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Abstract

The relative contributions of fat-free mass (FFM) and fat mass (FM) to body weight are key indicators for several major public health issues.

Predictive models could offer new insights into body composition analysis. A non-parametric equation derived from a probabilistic Baye-

sian network (BN) was established by including sex, age, body weight and height. We hypothesised that it would be possible to assess the

body composition of any subject from easily accessible covariables by selecting an adjusted FFM value within a reference dual-energy X-ray

absorptiometry (DXA) measurement database (1999–2004 National Health and Nutrition Examination Survey (NHANES), n 10 402). FM

was directly calculated as body weight minus FFM. A French DXA database (n 1140) was used (1) to adjust the model parameters

(n 380) and (2) to cross-validate the model responses (n 760). French subjects were significantly different from American NHANES subjects

with respect to age, weight and FM. Despite this different population context, BN prediction was highly reliable. Correlations between BN

predictions and DXA measurements were significant for FFM (R 2 0·94, P,0·001, standard error of prediction (SEP) 2·82 kg) and the per-

centage of FM (FM%) (R 2 0·81, P,0·001, SEP 3·73 %). Two previously published linear models were applied to the subjects of the French

database and compared with BN predictions. BN predictions were more accurate for both FFM and FM than those obtained from linear

models. In addition, BN prediction generated stochastic variability in the FM% expressed in terms of BMI. The use of such predictions

in large populations could be of interest for many public health issues.
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Non-parametric models

The relative contribution of fat-free mass (FFM) and fat

mass (FM) to body weight is a relevant indicator for

major public health issues(1,2). Due to the accumulation

of excess fat tissue, the worldwide increase in the preva-

lence of obesity contributes to a high risk of metabolic

disorders such as CVD and type 2 diabetes(3). In addition,

FFM loss in ageing populations and its progression towards

sarcopenia increase morbidity and mortality(4–6). Accurate

measurements of body composition can be obtained from

reference methods, such as underwater weighing, dilution

techniques and dual-energy X-ray absorptiometry (DXA).

Although the use of such methods is widespread, their

application is time consuming and expensive, and as a

result, they are not relevant for use as a part of routine

clinical examinations or population studies. Bioelectrical

impedance has often been considered to be a convenient

tool for body composition analysis. However, the recorded

bioelectrical values (resistance and reactance) must be

used in equations that are body shape specific, and accu-

rate FFM and FM assessments require adjustments with a

gold standard method(7–10).

In contrast, simple anthropological measurements, such

as body weight or BMI, cannot give a reliable quantifi-

cation of body composition, although they are of predic-

tive interest at a population level(3,11–13). Models that

provide reliable predictions of body composition from

very simple covariables are still needed. Because increa-

singly more information on body composition analysis is

available, either directly from large surveys (e.g. National

Health and Nutrition Examination Survey; NHANES) or

indirectly through scientific publications, we investigated

the potential of a non-parametric model derived from

a Bayesian network (BN) to predict body composition.

A BN provides a global joint probability distribution over

a set of random variables(14,15). The ability to combine vari-

ables and the growing capabilities of computer calculations

have made these models increasingly popular. Indeed,

they have become of great use in quantitative risk assess-

ment(15–17). However, to our knowledge, such models

have not been used for body composition analysis. Assu-

ming a direct influence of sex, age, body weight and height

on body composition(18–21), we hypothesised that it might
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be possible to assess the body composition of any subject

by selecting an adjusted FFM value from a DXA measure-

ment database (DXA, 1999–2004 NHANES) with easily

accessible covariables (sex, age, height and weight). The

present study aims to present this new calculation concept

and to validate BN predictions for FFM and FM against

DXA measurements obtained from an independent

sample of French subjects. A comparison with previously

published linear models(11,22) was also performed.

Method

Reference database used for body composition analysis

All FFM values used for body composition predictions

were extracted from the NHANES website (http://www.

cdc.gov/nchs/about/major/nhanes/) for the 1999–2004

period (n 10 402). Subjects were characterised from the

covariables (sex, age, height and weight) included in the

model irrespective of ethnicity (Table 1).

For the current purpose, only subjects having a valid

scan were included, and the mean value of five DXA

measurements (Hologic QDR-4500) was considered. Lean

mass values were increased by 5 % to overcome the initial

reduction imposed on the entire NHANES database, as

explained in the user guide (http://www.cdc.gov/nchs/

nhanes/dxx/dxa.htm)(23).

Independent body composition database for model fitting
and validation

A database of 1140 French subjects (aged between 20 and

79 years and with BMI between 18·5 and 40 kg/m2) who

had their body composition measured by DXA (Hologic

QDR-4500) during routine examination at the Radiology

Department of the Clermont-Ferrand University Hospital

Centre (CHU) between 1998 and 2008 was used. From

this database, two different subsets were defined to adjust

parameters for FFM estimates (CHU-fit: 380 subjects), and

the second was used to cross-validate model responses

(CHU-valid: 760 subjects) (Table 1). Subsets were matched

for sex and BMI distributions.

Fat-free mass adjustments

For each subject in the CHU-fit database, a subset of candi-

dates was selected in the NHANES database using a BN

equation, which included the age, body weight and

height of the subject to predict.

A distance was computed from the covariables using the

following formula:

D ¼
max wada;whdh;wwdw

� �
wa þ wh þ ww

;

where da, dh, dw are the absolute values of the difference

for age, height and weight, respectively, between the

CHU subject to predict and the NHANES subjects of similar

sex, and wa, wh, ww are associated weighting parameters

for age, height and weight, respectively. A maximal dis-

tance (Dm) was defined as the maximal selection limit.

Only the NHANES subjects with D , Dm were retained as

candidates for prediction. When the closest NHANES sub-

ject was at a distance greater than Dm, the predictive

subset was empty, and no prediction was proposed.

For some combination of parameters (wa, wh, ww, Dm),

the coefficient of determination between FFM predictions

and the corresponding DXA measurements, the standard

error of prediction (SEP) and the prediction rate (ratio of

the predicted individuals to the total number of individuals

to predict) were simultaneously computed and used as

criteria to estimate the quality of adjustment. Weighting

parameters varying from 0·05 to 0·2 (age in years), 0·2 to

0·4 (height in cm) and 0·7 to 0·9 (weight in kg) were

tested, with Dm varying from 0·005 to 0·015 (arbitrary

units). From a selected subset of candidates, the one

having the median FFM value was used for prediction,

and his/her FFM value was attributed to the CHU subject.

Prediction was supported by the subject having the

Table 1. Population description in the databases used as the reference (National Health and Nutrition Examination Survey (NHANES)), for model
adjustment (CHU-fit) and for validation (CHU-valid)

(Mean values and standard deviations)

Men Women

NHANES
(n 5400)

CHU-fit
(n 183)

CHU-valid
(n 366)

NHANES
(n 5002)

CHU-fit
(n 197)

CHU-valid
(n 394)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Age (years) 43·75 21·66 47·87* 17·1 46·48* 16·89 46·68 21·12 49·68* 14·6 49·66* 14·92
Weight (kg) 83·66 19·61 78·17* 12·7 79·24* 13·03 74·02 19·65 68·39* 13·3 67·17* 13·5
Height (cm) 174·24 7·91 175·04 6·85 174·06 6·55 160·6 7·18 161·28 6·76 162·96*† 6·36
BMI (kg/m2) 27·21 5·62 25·8* 3·88 25·85* 3·92 28·39 7·01 25·73* 4·68 25·79* 4·72
FFM (kg) 59·93 10·55 61 7·74 61·76* 7·9 43·39 8·19 43·88 6·92 45·10*† 6·75
FM (%) 27·00 7·00 21·43* 5·59 21·47* 5·78 40·00 7·00 33·25* 6·57 33·89* 6·16

CHU, Clermont-Ferrand University Hospital Centre; FFM, fat-free mass; FM, fat mass.
* Mean values were significantly different between NHANES and CHU (valid or fit) within a sex group (P , 0·001).
† Mean values were significantly different between CHU-fit and CHU-valid (P , 0·001).
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median FFM value of the subset of candidates instead of

using the mean FFM value, which did not correspond to

any particular subject. Increasing the number of candidates

within the predictive subset extended the calculation pro-

cess without producing a gain on the quality of prediction;

thus, when the number of candidates exceeded fifty, only

the fifty closest were kept. FM was then determined,

assuming FM ¼ body weight 2 FFM.

Extreme anthropometric situations were discarded, and

model predictions were limited to subjects with BMI

values between 18·5 and 40 kg/m2. In addition, model

predictions were limited to subjects above 20 years of

age to avoid growth influences on body composition

analysis and below 79 years of age due to the weak

representation of older subjects in the reference database.

These restrictions were applied to the French databases

(CHU-fit and CHU-valid) but not to the NHANES

database. A candidate could be selected outside these

limits when his/her covariables gave a distance below Dm.

Comparisons with other predictive models

Predictions of the percentage of body fat (FM%) on CHU

subjects were compared when obtained with either BN

or multiple regression models. Two equations were con-

sidered as follows:

A predictive equation including sex and BMI(22)

FM% ¼ 4·35 £ BMI 2 ð0·05 £ BMI2Þ2 46·24

ðif femaleÞ;

FM% ¼ 3·76 £ BMI 2 ð0·04 £ BMI2Þ2 47·80

ðif maleÞ:

ð1Þ

A predictive equation including sex, BMI and age(11)

FM% ¼ 76 2 1097·8 £ 1=BMI þ 0·053 £ age

ðif femaleÞ;

FM% ¼ 55·4 2 943·8 £ 1=BMI þ 0·087 £ age

ðif maleÞ:

ð2Þ

This last formula was proposed with an ethnic correction

for Asian subjects, which was not used here. These

equations were developed to predict FM%. Using a two-

compartment model, they were applied to body weight

to deduce FM and, consequently, FFM.

Statistical computations and analyses. Underlying cal-

culations were processed using the Rebastaba package(24)

written in R (R Development Core Team, 2009), a language

and environment for statistical computing (R Foundation

for Statistical Computing, Vienna, Austria; ISBN 3-900051-

07-0, URL http://www.R-project.org), which is available

at http:/r-forge.r-project.org/projects/riskassessments/

The quality of prediction was globally assessed on both

CHU-fit and CHU-valid databases by the SEP, which is

defined as follows:

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðFFMmeasured 2 FFMpredictedÞ

2

n

s
;

where n is the number of subjects in the corresponding

database.

Differences between population characteristics were

analysed with Student’s t test (XLstat 2008). Correlations

between variables were calculated with Pearson’s formula.

Results

Model parameter adjustments

The NHANES and CHU (fit and valid) subjects were signifi-

cantly different for all variables (P,0·001) with the excep-

tion of height (except for CHU-valid, where women were

taller than those in the other groups). The NHANES sub-

jects had greater body weight, BMI and FM than the

French subjects. The CHU subjects had a slightly but sig-

nificantly higher FFM (not significant for CHU-fit women)

than the NHANES subjects. CHU-valid women had higher

FFM values than the other female groups (Table 1). There-

fore, BN prediction was analysed for subjects very distinct

from the NHANES population.

Numerous combinations of weighting coefficients and

Dm were first considered. Among them, 125 effective com-

binations were scrutinised for the SEP and rate of predic-

tion for the subjects belonging to the CHU-fit database.

As expected, there were interactions between the SEP

and the rate of prediction. The SEP decreased with Dm

until a minimum corresponding to the optimal fit between

FFM predictions and DXA measurements, and then

increased again with larger Dm values (Fig. 1(a)). Decrea-

sing Dm led to an increase in the number of empty predic-

tive subsets and consequently worsened the prediction

rate. Reaching a predictive rate of 100 % was possible but

reduced the quality of fit (SEP approximately 3 kg;

Fig. 1(b)). The retained combination provided a compro-

mise between the two criteria, with an SEP of 2·84 kg

and a prediction rate of 99·21 %. The corresponding

weighting parameters were as follows:

wa ¼ 0·08; wh ¼ 0·2; ww ¼ 0·5;

with Dm set at 0·0075.

Using these weighting parameters, the correlation

between FFM predicted by the BN equation and FFM

measured by DXA for the CHU-fit subjects was highly

significant (R 2 0·94, P,0·001). This combination of

parameters was used in all subsequent calculations.

Accuracy of model prediction

The BN equation was cross-validated on the CHU-valid

subjects. The subjects’ repartition was fairly balanced

Body composition prediction 1267
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between the CHU-fit and CHU-valid groups. No difference

was observed for variables from men from the two data-

bases. However, CHU-valid women were slightly taller

and had higher FFM values than CHU-fit women. The cov-

ariables (age, height and weight) of the NHANES subjects

selected as predictors were similar to those of the CHU

subjects, and no difference was observed between the

groups (Table 2).

The FFM, FM and FM% values of the predictors were

plotted against their respective experimental DXA counter-

parts (Fig. 2). Accuracy of BN prediction was compared

with the two linear models, equations 1 and 2. The quality

of fit was excellent in women for FFM (SEP 2·71 kg, R 2

0·86) and was superior to those obtained with equation 1

(SEP 3·64 kg, R 2 0·82) or equation 2 (SEP 3·73 kg,

R 2 0·83). Similar trends were found for males; however,

discrepancies between the three models were less pro-

nounced for males than for females. All correlations were

highly significant (Table 3). Because FM was deduced

from FFM, the SEP was equivalent for FFM and FM.

Correlations were still highly significant for FM%, although

predictions were less closely fit to their experimental

counterparts, and the SEP remained lower for BN predic-

tion than those obtained with linear models.

When FM% was expressed in terms of BMI, a large inter-

individual variability was observed with experimental

measurements for both males and females. This variability

was better described by the BN predictions than with other

models (Fig. 3). The variability observed with equation 2

was introduced by the age effect, which was not sufficient

by itself to describe the inter-individual variability. In con-

trast, the well-known sex difference in FM% in terms of

BMI was well described by the three predictive models.

Discussion

The main objective of the present study was to investigate

the potential use of a non-parametric equation derived

from a BN to assess body composition with easily accessible

covariables. BN are particularly useful in predicting events

in a population when only part of the information is avail-

able or eventually provided as aggregated information.

However, in the present study, BN prediction was validated

in a context where all the covariables needed for prediction

were known. It was shown that the BN enabled the precise

prediction of the FFM of the French subjects (CHU) from

body composition values recorded in the US population

(NHANES). The first requirement in developing such a

model was to have a validated database of body compo-

sition measurements. DXA is one of the gold standard

methods for assessing body composition(25). The NHANES

database, to our knowledge, is the largest database of

DXA body composition measurements available for down-

loading. It offers a good reliability, with five replicates per

subject recorded under validated procedures. The second

requirement was to have a database of body composition
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Fig. 1. Variation of the standard error of prediction (SEP) over the tested combinations of parameters: (a) when varying the maximal distance (Dm) used in the

Bayesian network prediction (arbitrary units) and (b) its covariation with the rate of prediction.

Table 2. Population description for the CHU-valid subjects (n 760) and the National Health and Nutrition Examination Survey (NHANES) subjects used
as predictors (n 760)*

(Mean values and standard deviations)

Men Women

CHU-valid subjects NHANES subjects CHU-valid subjects NHANES subjects

Mean SD Mean SD Mean SD Mean SD

Age (years) 47·19 15·29 46·61 18·86 49·19 16·44 48·73 17·12
Weight (kg) 78·84 13·24 78·89 13·26 67·50 13·26 67·53 13·27
Height (cm) 174·53 6·42 174·40 6·55 161·90 6·40 161·68 6·72

CHU, Clermont-Ferrand University Hospital Centre.
* There were no significant differences between groups stratified by sex (P.0·001).
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analysis for a population similar to the population of inter-

est. We were particularly interested in describing a French

European population. Therefore, we used a French dataset

to adjust the parameters of the BN equation. However, the

equation could have been adjusted or applied to any

other population. It is interesting to note that the NHANES

database could be used to describe the body composition

of a population of interest that differed in many aspects

(age, weight and BMI). To predict the body composition

of a subject, the BN equation returned an adjusted subset

of candidates from which the one having the median FFM

value was the predictor. His/her FFM value was attributed

to the subject to predict, and FM was directly deduced as

the body weight minus FFM. It would have been possible

to do similar adjustments from any body compartment

(fat, lean or bone mass). However, FFM was the most

important body compartment, and the one most closely

adjusted to the BN covariables(18–20). FM was then con-

sidered to be the adjusting variable. Bone mineral content

represents the smallest compartment (about 3·5 % of

weight). It was not considered to be a specific compartment

but was included in FFM.

The potential outcomes associated with a reliable predic-

tive model for body composition have been highlighted(1),

and many attempts to describe body composition, particu-

larly body fat, using linear models with simple variables

have been proposed. They usually included BMI, and

occasionally, age or ethnicity(20,25,26). It was thus interes-

ting to compare the fit obtained with BN prediction and

with linear predictive models when applied to the same

population. Two robust and clearly described equations

were used for comparison. Equation 1(22) included a quad-

ratic form of BMI that was irrespective of age, while

equation 2(11) included BMI, age and ethnicity, both with

sex specificities. When applied to the CHU-valid subjects,

the quality of FM% adjustments was very similar to those

obtained in the original population context(11,22). For

equation 2, the quality of fit varied from R 2 0·81, with

SEP 4·31 %, in the original population to R 2 0·81, with

SEP 4·01 %, for the CHU-valid subjects. For equation 1,

when stratified by sex, the quality of fit varied from

R 2 0·78, with SEP 4·63 %, in the original population to

R 2 0·67, with SEP 4·73 %, for CHU-valid females and

from R 2 0·68, with SEP 4·90 %, to R 2 0·59, with SEP 4·12 %,

for CHU-valid males. The similarity of fit obtained with

these two models in different populations confirms their

robustness. For both body compartments (FFM and FM),

BN prediction resulted in a better fit than linear models,

especially for FFM, which was the adjusted compartment.

It is noteworthy that BN prediction was obtained without

considering ethnicity. At first, ethnicity was included

as a putative variable in the network due to its possible
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Fig. 2. Scatter plots of Bayesian network prediction for fat-free mass (FFM)

(a), fat mass (FM) (b) and the percentage of FM (FM%) (c) in terms of their

experimental counterparts derived from dual-energy X-ray absorptiometry

measurements on CHU-valid men (X) and women ( £ ). The first bisectors

are drawn (- - -).

Table 3. Quality of fit between fat-free mass (FFM) and the percentage
of fat mass (FM%) as measured by dual-energy X-ray absorptiometry
with the CHU-valid subjects and their counterparts predicted by the
Bayesian network (BN), equation 1(22) and equation 2(11) for men and
women*

FFM FM%

Prediction rate SEP R 2 SEP R 2

Women
BN 99·2 2·71 0·86 3·99 0·68
Equation 1 100 3·64 0·82 4·74 0·67
Equation 2 100 3·73 0·83 4·21 0·70

Men
BN 99·72 2·95 0·86 3·72 0·60
Equation 1 100 3·27 0·86 4·12 0·59
Equation 2 100 3·08 0·86 3·91 0·61

Total
BN 99·46 2·82 0·94 3·84 0·81
Equation 1 100 3·47 0·92 4·43 0·74
Equation 2 100 3·43 0·91 4·01 0·81

CHU, Clermont-Ferrand University Hospital Centre; SEP, standard error of prediction.
* All R 2 values were significant (P,0·001).
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impact on FFM(27,28) and on fat deposition(29,30). In calcu-

lations not shown here, the quality of fit was analysed

using either white, non-Hispanic subjects alone (as defined

in the NHANES database) or all subjects, irrespective of

ethnicity. Although the French population to predict

(CHU) was mostly Caucasian, the best fit was obtained

when the entire database was used (SEP 2·84 kg) rather

than limited to white, non-Hispanic subjects (SEP

3·11 kg). The influence of ethnicity was, therefore, not

included in the final model adjustment.

Sex differences observed in the relationships between

BMI and FM% were similar to those previously

described(21,31). In contrast to other predictive linear

models, BN prediction provided a stochastic picture of

inter-individual variability, as illustrated by the relationship

between BMI and FM% and could be useful to depict bio-

logical variability in any population of interest.

The BN equation is not a ready-to-use tool for straight

application; instead, it should be considered as a new

concept in the field of body composition assessments

that can be improved in further releases. The applicability

and accuracy of model predictions directly depend on the

quality and quantity of the available information in the

NHANES database. The predictive subset size varied from

zero to fifty subjects. An empty subset meant that it was

not possible to find a candidate in NHANES having the

requested age, height and weight within the constraints

imposed by the BN equation This prediction failure was

rather low, and only four subjects out of 760 were not pre-

dicted. When the subset size equalled one, the FFM predic-

tion was deduced from a single candidate with a higher

risk of poor adjustment. These types of situations were

more frequently found for extreme anthropometric

values. Of the five predicted subjects with a subset of

one (all female), two were taller than 180 cm, and two

were shorter than 148 cm. Excluding subjects predicted

from only one candidate, the quality of fit was slightly

better for FFM (SEP 2·76 kg instead of 2·84 kg) but with a

decreased rate of prediction (from 99·2 to 98·54 %). In con-

trast, a NHANES subject can be selected as a predictor for

different CHU-valid subjects (six NHANES subjects were

selected three times; sixty-seven were selected twice and

604 were involved in a single prediction). The number of

replicates of a predictor depended on the covariable distri-

bution of the population to predict. Retaining different

model limits to avoid rare anthropometric situations

could be a possible way to improve the model.

The quality of FFM predictions obtained with the BN

model were similar to those obtained with bioelectrical

impedance equations, where SEP varied from 2 to 3·6kg(32),

5
10
15
20
25
30
35
40
45
50
55

15 20 25 30 35 40 45
BMI (kg/m2)

15 20 25 30 35 40 45
BMI (kg/m2)

15 20 25 30 35 40 45
BMI (kg/m2)

15 20 25 30 35 40 45
BMI (kg/m2)

FM
%

 p
re

d
ic

te
d

 f
ro

m
 C

H
U

-v
al

id

5
10
15
20
25
30
35
40
45
50
55

(a) (b)

(c) (d)

FM
%

 m
ea

su
re

d
 o

n
 C

H
U

-v
al

id

5
10
15
20
25
30
35
40
45
50
55

FM
%

 p
re

d
ic

te
d

 f
ro

m
 C

H
U

-v
al

id

5
10
15
20
25
30
35
40
45
50
55

FM
%

 p
re

d
ic

te
d

 f
ro

m
 C

H
U

-v
al

id

Fig. 3. Relationship between BMI and fat mass (FM), expressed as a percentage of body weight (FM%) measured by (a) dual-energy X-ray absorptiometry

on CHU-valid men (X) and women ( £ ) and the corresponding predictions for (b) the Bayesian network, (c) equation 1(22) and (d) equation 2(11). CHU, Clermont-

Ferrand University Hospital Centre.
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suggesting that BN predictions could offer an interesting

alternative to bioelectrical impedance measurements,

usually considered as a convenient field measurement(8).

An additional interesting aspect of such a model derived

from BN is the possibility of adding/removing variables.

Waist circumference has a significant relationship with

body fat(31,33). Thus, it might be worth considering its

inclusion to improve theBN prediction of body composition.
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