue lines in figure 5. The various degrees
of grey shading indicate those parameter combinations that reduce the pressure losses; the borders between the
different shadings correspond to 10 %, 50 % and 100 % pressure-gradient reduction. The circles identify the
conditions adopted in figure 8.

the pertinent results are summarized in § 5. There, we point out that the limit β → 0 is a
special case, and this conclusion is supported by the flow structures displayed in the first
column of rows 1 and 3 of figure 8. On the other hand, at short wavelengths, boundary
layers form near the heated walls. The asymptotic solutions described in § 6 show that
the details of the boundary layers differ if the channel is horizontal or vertical, but the
modifications are somewhat technical so that the overall flow topology does not change
significantly.

One last aspect of the problem that warrants attention is the effect of the heating
intensity. The change in the pressure gradient is proportional to Ra2

p,R for relatively weak
heating; this result is evident in the results contained in figure 9. In the opposite case
of intense heating, we have evidence of saturation, and the magnitude of B does not
grow indefinitely as Rap,R increases, at least in the case of small Reynolds numbers (see
figure 9a). We see that the case of a vertical channel is somewhat a special case in as much
that there is a transition from a reduction to a growth in the pressure losses, which occurs
at Rap,R ≈ 400 (Floryan et al. 2023d). At larger Reynolds numbers, the behaviour is rather
more intricate. Now, a switch between reduced and enhanced pressure-gradient losses is
possible in slots that no longer need to be vertical.

One may inquire about the stability properties of these flows and whether a transition
to secondary states might occur. Previous work on analysing flows in horizontal channels
has shown that the periodic Rayleigh number must reach values in excess of 2500 for any
instability to appear, irrespective of the heating wavenumber (Hossain & Floryan 2013b,
2015b). The results summarized in figure 9 demonstrate a saturation effect associated
with an increase in heating intensity above Rap,R = 2000. The upshot is that such large
intensities are of little interest in developing practical drag-reducing techniques. Strictly,
one should check whether the intensity of the critical heating decreases as the inclination
angle increases. However, since the channel-transverse component of the buoyancy force
drives convective instabilities, and this component drops as the inclination angle grows, so
the critical heating intensity is expected to increase with the inclination angle.

The above analysis raises a natural question about the energy costs of reducing pressure
losses. The reduction of energy delivered through the pressure gradient (per unit length)
is 
Epres = 4

3 ReB with variations of B given in figure 2. The heat energy delivered to
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Figure 8. The flow and temperature fields for flows with heating intensities Rap,L = 0 and Rap,R = 500.
Shown are the structures that correspond to relatively long-wavelength (α = 0.1) and short-wavelength
(α = 10) modes and at the two Reynolds numbers Re = 1 and Re = 10. The background colour illustrates
the temperature field. The black arrows show the direction of gravity force, while the red arrows denote the
direction of pressure-gradient force. The flow conditions used in these plots are marked in figures 5 and 7. In
all the plots the temperature has been normalized with its maximum θmax.

the system has two parts. The first one involves heat flow between the walls quantified
by the average Nusselt number Nuav , and it represents the true energy cost. The second
one represents the energy flow between the hot and cold sections of the wall. This heat
flow averages out to zero over a wavelength, but there must be a cost associated with
maintaining temperature variations along the wall. Some information about it is provided
by evaluating heat flow leaving/entering the wall per half-wavelength, which is quantified
by the horizontal Nusselt number Nuh,R. Variations of Nuav and Nuh,R for the same
conditions as in figure 2 are displayed in figure 10. While Nuh,R exceeds by an order
of magnitude Nuav , as noted in Hossain & Floryan (2013a), it is not a good measure
of energy cost as this heat is recovered over the next half of the heating wavelength,
i.e. it averages out to zero. The actual energy cost of maintaining temperature variations
along the wall is a function of the details of the construction of the heating system and
cannot be determined unless the wall composition is specified and conduction within the
wall is accounted for. This cost is expected to be much smaller than the heat flow over
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Figure 9. The pressure-gradient correction B for a heating wavenumber α = 1 and eight inclination angles
β = jπ/8 for j = 0, 1, . . . , 7. Two Reynolds numbers are considered: (a) Re = 1 and (b) Re = 10. The
different levels of shading indicate parameter combinations that reduce pressure losses, and the borders between
the colours correspond to cases of 10 %, 50 % and 100 % pressure-gradient reduction.

half a wavelength. The magnitude of energy fluxes can be estimated based on the data
from figures 2 and 10. Consider Re = 5 (the middle columns in these figures) and take
the middle of the drag-reducing zone, which gives B ≈ 5. The energy saving due to the
reduction of pressure losses is ∼33, the energy cost due to the heat flow between the
walls is ∼20 and the amount of energy leaving the wall and re-entering it is ∼300. This
underlines that wall construction dominates the energy cost, but an analysis of possible
wall constructions and their energy efficiencies is outside the scope of our analysis. If
this energy cost can be eliminated, or at least significantly reduced, it might be possible
to develop a system where energy cost of loss reduction is smaller than the energy saved
by loss reduction. It should be remarked that the cost could be acceptable even if energy
cost of reduction significantly exceeds the reduction itself as one may be able to use waste
energy as a heating source, making the energy cost largely immaterial.

4. Heating applied to both sides of the channel

We now briefly discuss the situations that can arise when both sides of the slot are heated.
Our observations so far suggest that changes in the friction at the heated wall are larger
than at the isothermal wall, thereby reducing pressure losses. When both walls are heated,
the reduction of losses is expected to be enhanced as the separation bubbles on both walls
are directly driven by the heating applied at each. This additional heating introduces two
further parameters into the problem: the intensity of the heating of the second surface
and the phase difference Ω between the two patterns. An in-depth study of all possible
parameter combinations would lead to an unwieldy plethora of results. To focus matters,
we concentrate on understanding the role played by the phase difference when equal
heating is applied to the two walls so Rap,L = Rap,R. Calculations show that the details
of the pressure losses depend strongly on the phase Ω and the channel orientation β, and
some sample results are illustrated in figure 11. The value of the correction B seems to
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Figure 10. The variations of the average Nusselt number Nuav and the horizontal Nusselt number Nuh,R (see
(2.10)) as functions of the heating wavenumber α and the slot inclination angle β when only the right wall is
heated with Rap,R = 500.
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Figure 11. The pressure-gradient correction B as a function ofΩ and β when Rap,L = Rap,R = 500 and α = 1.
The three plots correspond to a Reynolds number Re = (a) 1, (b) 5 and (c) 10. The shading indicates those
parameter combinations that lead to a reduction in pressure losses. The thick dotted, dashed-dotted and dashed
lines identify the conditions leading to 10 %, 50 % and 100 % reduction of pressure losses.

depend only weakly on the phase Ω when the channel is horizontal. This behaviour is
perhaps illusory, as there is some variation with Ω , which is largely hidden on the scale
used to plot figure 11. Hossain & Floryan (2016) discuss this problem in some detail. It
is recalled that the streamwise component of the mean buoyancy force is zero when the
slot is horizontal, but this no longer holds once the channel is inclined. This induces much
larger changes in the value of B and, as the offset Ω is adjusted, significant swings in the
magnitude of B arise and, moreover, it can change sign.

A better understanding of possible flow responses can be gained from the data displayed
in figure 12. Here, we consider the quantity Bcomp = (B2 − B1)/B1 which gives a very
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Figure 12. A comparison of the effectiveness of the one-wall and two-wall heating as functions of Ω and β
when Rap,L = Rap,R = 500 and α = 1 for Reynolds numbers Re = (a) 1, (b) 5 and (c) 10. Shown plotted is the
quantityBcomp = (B2 − B1)/B1 in which Bj denotes the pressure-gradient correction observed when j walls are
heated ( j = 1, 2). The parameter space is divided into four regions (i)–(iv) as defined in the text.

rough estimate of the comparison of the system performance, whether only one wall
or both walls are heated. In this definition, we denote by Bj the pressure-gradient
correction observed when j walls are heated ( j = 1, 2). This then naturally leads to a
division of the parameter space into four regions (i)–(iv) defined by (i) B1 > 0, B2 > 0;
(ii) B1 < 0, B2 > 0; (iii) B1 < 0, B2 < 0; and (iv) B1 > 0, B2 < 0. We have conditions
for improved pressure corrections with two-wall heating. It seems that within (ii), there is
also an advantage in using two-wall heating as it generates a positive pressure-gradient
correction, while the same conditions give a negative pressure-gradient correction for
one-wall heating. Overall, the advantage of the two-wall heating seems to increase with
Re.

In the next two sections, we analytically examine the cases of long-wavelength and
short-wavelength heating. This serves twin objectives: on the one hand, they provide
insight into the mechanisms that underpin the flow structure; on the other hand,
comparison with the numerical simulations in appropriate limits gives us additional
confidence in the accuracy of the calculations.

5. Long-wavelength heating

We begin a discussion of the analytic solution for the flow by considering long-wavelength
heating (α � 1). To that end, we introduce the stretched coordinate X = αx, which brings
the governing equations and thermal boundary conditions to the following form:

α[Re(1 − y2)+ u1]u1X + v1(−2Re y + u1y) = −αp1X + α2u1XX + u1yy + θ1

Pr
sinβ,

(5.1a)

α[Re(1 − y2)+ u1]v1X + v1v1y = −p1y + α2v1XX + v1yy + θ1

Pr
cosβ, (5.1b)

α[Re(1 − y2)+ u1]θ1X + v1θ1y = 1
Pr
(α2θ1XX + θ1yy), (5.1c)

αu1X + v1y = 0, (5.1d)

with the thermal boundary conditions becoming

θ1(X,−1) = 1
2 Rap,R cos X, θ1(X, 1) = 1

2 Rap,L cos(X +Ω). (5.2a,b)

996 A5-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.694


J.M. Floryan, W. Wang and A.P. Bassom

Notice that we have incorporated the phase shift in the heating profiles and allowed
different magnitudes of heating at the two walls. It is helpful for the subsequent
calculations to define the three related quantities

R1 = Rap,R + Rap,L cosΩ, R2 = Rap,R − Rap,L cosΩ and R3 = Rap,L sinΩ.
(5.3a–c)

We seek solutions that assume the structure

(u1, v1, p1, θ1) = α−1(0, 0, P̂−1, 0)+ (Û0, 0, P̂0, θ̂0)+ α(Û1, V̂0, P̂1, θ̂1)+ α2(Û2, V̂1, P̂2, θ̂2)+ · · · ,
(5.4)

where all the unknowns are functions of X and y. Given the form of the boundary
conditions, we are led to the leading-order solutions

Û0 = − 1
24Pr

y(1 − y2)(R2 cos X + R3 sin X) sinβ, V̂0 = − 1
96Pr

(1 − y2)2(R3 cos X − R2 sin X) sinβ,

(5.5a,b)

θ̂0 = 1
4

[(R1 − R2y) cos X − R3(1 + y) sin X] and P̂−1 = 1
4Pr

(R1 sin X + R3 cos X) sinβ. (5.5c,d)

At O(α) the thermal field consists of mean and X-dependent parts. It may be shown that

θ̂1(X, y) = − 1
4 PrRe[F1( y) sin X + F2( y) cos X] + 1

384 [F3( y) sin 2X + F4( y) cos 2X + F5( y)] sinβ,
(5.6)

where the polynomials F1( y)–F5( y) are defined to be

F1( y) = 1
60(1 − y2)[5(y2 − 5)R1 − y(3y2 − 7)R2], (5.7a)

F2( y) = 1
60 R3(1 − y2)(3y3 + 5y2 − 7y − 25), (5.7b)

F3( y) = 1
60 (1 − y2)(3y4 − 2y2 − 17)(R2

3 − R2
2)− 1

30 y(1 − y2)(7 − 3y2)(R2
3 + R1R2),

(5.7c)

F4( y) = 1
30 (1 − y2)(3y4 + 3y3 − 2y2 − 7y − 17)R2R3 − 1

30 y(1 − y2)(3y2 − 7)R1R3,

(5.7d)

F5( y) = − 1
30 y(1 − y2)(7 − 3y2)(R1 + R2)R3. (5.7e)

The remaining quantities satisfy the equations

Û1yy − P̂0X + 1
Pr
θ̂1 sinβ = Re(1 − y2)Û0X − 2ReyV̂0 + Û0Û0X + V̂0Û0y, (5.8a)

P̂0y = 1
Pr
θ̂0 cosβ and Û1X + V̂1y = 0. (5.8b,c)

Strictly, we only need to ascertain the parts of the solutions proportional to sin X and
cos X; the nonlinear terms in (5.8a) will generate terms proportional to sin 2X and cos 2X
but these do not contribute to calculating the orders that must be considered. It then follows
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that the relevant parts of the solution of (5.8) are

Û1(X, y) = 1
10 080

ReR3

(
F6 − F7

Pr

)
cos X sinβ + 1

10 080
Re

(
F8 + R2

F7

Pr

)
sin X sinβ

+ 1
480Pr

(1 − y2)[R3(5y2 − 20y + 1) cos X + (R2(1 − 5y2)

+ 20R1y) sin X] cosβ + UM1( y)+ · · · , (5.9a)

V̂1(X, y) = 1
10 080

ReR3

(
F9 − F10

Pr

)
sin X sinβ + 1

10 080
Re
(

F11 − R2
F10

Pr

)
cos X sinβ

− 1
480Pr

(1 − y2)2[R3( y + 5) sin X − (5R1 − R2y)cos X] cosβ + · · · ,
(5.9b)

P̂0 = 17
210

Re(R3 sin X − R1 cos X) sinβ

+ 1
40Pr

[(R2(1 − 5y2)+ 10R1y) cos X − R3(5y2 + 10y − 1) sin X] cosβ + · · ·,
(5.9c)

in which the polynomials F6( y)–F11( y) are given by

F6( y) = (1 − y2)(3y5 + 7y4 − 18y3 − 98y2 + 31y + 19), (5.10a)

F7( y) = y(y2 − 1)(5y4 − 16y2 + 19), (5.10b)

F8( y) = (y2 − 1)[(3y5 − 18y3 + 31y)R2 − (7y4 − 98y2 + 19)R1], (5.10c)

F9( y) = −1
8 (y

2 − 1)2(3y4 + 8y3 − 22y2 − 152y + 51), (5.10d)

F10( y) = 1
8 (y

2 − 1)2(5y4 − 18y2 + 29), (5.10e)

F11( y) = −1
8(y

2 − 1)2[(3y4 − 22y2 + 51)R2 − 8y(y2 − 19)R1]. (5.10f )

Furthermore, the mean part of the streamwise velocity ÛM1( y) is another polynomial, but
this consists only of terms of odd degree, so the mass flux across the slot −1 ≤ y ≤ 1 is
zero.

We now move on to consideration of the O(α2) terms. If we suppose that the pressure
gradient

pX = Aα2 + · · · , (5.11)

then the O(α2) terms in the streamwise momentum and energy equations are

Re(1 − y2)Û1X − 2ReyV̂1 + Û0Û1X + Û1Û0X + V̂0Û1y + V̂1Û0y = −(A + · · · )+ Û0XX + Û2yy + 1
Pr
θ̂2 sinβ,

(5.12a)

Re(1 − y2)θ̂1X + Û0θ̂1X + Û1θ̂0X + V̂0θ̂1y + V̂1θ̂0y = 1
Pr
(θ̂0XX + θ̂2yy). (5.12b)

If we denote the mean part of θ̂2(x, y) by θ̂2M( y) then (5.12b) furnishes an expression
for (θ̂2M)yy that can be integrated twice, subject to the requirement that θ̂2M vanishes at
y = ±1. This result is substituted into (5.12a) for the mean function Û2M( y) which can be
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found subject to Û2M(±1) = 0; the pressure gradient is then adjusted to ensure the mean
mass flux is zero. After some algebraic manipulation and simplification, we find that

A = 1
12 600 Pr

(Ra2
p,R − Ra2

p,L) sin 2β + sin2β

227 026 800Pr2 Re

× {(Ra2
p,L + Ra2

p,R − 2Rap,L Rap,R cosΩ)(51 − 790 Pr)

+ [5876(Ra2
p,L + Ra2

p,R)+ 9620 Rap,LRap,R cosΩ]Pr2},

(5.13)

and the associated pressure gradient is B = Aα2.
The reader may note that when heating is applied at the right wall only, the above

expression simplifies to the form

α2
{

1
227 026 800Pr2 Re Ra2

p,R(51 − 790Pr + 5876Pr2)sin2β + 1
12 600 Pr

Ra2
p,R sin 2β

}
.

(5.14)

The first term is always positive for any Pr while the second term becomes negative for
β ∈ (π/2,π) and for β ∈ (3π/2, 2π) with precise boundaries of these intervals being
discussed later in the presentation. It is noted that a vertical (β = π/2) has the flow moving
upwards. This wall begins to serve as the upper wall with a further increase of β with the
flow directed to the left. It becomes horizontal when β = π, with the flow then moving
to the left and the upper wall being heated. A further increase of β results in the flow
travelling downwards with the upper wall now heated. It becomes vertical at β = 3π/2
with the flow now downward and the left wall heated. The channel returns to a horizontal
position at β = 2π, with the lower wall being heated and the flow moving to the right.
Reduction of pressure losses is possible only for the channel orientation between vertical
with the right wall heated and being horizontal with the upper wall heated and between
being vertical with the left wall heated and horizontal with the lower wall heated. The
above equation also shows that the solution for the inclined channel in the limit of β → 0
(horizontal channel) has a different structure with A = 0(α4) (Floryan & Floryan 2015)
rather than A = 0(α2) for the inclined channel. Details of this transition are omitted from
this discussion.

We can also comment on the Nusselt number form. If we take the expression for θ̂2M
and evaluate the derivative at y = −1 we find that

dθ̂2M

dy

∣∣∣∣∣
y=−1

= 1
45 360

Re(Ra2
p,R − Ra2

p,L)(1 − 10Pr) sin β − 1
12 600

(9Ra2
p,R + 9Ra2

p,L

+ 17Rap,LRap,R cosΩ) cosβ. (5.15)

Figure 13 compares the asymptotic predictions against some numerical simulations of
the complete governing system. We plot the form of B = Aα2 as given by (5.13) and
the Nusselt number Nuav predicted by (5.15). The comparison shows excellent agreement
between the analytical and numerical findings, at least for wavenumbers α < 0.1.

6. Short-wavelength heating

Here, we consider the opposite limit of short-wavelength heating. When α is large, most of
the interesting motion occurs near the edges of the channel, so let us consider appropriate
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Figure 13. Variations of the numerically determined (Bn, solid black line) and the analytically determined
(Ba, dotted black line) pressure-gradient corrections, and of the numerically determined (Nuav,n solid red
line) and the analytically determined (Nuav,a, dotted red line) average Nusselt numbers as functions of the
heating wavenumber α as α → 0 for Re = 1, Rap,R = 400, Rap,L = 0. The dashed-dotted lines identify the
differences 
B = |Ba − Bn| (black line) and 
Nu = |Nuav,n − Nuav,a| (red line). These results suggest that
the leading-order solutions are indeed in error by O(α4).

scales so that X = αx and Y = α( y + 1) near the right-hand wall. The governing equations
written in these scales become

α−1[Re(2αY − Y2)+ α2u1]u1X + α−1v1[2Re(α − Y)+ α2 u1Y ]

= −αp1X + α2(u1XX + u1YY)+ Pr−1θ1 sinβ, (6.1a)

α−1[Re(2αY − Y2)+ α2u1]v1X + α v1v1Y = −α p1Y + α2(v1XX + v1YY)+ Pr−1θ1 cosβ,
(6.1b)

u1X + v1Y = 0, (6.1c)

α−1[Re(2αY − Y2)+ α2u1]θ1X + α v1θ1Y = α2Pr−1(θ1XX + θ1YY), (6.1d)

where the subscript 1 refers to flow modulations caused by the heating. We solve these
equations subject to periodic heating on the edges of the slot so that

θ1(X,−1) = 1
2 Rap,R cos X, θ1(X, 1) = 1

2 Rap,L cos(X +Ω). (6.2)

When α ′′1 we seek solutions that assume the structure

u1 = α−2

( ∞∑
0

α−jÛj

)
, v1 = α−2

( ∞∑
0

α−jV̂ j

)
, p1 = α−1

( ∞∑
0

α−jP̂j

)
, θ1 =

( ∞∑
0

α−jΘ̂ j

)
,

(6.3)

where all the unknowns are functions of X and Y. Leading-order terms in the thermal
equation give

Θ̂0XX + Θ̂0YY = 0 ⇒ Θ̂0(X, Y) = 1
2 Rap,R exp(−Y) cos X, (6.4)

to satisfy the boundary condition on Y = 0 and to decay as Y → ∞. Next-order equations
show that Θ̂1(X, Y) ≡ 0; we also have Û1 = V̂1 = P̂1 ≡ 0. At O(α−2) we find that

2Y ReΘ̂0X = Pr−1(Θ̂2XX + Θ̂2YY) ⇒ Θ̂2(X,Y) = 1
4 PrReRap,RY(Y + 1)exp(−Y) sin X, (6.5)
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while the O(1) terms in the two momentum and continuity equations give

0 = −P̂0X + Û0XX + Û0YY + Pr−1Θ̂0 sinβ, 0 = −P̂0Y + V̂0XX + V̂0YY + −1
PrΘ̂0 cosβ, Û0X + V̂0Y = 0,

(6.6a–c)
whose solution is

Û0 = −Rap,R

16Pr
Y(2 − Y)exp(−Y) sin(X − β), V̂0 = Rap,R

16Pr
Y2exp(−Y) cos(X − β),

(6.7a,b)

P̂0 = Rap,R

8Pr
[(2Y + 3) cos X cosβ + (2Y + 1) sin X sinβ]. (6.7c)

We next move back to the energy equation at O(α−3). We have

Û0 Θ̂0X + V̂0Θ̂0Y − Re Y2Θ̂0X = 1
Pr
(Θ̂3XX + Θ̂3YY), (6.8)

which, on substituting the leading-order results, becomes

Θ̂3XX + Θ̂3YY = 1
32 Ra2

p,RY[(1 − Y) cosβ − cos(2X − β)]exp(−2Y)

+ 1
2 PrReRap,RY2exp(−Y) sin X. (6.9)

This equation admits the solution

Θ̂3(X, Y) = − 1
24 PrReRap,RY(2Y2 + 3Y + 3) exp(−Y) sin X

+ 1
512 Ra2

p,RY(1 + 2Y)exp(−2Y) cos(2X − β)

+ 1
256 Ra2

p,R[1 − (1 + 2Y + 2Y2)exp(−2Y)] cosβ.

(6.10)

The streamwise momentum equation at O(α−5) gives

− Y2ReÛ0X + Û0Û0X − 2YReV̂0 + V̂0Û0Y = −P̂3X + Û3XX + Û3YY + Θ̂5

Pr
sinβ.

(6.11)
Again, we are interested in the mean parts of this equation. If we suppose that P̂3M = AX
then the mean part of Û3, call it Û3M( y), satisfies

· · · = −A + Û
′′
3M + 1

Pr
Θ̂3M sin β. (6.12)

We do not need to solve this explicitly, for it is sufficient to note that for large Y we have

Û
′′
3M ∼

[
A −

Ra2
p,R

512Pr
sin 2β

]
⇒ Û3M ∼

[
A −

Ra2
p,R

512Pr
sin 2β

]
1
2

Y2. (6.13)

We point out that all the terms on the left-hand side of (6.12) decay exponentially for large
Y, so they cannot contribute to the leading-order form of the mean flow solution at large
values.

This step completes the analysis of the wall layer. We see that the O(α−3) component of
θ1 tends to a constant as Y → ∞ (see (6.10)) while the O(α−5) component Û3M( y) grows
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quadratically. Then, across the bulk of the slot where y = O(1), we have that

u1 = α−3Ũ( y)+ · · · , θ1 = α−3Θ̃( y)+ · · · , p1 = α−3Ax + · · · , (6.14a–c)

and these satisfy

0 = −A + d2Ũ
dy2 + 1

Pr
Θ̃ sinβ,

d2Θ̃

dy2 = 0. (6.15)

The form of (6.10) shows that for matching, we require

Θ̃ →
Ra2

p,R

256
cosβ as y → −1. (6.16)

An exactly parallel calculation at the left wall shows that we must also demand

Θ̃ → −
Ra2

p,L

256
cosβ as y → 1. (6.17)

Hence,

Θ̃( y) = 1
512 [Ra2

p,R − Ra2
p,L − (Ra2

p,L + Ra2
p,R)y] cosβ, (6.18)

so that
d2Ũ
dy2 = A − 1

1024 Pr
[Ra2

p,R − Ra2
p,L − (Ra2

p,L + Ra2
p,R)y] sin 2β. (6.19)

There is no need to solve this completely – if we integrate twice and impose that
Ũ(±1)= 0, this requires that the constant term in the above equation disappears. Hence,

A = 1
1024 Pr

(Ra2
p,R − Ra2

p,L) sin 2β. (6.20)

In conclusion, we see that to maintain a constant mass flux through the channel, we need
to impose a pressure-gradient correction B = α−3A, where A is given by (6.20). This
correction does not depend on Re at the leading order of approximation. If only the right
wall is heated, a reduction of pressure losses can be achieved only for β ∈ (0,π/2) or
for β ∈ (π, 3π/2). The reader may note that the solution changes in the limits of β → 0
(a horizontal channel) and β → π/2 (a vertical channel). Repeating the analysis for a
horizontal channel shows that in this case A = O(α−7) (Floryan & Floryan 2015) while
for a vertical channel A = O(α−5) (Floryan et al. 2023d).

To deduce the Nusselt number, we start by looking at the solution (6.12). It would be
expected that the leading-order Nusselt number would be

α−2 dΘ̂3M

dY

∣∣∣∣∣
Y=0

, (6.21)

but it can easily be verified that this quantity actually vanishes. The next-order problem is
given by

1
Pr
(Θ̂4XX + Θ̂4YY) = 2Y ReΘ̂2X, (6.22)

and we can determine the mean part of the solution. If this mean component is denoted as
Θ̂4M (Y ) then

Θ̂4M = − 1
512 Y(Ra2

p,L + Ra2
p,R) cosβ (6.23)
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Figure 14. The form of the pressure-gradient correction B (black lines) and the average Nusselt number Nuav
(red lines). Solid lines denote numerically determined values, while the dotted lines indicate the analytical
values as given by (6.20) and (6.24). Calculations performed with parameter values Re = 1, Rap,R = 400 and
Rap,L = 0. The dashed-dotted lines denote the differences 
B and 
Nu between the numerical and analytical
predictions.

by matching directly with the core-layer solution. Hence, the Nusselt number becomes

α−3 dΘ̂4M

dY

∣∣∣∣∣
Y=0

= −α−3
{

1
512

(Ra2
p,L + Ra2

p,R) cosβ
}
. (6.24)

The above discussion shows that to maintain a constant mass flux through the channel
exposed to the heating, we need to impose a pressure-gradient correction B = α−3A,
where A is given by (6.20). The resulting heat flow between the walls is given by (6.24).
In figure 14, we compare our asymptotic predictions with some numerical simulations;
excellent agreement is observed between the two cases for α > 10.

7. Discussion

An investigation has been conducted into the changes in pressure losses within an inclined
channel induced by applying patterned heating to one or both boundaries. A combination
of asymptotic analysis and spectrally accurate numerical tools has enabled us to probe
the details of the flow and thermal structures that arise. As may have been anticipated,
patterned heating leads to intricate flow and temperature field topologies, and a central
pillar of these structures involves the formation of separation bubbles. These bubbles
mitigate the direct contact between the stream and the side walls, thereby reducing friction
experienced by the stream. Fluid rotation inside the bubbles, driven by longitudinal
temperature gradients, also reduces resistance. On the other hand, the flow blockage
associated with the bubbles tends to increase the flow resistance. The slightly subtle
interplay of these three effects determines whether overall there is a net increase or
decrease in the resistance. We have already noted that at a sufficiently large flow Reynolds
number, the separation bubbles are completely washed away; the upshot is that a relatively
simple temperature field remains while the drag-reducing effect has been removed.

A complex temperature field leads to the formation of a rather intricate buoyancy field.
We have seen that the longitudinal component of the mean buoyancy force plays the
dominant role in the flow response. Since this vanishes when the channel is horizontal,
it is unsurprising that the effect of patterned heating on inclined channels is rather more
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than a simple modification of the previously known horizontal results. The form of the
pressure loss is a function of the channel orientation and the heating wavenumber. When
only one wall is heated, the reduction in the pressure gradient can be so significant that
an opposite-signed gradient must be applied to prevent flow acceleration. With all other
parameters held fixed, the pressure loss seemed to be small in channels oriented not too
far from horizontal and increased in channels oriented closer to vertical. For fixed heating
intensities, the largest pressure correction occurs at some O(1) heating wavenumber;
moreover, it reduces proportional to α2 as α → 0 and to α−3 when α → ∞. For relatively
weak heating intensity, the size of the pressure-gradient correction is proportional to the
square of the Rayleigh number, but much stronger heating leads to a saturation effect.

We reiterate that all our computations were conducted with Pr = 0.71. We claimed that
the main findings are independent of the choice of Pr, and this is at least partially borne
out by the asymptotic results (5.13) and (6.20) relating to the long- and short-wavelength
modes. It is clear that changes in Pr would change quantitative details but have no major
effect on the overall flow structure. It would only be in the cases of exceptionally large or
small Prandtl numbers that more significant changes are likely to be seen.

We have also investigated the pressure reductions achieved by heating both walls. In
particular, we have focused on the role played by the phase difference when the two walls
are heated with the same intensities. Very significant pressure reductions can be achieved
if the heating patterns are positioned optimally. Of course, our findings could be extended
to account for the situation when the two walls experience different degrees of heating.
A series of simulations suggest that, in this case, the various structures are reminiscent of
the results described above. If one surface is heated appreciably more strongly than the
other, the results seem to be qualitatively similar to the one-wall heating case described
in § 3.

It is important to emphasize that we do not necessarily claim a net reduction in
energy consumption. Our assertions are rather more modest; although we have shown
conclusively that heating reduces pressure losses, it is not straightforward to make
definitive statements regarding the implications for the overall energy budget. The cost
of generating temperature patterns required to reduce flow losses is very problem-specific
but is independent of the fluid mechanics. There are literally hundreds of possible ways to
generate the required wall temperature distribution so it is difficult to determine the energy
cost without knowing the details of wall construction. The energy losses are associated
with heat transfer across the channel and conduction along the wall. This second process
is likely to prove critical as it takes energy to maintain longitudinal temperature gradients
along the wall. To complicate matters, waste heat is often available, so a discussion
of the energy cost of flow actuation becomes somewhat moot as waste energy costs
almost nothing. Clearly, there is much scope in assessing the practical implications of
our suggested mechanism.

There is a limit to the available pressure gradient required to produce the desired flow
rate. This limit could be dictated by technological limitations in producing such pressure
differences (e.g. pump limitations) or by structural limitations, as an excessive pressure
difference between channel interior and exterior may lead to structural deformations.
In these cases, one may want to look at a distributed pumping mechanism, which can
be created using heating patterns. In such situations, the energy cost is irrelevant, and
obtaining a proper flow rate is key. A combination of heating with the existing propulsion
methods can provide performance that is not otherwise available. In this context, the results
summarized in Floryan (2023) suggest mechanisms that lead to an expected net energy
reduction.
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We intend to continue exploring this problem, and should important new structures
become evident, we shall report on them in due course. One also needs to verify the
stability properties of the flow, as the appearance of any secondary flow would modify the
predictions reported in this paper. Computations for the formation of secondary flows in
horizontal channels suggest that it does not occur until the Rayleigh number exceeds 2500,
a value somewhat larger than those examined in the current work. Furthermore, simple
physical arguments suggest that the critical Rayleigh number required to form secondary
flows should increase with the inclination angle.
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