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Abstract Let p={p,, ,p.} and g={q,, , qm} be finite probability vectors,
each having at least three non-zero components, such that —Z:l=l plogp =
-¥" . qlogq Let C={1, ,n}, D={1, ,m} and let (C%, p%, o) and
(D?, g%, 7) be the corresponding Bernoull: shifts Then there exists an 1Isomorphism
¢ between these shifts such that for aa xe C? ¢(x)(0) 1s determined by finitely
many of the future co-ordinates x(0), x(1), and for aa ye D ¢ '(y)(0) 1s
determined by finitely many of the co-ordinates y(—1), y(0), (1),

1 Introduction
Let C={1, ,n}and D={1, ,m} be finite sets Let X = C% denote the space
of two-sided sequences indexed by Z and Y = D?, both equipped with their Borel
o-algebras Suppose that p and g are probability measures on C and D Let = p’
and v=g” denote the corresponding product measures on X and Y The shift
transformation o on X 1s defined by o(x)(1)=x(1+1) 7 will denote the shift on
Y (X, u, o) and (Y, v, 7) are called Bernoull: shifts

A homomorphism from (X, u,o) to (Y, 7) 1s a measure-preserving map
¢ (X, u)->(Y,v) such that poo=70¢ u-ae ¢ 1s said to be fimtary if Vje D
¢ {yeY y(0)=,} agrees u-ae with a countable union of finite cylinder sets n
X Informally, for aa xe€ X ¢(x)(0) 1s determined by finitely many of the co-
ordinates , x(=1), x(0), x(1), and, by shift invariance, the same 1s true of
&d(x)(t) forall teZ

We will call ¢ forgetful if for all je D ¢ '{y€ Y y(0)=y} agrees a e with a set
in 7, the future o-algebra in X, that 1s, the o-algebra generated by the projections
x—x(1),1=0,1, Informally, ¢(x)(0) 1s determined by x(0), x(1), We will
call ¢ fimtanly forgetful if for all je D ¢ '{ye Y y(0)=,} agrees ae with a
countable union of cylinder sets each of which 1s in %" It 1s an easy exercise that
¢ 1s fimtanly forgetful if and only 1f 1t 1s finitary and forgetful

¢ 1s called an 1somorphism 1if 1t has an a ¢ 1nverse , that 1s ¢ =1d ae The
entropy h(p) of p 1s defined by

h(p)=— i. p. log p,
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(We use log, exclusively ) The purpose of this paper 1s to prove the following result

THeorReM 1 Ifh(p)= h(q) and p and q each have at least three non-zero components
then there 1s a finitanly forgetful isomorphism ¢ from (X, u, o) to (Y, v, o) whose
inverse 1s finitary

Except for the three-state assumption Theorem 1 1s a strengthening of Keane and
Smorodinsky’s fimtary isomorphism theorem for Bernoulli shifts [K, 8] The present
paper 1s a continuation of the work 1n [J] where we established the existence of a
finitarily forgetful homomorphism under the hypotheses of Theorem 1 Sina: [S]
established the existence of a forgetful homomorphism under more general
hypotheses (u any ergodic o-1nvanant probability and (Y, », 7) any Bernoull shift
with h(7)= h(o)) Ornstein and Weiss [Q, W] have given another proof of Sinar’s
theorem. Propp [P] has recently simultaneously generalized Sinar’s theorem and
given a proof entirely analogous to the proof of Ornstein’s 1somorphism theorem
[O], using the Baire category theorem as in [B, R]

If one removes all finitariness requirements on ¢ and ¢ ', Theorem 1 asserts the
existence of a forgetful 1Isomorphism between o and 7, which 1s still a new result
We will call this weaker assertion Theorem 2 Because the proof of Theorem 1 1s
somewhat intricate we include here a considerably simpler proof of Theorem 2
using a Baire category argument The central idea of this proof 1s however the same
as that of Theorem 1, namely the *-joining as defined in [J] In particular we observe
here that under the right assumptions the *-operation has a certain symmetry which
escaped notice 1n [J] and leads to a proof of the associativity of the *-operation

Theorem 1 falls short of its intended goal 1n two respects One of these 1s the
troublesome three-state restriction The other 1s the natural conjecture that one
should be able to make ¢ ' causal, that 1s ¢ '()(0) depends only on the past

, ¥y(—=1), ¥(0) (It1s well known [W]that ¢ and ¢ cannot both be forgetful unless
q 1s a re-arrangement of p ) This conjecture 1s based on a natural desire for symmetry,
but more cogently, on the fact that the desired symmetry 1s quite analogous to the
aforementioned symmetry of the *-joiming (In fact the ¢ ' we obtain 1s 1n a certain
sense close to being causal ) In this connection we mention Meshalkin’s construction
[M],incase p=(3,3,%,%,8) and ¢ = (3,3, 1, 1), of a fimtanly forgetful somorphism
with a finitanly causal inverse

As 1n [K, S] and [J] the three-state assumption allows us to assume that p, = g,
As 1n [K, S] and {J] we use the symbol 1 as a marker and ¢ reproduces in y each
occurrence of a marker in x The ¢ ' we obtain here 1s marker-conditionally causal
1n the sense that, once all occurrences of 1°s 1n y are known, then one need only
look at ,y(—1), y(0) to determine  , x(—1), x(0)

The plan of this paper 1s as follows §2 describes the function of markers §3
introduces the notion of a skeleton, its rank and 1ts filler sets This section ts very
stmilarto § 3 of [J] although somewhat streamlined It contains most of the intricacies
which are needed to achieve finitariness Roughly speaking a skeleton & 1s a
configuration of 1’s (markers) and 0’s (blanks) A skeleton can be filled by inserting
one of the symbols from A={2, ,n} (B={2, , m}in case of the Y fillers) in

https://doi.org/10.1017/5014338570000585X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000585X

Bernoulli shifts of the same entropy 689

each blank spot For each & this 1s done only on a certain pre-assigned subset 1(¥),
in case of X-fillers, or J(&), 1n case of Y-fillers, of the blank spots Later, in § 5,
we assign to each & a measure 7y on A’ x B’ whose marginals on A'**’ and
B’ are ps'”’ and q3'”, where p, and g, denote p and g conditioned on A and
B respectively We call such a joint measure a superposition

In §4 we describe the *-joining which 1s essentially a way of combining two
superpositions 7y, and 7, to get a superposition 7y, * my, which has both 7y and
7y, as marginals It turns out that, in certain circumstances, the *-operation 1s
associative Proposition 4 7 captures the key feature of the *-joining which makes

it useful for coding roughly speaking, under the nght assumptions, 1f

Ty,, Ty,, Ty, are superpositions and 7y _ 1s close to being a code from A=)
to B’*“-, 1n the sense that for most x e A'”~ x 15 contained with respect to 7y_,
m some yeB'Y  (that 15wy (x,y)=7s_({x}xB"7-)), then

Ty, * * g, * my 15 Close to being a code no matter how far the 7y, are from
coding and how large n 1s In [K, S] coding 1s achieved by taking the usual product
measure g, X x wy_, and then using a marnage lemma to perturb 1t 1n a way
which respects any coding accomplished by the 7, and makes 1t close to coding
However the perturbation no longer has the 7y, as marginals The advantage of our
approach 1s that no perturbation 1s required, which 1s what allows us to achieve
forgetfulness

In § 5 we define wy for each ¥ For & of odd rank we arrange matters so that
by Proposition 47 my 1s close to coding from A’ to B’” For even rank we
make the coding go the other way The 7. are consistent in the sense that whenever
&% 1s a subskeleton of & ., has marginal 73 The consistency of the my allows us
to combine them to obtain a joining of the Bernoull shifts o and = and we are then
able to show that this joining 1n fact arises from an 1somorphism with the desired
properties

In § 6 we give the simpler proof of the non-finitary Theorem 2 It 1s essentially a
much less careful version of the proof of Theorem 1 If the reader wants to read
only Theorem 2 he should read §§ 2, 4 and 6, which form a logically self-contained
unt

2 Markers

Lemma 2 of [K, S] enables us to assume that p(1)=q(1) As 1n [K, S] the symbol
1 will be used as a marker in X and Y, so we review some facts from [K,S] X and
Y are fibred by the positions of marker occurrences as follows For xe X, X¢ X=
{0, 1}% 1s defined by

)‘c‘(l)-{l if x(1)=1

“ 10 otherwise

For £é¢ )2, X (¢) denotes the fibre over ¢
X(é)={xe X x=¢}

The projection of p onto X, denoted by f, 1s the product measure p? where
p(1)=p(1), p(0)=1—p(1) We make parallel defimtions for Y and evidently 4 = ¥

https://doi.org/10.1017/5014338570000585X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000585X

690 A del Junco

We denote by u, (respectively »;) the conditional measure on X () (respectively
Y,) so

M= J“ Mg dﬁ(f)

Setting A={2, ,n},B={2, ,m}and I(§)={teZ &(t)=0}, X(£)1s naturally

identified with A’® and with this 1dentification u, 1s py®” where p, denotes p

conditioned on A Similarly », 1s g4’ where g, 1s g conditioned on B

3. Skeleta
We denote aninterval {1, t+1, ,j}imZby[1, ], (-1, 3], [, 7+ 1) or(a—1, +1)
We will be dealing with sequences y indexed by a subset I of Z with entries chosen
from a symbol set I' Thus formally yeT’, that1s y I->T and I 1s the domain of
y For I' = I we will often denote the restriction of y to I' by y(I') (rather than y|I')
Let Ng< N, < N,< - be a sequence of positive integers to be specified later
For r =0 by a skeleton of rank r we mean the pair (r, ¥) where ¥ 1s a sequence of
0’s (blanks) and 1’s (markers) indexed by a finite interval I in Z which has the form

0™1™0™1" Q1™ 31)
where m, >0, n,>0 and
max {n, 1=1<k}<N,=n,

Thus any ' such that max {n, 1=<1<k}< N, < n, 1s a possible rank for the configur-
ation (31) We distingmish between skeleta of different rank whose associated
sequences are the same, even though we will usually speak loosely of the sequence
& as a skeleton and wnite r=rank & We will say & of the form (3 1) has maximal
rank if r=max{r' N, <n,} We write

|Fl={tel F(t)=0},

the set of blank indices of ¥ We wrnite [(¥) for #||

By a subskeleton & of the skeleton & we mean the restriction of & to a subinterval
J or I ending with a full marker run of & (1e $(1+maxJ or max J =max I)=0)
such that & 1s itself a skeleton with a rank not greater than that of & If & 1s a
subskeleton of & we write $< & For any j € || the restriction of ¥ to I n[j, ©)
1s a subskeleton of & with the same rank r as & (Note that this 1s the only sort of
restriction of & which may have a potential rank greater than r) Moreover every
subskeleton of & of full rank 1s of this form We denote this subskeleton by &

A subskeleton & of & will be called rank-maximal 1n & if 1t 1s maximal among
the subskeleta of & with the same rank as &, ordered by < Equivalently, the domain
of & cannot be extended to the left in & without increasing the rank of &, for the
reason that & 1s preceded immediately to the left by a marker run in & of length
I=N,, r=rank &

Subskeleta ¢, and &, of ¥ may have overlapping domains without one containing
the other, but the following lemma asserts that this cannot happen for rank-maximal
subskeleta
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LemMma 31 If &, and %, are rank-maximal subskeleta of & then either one is a
sub-skeleton of the other or their domains are disjoint

Proof If dom &, ndom &, # & then (reversing the roles of ¢, and &, 1f necessary)
the final marker block 1n &, 1s a marker block of %, It follows that the restriction
of ¥ to dom &, udom %, 1s a subskeleton & of & with the same rank as &, Since
%, 1s rank maximal %, = % so dom &, = dom &, and min (dom &,) = min (dom %,)
If max (dom #,) <max (dom %,) we necessarily have rank &, <rank %, so ¥, < %,
In the other case dom &, =dom &%, so &, <%, or $,< ¥, according to which has
the greater rank O

If & 1s a skeleton of rank r the occurrences of marker runs 1n & of length at least
N,_, divide & 1nto its rank-maximal subskeleta of rank »r—1 If these subskeleta are
&, , %o listed 1n order from left to right we write

F=% X%,

and refer to this as the rank decomposition of & (The apparent eccentricity in
ordering, which will recur frequently, 1s 1n anticipation of the fact that all the
constructions we shall make will have to be made from nght to left in order to
ensure forgetfulness ) Note that the rank decomposition may consist of & alone,
with rank r —1 rather than r We will make frequent use of induction on the rank
of & and the fact that if £ < & and rank # <rank & then ¥ <, for some 1

Our next task 1s to define sutable subsets I(¥) and J(&) of |#| so that A"*”? and
B’*") can play the role of filler sets First we define a method of truncating skeleta
Let 0<Cy< C, be asequence of positive integers to be specified later If Y 1s a
0-skeleton define

C(P) =17, w=mm{ie|¥] I(F)=Co}

Now suppose C(%) has been defined for all skeleta & of rank less than r and &
has rank r, =%, x X%, Let

l=mn{1€ |.9’| (FH=C}
and suppose 1,€ §;, t= =0 We define
C(&) =\l C(F)

It 1s immediate by induction that the definition of C(¥) 1s forgetful in the sense
that, for 1€|¥|, C(,¥)= C(¥)n[1,0) That 1s, in order to know how C(¥) looks
to the rnight of 1 one need only look at & to the right of 1 It 1s also immediate that
forrank ¥=r

#C(F)=Cot+ C,+ +C,

If I and J are subsets of Z we write I <J if max I <minJ The proof of the
following lemma 1s immediate by induction on the rank of &

LEMMA 32 If # < then either C(F)< C(¥) or C(F)c C(¥)
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If & 1s a skeleton we set
R(¥) ={max ||}
and
C(#)=C(¥)—R(¥)
We now proceed to define I(¥) and J(¥) If rank (¥) =0 set
I(#)=J(F)=Q
Now let
0<m<m<m;< s
and
O<M,<M;<Mg<
be sequences of positive integers to be specified later Suppose =
&, x XFoxF_; and r=rank ¥ 1s odd Let us say &, 1s mtial in L 1f 0=1<m,
and say &, 1s principal in ¥ 1if i=zm, and C(S,) = C(¥) Note that ¥_, 1s neither
mitial nor principal Define
I(#)=UJ{C(%) & prncapal}ulJ{R(¥,) ¥ imtial}
and
J(P)=J{C(¥) & prnncipal}
Since S_, 1s not used we have J(¥)c I(¥) = C(¥)
Now suppose that ¥ = ¥, x XFoxF_,and r=rank F1s even For0=1=<1let
1=q(m+M))+s, g=0,0=s<M,+m,
and call &, principal n ¥ 1f 0=s< M, and C(&,)< C(¥) Call &, auxiliary in &
if M,=s<M,+m,and C(¥,)= C(¥) Inother words we skip &_, and then working
from nght to left we label the first M, &,’s principal, the next m, auxihary and so
on, as long as C(¥,) remains inside C(¥), after which we stop We will refer to
any sequence
B=(5€+M,+m,—1, ,-9);+1,9J1)
of m, auxihary ¥,’s followed by M, principal ¥, as a full block of ¥ We set
1Bl=UAI%] 1=1<j+ M, +m},
J(B)=J () n|B|=U{R(Z) j+ M, =<1<j+M,+m,}
v UJ{C(L) j=1<M,}
and
1(B)=1(¥)n 8|
=U{C(& j=1<y+ M}
Note that the forgetfulness of C(¥) implies the forgetfulness of I(¥) and J(¥)

for 1€|¥|
I(&%)=1()n [, ),
J(F)=J(F)N[1,0)
Lemma 33
(a) If < then etther ()L J(F)= C(¥) or

H(P)uI(P)<C(F)
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(b) If $< & then either
1) I(P)< I(P) and J(F)< J(¥F) or
m) IP)NI(F)=D and J(P)nJ(F) =D

Proof
(a) Since I(P)u J(F)= C(F) (a) follows from Lemma 3 2
(b) If rank ¥ =rank & then & =,¥ for some j€|¥| so I(F)=1(F)n[},0) < [(¥)
and similarly J(#) = J(¥) Thus we may assume rank & <rank & so ¥ < ¥, for
some &, 1n the rank decomposition ¥ =¥, X X ¥_, We deal first with the
case when rank & 1s odd If &, 1s mtial or 1=—1 then (#)n I[(F)=J(F)n
J(P) = since I(F)uJ(F)< C(&,) If &, 1s neither imtial nor principal then
certainly I(Z)n I(¥) = J ()N J(¥) =D Finally if &, 1s principal we have by
(a) I(P)uI(P)c C(PL) or I(P)LJ(P)< C(¥,) In the first case we actually
have I(#) < C(¥,) < I(¥) (since &, 1s principal) and similarly J(£) < J(¥) In
the second case evidently I(P) N I(F)=J(P)nJ(F) =D
If rank ¥ is even the argument 1s exactly the same, replacing ‘initial’ by ‘auxiliary’
throughout O
Given a skeleton & we inductively define a family D(&) of subskeleta of & as
follows If rank ¥ =0, D(¥)=0 If ¥=%, X F,_, X X S, we let
D(#)={FIuU{D(¥,) &, 1s not principal 1n F}.
LEMMA 3 4
(a) Each ¥ € D(¥) 1s rank-maximal in &
(b) For distinct &,, %>€ D(P), (L)NI(L) =T(F)NI(F) =T
(c) For each $< & there 1s a $ e D(¥) such that $< %, J(F)= J(P) and J(F) <
P
(d) The operator D 1s forgetful for each 1€ ||
D(#)={F FeD(¥),1e|P[}u{FeD(¥) 1<mm ||}
Proof The proofs of (a), (b) and (d) are more or less immediate by induction To
prove (c) suppose ¥ <& If rank & =rank & then =, for some 1 €|¥| and we
can take =& If rank # <rank & then &< &, for some &, 1in the decomposition
F= x ¥, If &, 1s principal then I(¥)< I(¥) and J(P) < J(¥) so we can
again take F=9 If &, 1s not principal then D(¥,) € D(¥) so the result follows by
induction O

4 The *-joiming
In this section we will be dealing with probability measures on various finite sets
It will be convenient to adopt the following notational conventions for the rest of
the paper If E 1s a finite set and P 1s the partition of E 1nto points, for any cartesian
product X 1n which E 1s a factor P will also denote the partition of that product
according to the E-co-ordinate Thus for pe P, p denotes a subset of E or of X
depending on the context

If p 1s a probability measure on X and a 1s a subset of X, d,(P|a) will denote
the conditional distribution of P given «, with respect to the measure p Thus
d,(P|a) 15 1n a natural way a measure p on E If a =X, d,(P|a) 1s the marginal
of p on E and we denote 1t simply by d,P
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If F 1s another finite set and Q 1s the partition of F into points then PQ will
denote the partition of E X F into points, which according to our convention is the
supremum of the partitions P and Q on EX F If pe P and g€ Q, pq € PQ denotes
the intersection of p and q considered as subsets of E xF Of course all these
considerations extend to any product X having E x F as a factor If p and o are
probability measures on E and F by a joining of p and o we mean any measure
A on E x F whose marginals are p and ¢ Wewrite PL Q (A) if A=pXxo

Now suppose o and p are probability measures on finite sets F and E each of
which 1t totally ordered, so that

F={fi<fi<x <f}, E={e,<e,< <e}
We define a joining o p of o and p as follows Let
O=yo<n < <y, =1
be points 1n [0, 1] such that
Ay, y)=0o(f) forlsis<s,
where A denotes Lebesgue measure Similarly let
O=x,<x,< <x,=1
be such that
Alx,_y,x)=p(e) forl=i<r
Define a jomning o p of o and p by
(o p)f,e)=Aa((y-1, )N (x4, X))
Denoting by Q and P the partitions of F and E into points, ¢ p has the useful

property that, 1n the joining o p, there are at most # F —1 atoms p € P which are

split by Q (that s, (o p)(pg,)>0 and (o p)(pg,) >0 for distinct q,, g.€ Q)
The proof of the following lemma 1s immediate from the defimition of o p

LemMA 41 Suppose F, E, and E, are finute totally ordered sets and E, x E, 1s gien
the lexicographic ordering (e,, e))<(e}, e} e, <esv(e,=eine <e)) Let Q, P,
and P, denote the partitions of F, E, and E, into points Suppose o and p are probabilities
on Fand E,x E, and let

y=0 p, ¥=d,(QP),
50 ¥ 1s the marginal of y on F X E, Then
¥=4d,(Q) d,(P,)=d,(Q) d,(P),
and for p,e P,
dv(QP1|P2) = dy(Qle) d,(Pi|p.)
=d~7(Q|P2) d,(P\| p2)

Next suppose 7, and 7, are probability measures on E, X F, and E, X F, where
F, and E, are totally ordered For 1=2,1 P, and Q, denote the partitions of E, and
F, into points We define a joining

=Ty % T
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of m, and m, on (E,x E,) X (F,x F,) by decreeing that
d‘n'(PZ):dﬂz(PZ); dﬂ(Ql)zd'nl(Ql)s

P, 1 Ql (77')
and

dﬂ(QZP1|p2ql)=dw2(QZ|p2) d-nl(Pllql) Vp,e Py, g,€ Q

Note that this 1s meaningful since we assumed F, and E, to be totally ordered

It will be important that the definition of m;, * 7, 1s symmetric with respzact to
inter-changing the roles of E, and F; and of E, and F; To be more precise, if 75
1s the measure on F, X E, corresponding to 7, under the natural identification of
F,x E, with E;x F,, and 7} 1s the measure on F, X E, corresponding to ; then
7y * w5 1s meamingful (since F, and E, are totally ordered) as a measure on
(Fy X F,) X (E, x E,) and corresponds to 7, * m, It 1s useful to keep the following
picture of 7, * 7, 1n mind

P, P
Q: Q

where the arrow indicates that, conditioned on any atom of P,Q,, Q- and P, are
highly correlated, while P, and Q, are independent The symmetry we have just
discussed should be viewed as symmetry under rotation of the picture by 180°

LEMMA 42 7 =, * 7, 15 a joing of mw, and v, Moreover with the above notation
P, L P,Q, () and Q, L P,Q, (7)
Proof Since

d‘rr(QZP1|p2ql)= dﬂz(Qzlpz) dw,(Pllfh)

and the dot-operation 1s a joining we have

drr(QZl P2q) = dﬂz(in P2)

and averaging over ¢,
d.(Q:| p2) = d.( Q2| p2)
Since d,(P,) =d_(P,) 1t follows that
d.(Q,P,)=d (Q:P,),

that 1s 7 has marginal 77, By symmetry it also has marginal =, Moreover we have
Just observed that Q, and Q, are P,-conditionally independent 1n the joining =
Since Q, and P, are independent 1t follows that Q,P, L Q, (w) By symmetry we
also have P, L P,Q, () O

The next lemma asserts that under the night assumptions the *-operation is
associative Suppose that m, 1s a probability on E,x F, for 1=3,2,1 and that F3,
F,, E, and E, are totally ordered Give F;x F, the reverse lexicographic ordering

(fi, <[5, S (L<fIVL=20[i<f3),
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and put the usual lexicographic ordering on E,x E; Under these assumptions both

s % (% ) and (3 * 7,) * a1, are defined on (E; X E, X E,) x (F;x F,x F,), since

the appropriate sets are totally ordered

LemMMA 4 3 Under the above assumptions s * (m,* m,) = (w3 % m,) * m,

Proof As before, P, and Q, will denote the partitions of E, and F, into points We

will show that & = 75 * (7, * 7,) has the following alternative description

d,(P;P,Q,Q,)=d,(P;)xd,(P,Q,)xd (Q) (1)
dn(Qspllpspzquh) = dn3*1r2(03|P3P2‘I2) dwz*n.(P1|PZCI2‘Il), (1)
Vpse Py, p,€ Py, q,€Qs, 1€ Q,

Clearly (1) and (1) completely determine = The following picture of this description

may be helpful

[Pi] [P] P,

Q: LQ:J [Q4]

The boxed partitions are jointly independent of each other Note that the above
picture 1s symmetric under the rotation by 180° Observing that rotation by 180°
interchanges the reverse and usual lexicographic orderings one sees that the same
description 1s valid for (5 * ,) * r,, establishing the lemma

To see that (1) holds observe that by Lemma 4 2 P; | P,P,Q,Q, (7) and P,Q, 1 Q,
(g), which implies (1)

As for (1), by Lemmas 4 1 and 4 2 and the definition of = for ps€ P5, g,€ Q-,
g, € Q, we have

d,(QsP,| p3g2q1) = d.(Qs| p3)  d.(P2|g29:)
=d,(Qs|p3) dopun (P2l q2q1)
= d1r3(03'p3) dwz(leqz)
It follows that
d.(Q;Py| p3g:) = d, (Qs| ps) d.(P:|q2)
Since we also have P; 1 Q,(7) we conclude that
d.(PyP,Q;Q,) = w3 * 75, ()
that 1s # has marginal 7, * ,
Moreover the above calculation shows that Q;P, and Q, are P;Q,-conditionally

independent 1n the joining - Since from (1) we already know we get P,Q, L Q,
() we get

PyP,Q;Q; L Q, () (1v)
Finally by Lemma 4 1 and the definition of 7 we have
d.(Q3P| psp29:q)) = d.( Q5| p3p29291)  d.(Pi| p3p2929))
=d,(Qs| psp2q2) d.(Pi|p29:9)) (by (1v) and Lemma 4 2)

= dm*wz(Q3,P3P2‘12) dn:*‘n'l(Pl I P29-9,) by (1),
which establishes (11) O
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If T and J are finite subsets of Z we denote by u; and », the measures p} and
gs on A’ and B’ respectively We denote by P’ the partition of A into ponts, so
in keeping with our conventions P’ 1s also a partition of A’ x B’ for any J and
I'>1 Q' will denote the partition of B’ into points A probability measure 7 on
A’ x B’ will be called a superposition 1f 1t 1s a yoining of w; and v, This includes
the possibility that I (or J) 1s empty then 7= v, (or u,)

We now fix once and for all total orderings of A and B We endow A’ with the
lexicographic ordering and B’ with the reverse lexicographic ordering for y, y'e B’

y<y'&3jpetst y(jo)<y'(j0) and y(j)=y'()IVy>jo,j€J
Since any A’ and B’ are now totally ordered m, * m, 1s defined whenever 7, and
, are superpositions Moreover, since rotation by 180° interchanges the usual and
the reverse lexicographic orderings, 7, * r, 1s symmetric with respect to this rotation
If I,<I,<I, and J;<J,<J, are subsets of Z and 7, 1s a superposition on A" X B’
then Lemma 4 3 imphies that 5 * (7, * 7m,) = (73 * 7m,) * 7; We will henceforth use
this associativity without further comment and write simply 5 * 7, * 7,
A superposition 7 on A’ x B’ will be called forgetful 1if for each teZ

Pln(—oot) n Plr\[lco)QJr\[too) (’”_)

LeMMA 4 4 Suppose I, I,, J, and J, are finite subsets of Z such that I, ~ I, = and

J,nJ, = and suppose that w, 1s a superposition on A" x B’ (1=2,1) Then

(a) m,x m, and m, * m, are superpositions on A'2"" x B2

(b) If m, and m, are forgetful then so 1s 7, X m,

(c) If there are subsets K, <K, of Z such that I, uJ,c K, (1=2,1) and 7, and i,
are forgetful then so 1s my * m,

Proof

(a) X 1, 1s obviously a superposition and 7, * 7, 1s a superposition by Lemma 4 2
(b) 1s easy

(¢) Setting 7 = m, * 7w, we must show that

P(lzull)r\(—oot) n P(lzr\ll)ﬁ[r,cO)Q(.lzu.ll)r\[r,oo) (ﬂ’) (l)
and we may as well assume that 1€ K, or te K, If t€ K, (1) becomes
Plzu(llm(—ool))l Pllm[l,oo)Q.llm[toc) (71_)
which 1s true because of Lemma 4 2 and because , 1s forgetful If 1 € K5, (1) becomes
Plzm(—oc 1) n P(Izm[t,oo))ullQ(sz[r,oo))ull (11)
Let pye P00 pEe panli® and g e Q” Because
d,(Q%P"| pip¥q) = d.(Q"| psp¥) d.(P"|q)),
and because of Lemma 4 1 and the way Q™ 1s ordered we see that
d,(Q"U"'P"| pip¥q)) = d,(Q""U"| pip}) d,(P"|q)) (1)
Since m, 1s forgetful the distribution on the right above 1s independent of ps3,
so the same 1s true of the distribution on the left Thus 1n the joining

m, QU Pl and P01 are P:U)Q’i.conditionally independent Since
plrtmxn | phrli®Igl by Lemma 4 2, we conclude that (11) holds a
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The following lemma may be viewed as an assertion of forgetfulness of the
*-operation

LEMMA 4 5 Suppose that m, and m, are superpositions on A"2x B” and A'' x B’ and
that there are subsets K, <K, of Z such that I, uJ,c K, Fix te K, and let =¥ be
the marginal of m, on A""1"° x B:"U) If . s forgetful then the marginal of m, * ,
on AU LN 5 UV, (o ok g o

Proof Adopting the notation 1n the proof of Lemma 4 4(c) 1t follows from (1) in
that proof and the forgetfulness of r, that

d.(Q""U''P"| ptq)) = d.(Q""""| p¥) d,(P"|q)
forall p¥ e P="" and q, € Q”’* Wealso have P":"l'™ | Q’ (ar, * ,) since P2 L Q”
(mr, * 7,), so the result follows O
Remark. The symmetry of m, * 7, allows one to conclude certain ‘dual’ statements
from Lemmas 44 and 45 For example, the property dual to forgetfulness for a
superposition 1 1s
Plh(—OO I]Q]r\(—OO t] L QJ(\(I oc) (7,_)

Calhing such a 7r causal, Lemma 4 4(c) imphes that, with the same assumptions on
I, and J,, if 7, and 7, are causal then so 1s o, * 7,

We say a superposition 77 on A’ x B’ splits pe P’ (or the corresponding x€ A)
if 7(pq)>0 and w(pq’) >0 for distinct g, g'e Q” If this 1s not the case there 1s a
g€ Q' such that w(pq) = w(p) Inthis case we write p < g(7) Analogous definitions
apply to g Q
LEMMA 46 Suppose I, <I, < < I_, are finite non-empty subsets of Z, J, < I, for
t=nn—1, ,0, m is a superposition on A“x B’ for i=n,n—1, ,0 and let
m_y=p,,on A"~ Forj=nn—-1, ,—1let

J
L=1%¥ #1,

1=—1

g . ploul o ol_
P =P 1

/‘lj:I-"l,ul,,lu wl_ys
and forj=n,n—1, ,0 let
Q/ — Q"IU wdy
Vj = VJ,u wlg
Let h=h(p,)=h(qo) and fix >0 Ifpe P’ thenp=p'p’"" p ' withp'c P" Let
us call p good if
w(p) <277
Call p completely good (cg) 1f p'p'™"  p'eP'1s good for all j=1=-1 If
q'eQ’ forj=1=0,call g=¢'¢""' ¢°c Q good if
V](q) > 2—(h—~2s)ll
and completely good 1f ¢' q°1s good for all j=1=0 For n=;=-1 let

H,=7T,*7T,—|* * T,
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Finally say that p € P’ 1s desirable if p 1s not spit by IT,, p< g (=) for a good g€ @
and p 15 completely good Then setting

p,=wp,({pe P’ pisnot desirable}),
foryj=n,n—1, ,—-1 we have

p=u(U{peP’ pisnotcgh+vy(J{geQ gisnotcg})

J
+M Z 2—s(n+m)’

1=0
where M =max,.,., #B’ —1, m=#1I,

Proof Notice that the definition of desirable 1s meaningful for pe P~' and that we
trivially have the estimate

p<pu{peP ' pisnotcg}

To prove the lemma by induction 1t suffices to assume that the desired estimate on
p, holds for y=n—1 and prove that 1t holds for j=n For pe P" write

p=p"p* where p"€ P p*e P!
We obviously have

pnspn—l+l‘n(UF) (l)
where
I'={p"p*e P" p* s desirable but p"p* 1s not}

We claim that
w (D)< M275 4y (U {bad p"p*e P" p*1scg})
+v,(U{bad g"q*e Q" gq*1scg}), (1)

where bad means not good To see this first observe that if peI' then p belongs to
one of the following sets

E,=Tu{peP" pissphtbyIl,}
E,=Tn{peP" pcgq(m,), q good}
EB=Fm{p€P” PCQ(T"n),qbad}

We estimate the measure of |_} E, by regarding 1t as a union of atoms of P" x Q"
and conditioning 1t on sets of the form pyg* where pie P g*e Q"' In this
argument all statements are to be interpreted modulo ,-null sets Since | E, 1s
contained 1n the union of completely good Q" '-atoms, when conditioning on pjg*
we may assume that g* 1s ¢ g Fixing pig™ 1f p"p*c E, then, since p* 1s contained
in a good ge Q"' etther p*< g* and p" =p/ or p"p*nplg* = In the first case

p*npig*=p"p*=pip*
must be split by the partition Q”» n p7g* of pig*, for otherwise p"p* would not be
sphit by Q" Thus to esumate II, (I E,|piq*) 1t suffices to estimate the
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prg*-conditional measure of desirable p* € P"' such that
p*cg* and p*npig* 1sspht Q" pig*
Since

dn, (QP"| pig*)=d, (Q"|p}) dn, (P"|q*),
there are at most #Q”’ —1 such p*, and the conditional measure IT,(p*| p7q*) of
such a p* 1s

H,._l(p*lq*) < e, yp=th=2e)l, el
since p* < g* and both are completely good Thus
I, (U E | pig*) = (#Q —1)27 1= M2,
whence also
I, (U Ey) = pa(U E)) = M2
Now If pe E, p 1s bad, for otherwise p would be desirable, so 7(|_J E,) 1s less
than the second term on the right of (11) 7 (lJ E;) 1s clearly less than the third term

on the right of (u), which establishes (11) By (1), (11) and our induction hypothesis
we have

n=pn-1(U{peP""" pisnotcg})+u,(J{badp’p*eP" p*1scg})
+v, (U{ge Q""" gisnotcgh)+r,({bad g"q*c Q" g*1scg})

+M "il 2~e(r+m)+M2—e(n+m)

=0
=u.(U{peP" prsnotcg}+v,(U{geQ, gisnotcg})
+M Z 2—£(l+m) D
=0

Lemma 4 6 1s the property of the *-joining which 1s the key to the proof of
Theorem 1 The following proposition articulates this property in a way which makes
its applicability to coding clear

PROPOSITION 47 Guwen C e€Z" and 1> 0 there exists me Z" such that the following
holds Suppose I, <1, < < Iy<I_, are finite subsets of Z such that

#I,=C fori1=0
#I_,=m,
and J < I, fori=n, ,0 are such that
#J=#I -1
Suppose , 15 a superposition on A" x B’ fori=n, ,0and w_,=py, Set
T=Tp * Wy * * Ty,
and I=1,01,_,u ulyul_, Then
wi{xe A" xisnotsphtby #}>1-19
Proof We adopt all the notation and terminology of Lemma 4 6 and also write

_ J
T=3% #J

=0
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Since #1, < C we nave

#J <#1-1=<(1-C W#I,
SO

and

Now fix £ >0 such that
h=2e>(1-C ')Yh+e¢) (1)

By the a ¢ Shannon-McMillan-Breiman theorem applied to the product measure
g4 (1n fact 1n this setting all that 1s needed 1s the strong law of large numbers) we
can find k such that

VK >k v of{ye BY5 yy i), 11527 for k< T<K}>1-n  (n)
(Recall that y[1, ] 1s the restriction of y to [1, I]) Next choose m so that
min {y, (y) ye B, 0= T<k}>2 h-20m (1)
VK =m, u, kfixe AU 5 gy px[1, <27 for m=I<=K}>1-7n ()
and

MY 27%<nq (v)
Now if g=q" q°c Q" 1s not completely good (for the ¢ we have fixed) then
for some j=0

Y

(since [, =#I1+ +#I_,=#1_,=m) so, by (m), I_,> k Moreover by (1)

(qj qO)<2—(h—25)lj<2—(17C")(h+sjll<2—(h+e)l_j (Vl)
J

(qj q0)<2—(h—2s)lj<2f(hA2£)m

14

By (11) the », measure of g’s 1n Q" such that (v1) occurs for some l_]> k 1s less than
n so we have

v.(U{geQ" gisnotcgl})<n (vi)
(1v) implies that

p(UJ{peP" pisnotcg}h<n (vin)
In order to prove the lemma we may as well assume #I_, =m Replacing n by /3
the proposition now follows from (v), (vn), (vii1) and Lemma 4 6 O

PrOPOSITION 48 Guwen CcZ" and n>0 there 1s an me Z" such that the following
hold Suppose J_,<J,<J, ;< < J, are finite subsets of Z such that

#J,=<C 1=nn-1, ,0
#J_,=m
and I,c J,,1=n,n-1, ,0 are such that

#I=#J 1
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Suppose m, 1s a superposition on A" x B’ fori=n,n—-1, ,0 and 7 ,=v, Set
T=T_ % Ty * Ty * *qgand J=J_uJ,UJ,_ U uJy Then

v,{ye B’ yisnotsplitby #m}>1—19
Proof This 1s a dual version of Proposition 4 7 which follows from the symmetry
of the *-joining

5 Construction of superpositions and proof of Theorem 1

We now define for each skeleton & a superposition 7y on A"’ x B’ Recall that
if rank & =0 then I(¥)=J(¥) = so there 1s nothing to define Now suppose 7
has been defined when rank & <r and suppose ¥ =&, X ¥,_, X x ¥_, has rank r
We deal first with the case of odd r We assume t=m,, as otherwise J(¥)= so
g 15 stmply u; ) For each 1=0 such that &,,,, 1s principal let

L=C(%um), L,=1,-U{I(P) e D(Fir), (F)c C(F1m)}
and
J,=C(&iem)s J =0 —U{I(P) F€D(FLim), I(F)c C(F1im)}

Define a superposition 7, on A" x B’ by
m,={mg FeD(F\ m)} X ps, X5

Note that this makes sense by Lemma 3 4(b), (c) and 1s a superposition by Lemma
4 4(a) In particular observe that when & hasrank 1, I, =1,, J,=J,, D(¥,)= and
am, = u;, X v; Now set

I_1=U{R(._(f,) 051<mr}, 77"1:#'],1
and define 7, on A"’ x B’ by
Ty = T * W * * Mo * T_y,

where f 1s the largest : such that &, ,, 1s principal 7 1s a superposttion by Lemma
4 4(a) Note that 7, has a structure of the type assumed in Lemma 4 7 Of course
if t < m, then J(&) = so the conclusion of Lemma 4 7 holds vacuously

When r=rank & 1s even we proceed 1n a similar manner as follows Suppose
F =%, x x &_, For each principal &, we set

L=C(%), L=1-U{I(F) e D(L),1($<=C(F)},
1,=C(%), J=4,-U{J(F) FeD(%),J(F)=C(L)}
and define a superposition 7, on A" x B’ by
7, =g F€D(Fum) X1 X

For auxihary &, set J,= R(¥,) and define 7, = vz, on B’ Letting f denote the
largest 1 such that C(¥,) < C(¥) define 7, on A"’ x B’*’’ by

Ty = Wi * T * o

Note that if B =(%, , ) 1=y+M,+m,—1) 1s a full block of ¥ then by
associativity of the *-operation the marginal of 7 on A'#' x B’"* which we will
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denote by g, 1s
= 1(B) J(B)Yy —
WB_d-n(P " aQ s )—(77'*771—1* * 7Tr—m,+1)*7rx—m,* *77'1

=7T*1*7T,_m,* *77']
where
7r*l__‘V.I_|’J~l=R('yl)k)R(‘?l—l)kJ UR(yl-m,‘f-l)

This 7z has a structure of the type assumed in Proposition 4 8

Forskeleta Zand Y wewillwrite A L iIf F< &, I(P)L J(P)# D, I(P) < I(F)
and J(#)<= J(¥) Lemma 3 3(b) says that if <& then either ¥ <1 & or I(¥)n
HF)=J(P)nJ(F)=D It s easy to see that F <I & 1f and only if # = ,& for some
JE|¥| or < &, for some principal &, 1n the rank decomposition of & and I(¥)u
J(P)c C(&)

LemMmA 5 1 The superposttions wy are consistent in the sense that if P < & then the
marginal of 7wy on A" x B’ 15 w5 The family {my} 15 translation invariant in the
sense that if &' 1s the shift of & then wy. 1s the shift of ny

Proof First observe that each 7 1s forgetful, as can be seen by induction on rank &
using Lemma 4 4 To prove the consistency assertion by induction on rank & suppose
% <1 & If rank ¥ <rank & we must have & < ¥, for some principal &, 1n the rank
decomposition of & and moreover I(#)u J(F)= C(¥,) By Lemma 3 4(c) ¥ 1 &
for some ¥'€ D(¥,) By induction 7, has marginal 7 and by the definition of 7y,
74 has margmal 7, , whence 7, has marginal 74 as required

Thus we may assume rank ¥ =rank &, so ¥ =¥ for some je|¥| With j fixed,
for any 1,/ < Z, 7 any measure on A’ x B’ and & any skeleton such that j € |¥| or
j<mmn |9 let
Z afjeld|
# if j<mm|¥|

What we must show 1s that (7,)* =7 Let $=¢, % x &_; and assume that

rank & 1s odd for definiteness We may supposej € |9’,+m, ,1=0and ¥, , 1s principal,

because if j € |#,| and F 1s not principal then what we are trying to show 1s trivial
Recall that

I*:Iﬂ[_],w), 7T*=d1r(Pl*) QJ*)’ 9*={

Ty = Wy * Wy * * o * Ty,
where we adopt all the notation introduced 1n the defimtion of =, Now

S*:g:‘;mrxs'_”mrx xS_,
If we set
D(Siim)={F € D(FLrrm) j€|¥| Or j<mn |F]}

then Lemma 3 4 says that
D(Sm) ={F* P D(\em )}
From this and the fact that C(¥% ., ) = (C(%.+,))* one sees that

oy = T, % T,_y * * mo* W,
where
m =I{(m4« L€ D(F,1m)} X phjr X vys
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Now by our induction hypothesis 7« = (74)* for $e D_(E/’,m,) SO
I{mpe P D(Frem )t =T{(m3)* P& D(S1)}
=({myp FeD(Lrm)H*

and evidently
.u'l’f_—_(l"l,)*, VJ‘.‘=(V’JK,)
Thus 7, = 7¥ Now =y has marginal

m KTy ¥ o * T

and since , 1s forgetful (Lemma 4 4(b) and the fact that all 7w are forgetful) by
Lemma 4 5 this measure 1n turn has marginal

TE*X T _ ¥ m = Ty

Thus 7, has marginal 74+, which 1s what we wanted to prove
When r 1s even the argument 1s essentially the same
Finally, the assertion about translation invariance 1s clear O

Our next task 1s to construct for aa ¢e X a superposition 7, on A"9x B®
(that 1s o, 1s a joining of u, and ;) whose marginal on A" x B’® 15 7, for
every skeleton & occurring 1n £ (the precise meaning of this will be explained below)

For £€ )?, & a skeleton and I =[1, j] an 1nterval in Z we will say & occurs 1n ¢
on I if I =dom ¥, the restriction £(I)=% and £(j+1)=0 We will say & 1s rank
maximal 1n £ 1if no leftwards extension 1n ¢ of the domain of & yields a skeleton
with the same rank as &

Now suppose £€ X and each finite sequence of 0’s and 1’s occurs infinitely often
as a block 1in ¢ This 1s true for g-aa £ Given such a £ and r> 0 there exists a
unique maximal interval I in Z containg 0 such that £(I) 1s an r-skeleton I =[4,, j,],
where

=max{1eZ 1=0,£1-N-r,1}=1"0}
Jo=min{jeZ j=0,¢{; - N,+1,;+1]=1"0}

We denote the r-skeleton £(I) by &,(£) Then ¥,(£) occurs 1in ¢ on I =dom F(¢)
and 1s rank-maximal 1n £ Ewvidently

FoE)<FA(E<FAO<

&,.(£) 1s rank-maximal 1n &%,_,(£) and
L)) 7 1(¢)

We will also write
L(¢&)=1(Z.(8€) J(§)=J(L,(¢)

Having established this notation let us now fix asequence n, > O suchthat} 5, <o
Fix an odd r and suppose that m,, M,, N, and C, have been chosen for all 1<r
(only for even 1 1n case of M, ) For any r-skeleton & =%, x x &, the sets C(¥,)
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are all bounded 1n size by Cy+ +C,_,, so by Lemma 4 7 we can choose m, so
that for all skeleta & of rank r
urnixe A" 7y sphts x} <7, 51
Next we can choose N, and then C, so that
ilee X C(Sa(@) L), C(F_(£) = (8,
&,-1(¢) 15 principal n F,(§), C(F,(£) =|%(O}>1-n, (52)
(Note that 1n fact the first two conditions in the definition of the above set are
redundant ) To see that this 1s possible set
G={¢eX £0, N,_,+2]=01"-0}

and choose K so large that the gi-measure of

A Kk
H={eex golc((&)'(mzm,n}

1s greater than 1—17,/3 (& denotes the shift on X ) Then setting
F={¢eX ¢0,N,~1]=1"}
N, can be chosen so large that the g-measure of
H,={¢eX 6'(£)¢F for 0=1=K}

1s greater than 1~ 7,/3 Finally, once N, has been chosen 1t 1s clear that C, can be
chosen so large that the j-measure of
Hy={te X C(£(8))=|%.(&]}

1s greater than 1—7%,/3 Now if £¢€ H,n H, then &,_,(£) 1s not mtial in &,(§)
because there are at least m,+1 rank maximal r—1 skeleta in &,(¢) to the night of
&,_,(£) Ifinaddition ¢ € H, then all but the initial skeleta 1n the rank decomposition
of ¥,(&) are principal, and 1n particular C(¥,_,(£)) < I.(¢) and C(¥,_,(£)) < J.(£)
Since u(HiNn H,nH3)>1—17, we get 52

Now suppose that r 1s even and m,, M,, N, and C, have been chosen for all 1 <r
By Lemma 4 8 m, can be chosen so that for each r-skeleton S and full block 8
of &

J(B)

vypfyeB mg splits y} <m, (53)

(Recall the remarks following the definition of 7, for even &)
Next we can choose M,, N, and C,, in that order, so that

fee X C(F (N} I(8), C(F,_(O) < L(8),
&, 1(€) principal 1n %,(§), &,_,(£) belongs to
a full block of #,(¢), C(%,(&))=|%(&}>1—n, (54)

(Again the first two of the above conditions are redundant )

This 1s accomphished 1n much the same way as for odd r First we choose M,
much larger then m, and then we choose N, so that with high g-probability the
rank decomposition of &,(£) contains ¢ r—1-skeleta with t> L(M,+m,) and L 1s
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large In particular, with high probability &,_,(¢) will not be among the leftmost
M, r—1-skeleta 1n the rank decomposition of &,(¢) Finally C, 1s chosen so large
that with high probability &,_,(£) 1s principal in &,(§) and also not among the
leftmost M, r — 1-skeleta in &,(£), which two conditions together ensure that &,_,(£)
belongs to a full block of ¥,(£) The remaining conditions in (5 4) are immediate

We now assume that m,, M,, N, and C, have been chosen for all r so that (5 1)
and (5 2) hold for all odd r and (5 3) and (5 4) hold for all even r By (52), (54)
and the Borel-Cantelli lemma there 1s a set X'< X such that ;2()2 "Y=1 and for
each £¢ X’ there 1s an ro(€) such that for r=ry(¢) € belongs to the appropnate set
in (52) or (54) according as r 1s odd or even Thus If ¢ X' then for sufficiently
large odd r

|F,-1(&)| = R(Z,-1(€)) = C(&,_(§)) = J(¢) = L(§)
Since |#,_,(&)| 7 I(§) we conclude
U (& =U L&) =1(¢)

Moreover for sufficiently large r, even or odd, we have
I (§) = C(&,-1(€)) = 1(8),

so the sequence {I.(£¢)} 1s eventually increasing, and similarly the same goes for
{J.(£)} Thus for sufficiently large r we have ¥,_,(£) << &, Whenever this 1s the
case Lemma 5 1 implies that my,_ (s and 7y () are consistent measures and when
1t1s not the case Lemma 3 3(b) says that there 1s no conflict between 7 _ () and 7y,

In view of these remarks for £ € X* we can define m, to be the probability measure
on A'®' x B'*®’ whose marginal on A" x B*'® 1s =, for each ¢ It 1s clear that
7, 1s a Jonng of . and v, and that 7, has marginal = for any skeleton & occurring
1n £ since & < &,(£) for sufficiently large r Lemma 5 1 implies that the famuly {#,}
1s shift-invanant

(O'X T)(7T§) = Ts(e)

(Recall that A'©x B'® ~ X (¢£) x Y (&), 6 denotes the shift on X and o and 7 the
shifts on X and Y, so ¢ X(£)—> X(6(¢)) ) Now define = on X x Y by

w=j me dii (€)

(We leave 1t to the reader to formulate and venfy the measurability which makes
this meamingful ) 7 1s a joining of u and » and 1s invanant under o x 7 The proof
of Theorem 1 1s now completed by the following proposition

PrROPOSITION 52 There exists a finutanly forgetful homomorphism ¢ X - Y with a
Sfinitary inverse  such that for B X XY

m(B)=p{xe X (x, ¢(x))e B}
Proof For é€ )?', define
b X(£)-> Y(&)
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by requiring that, for x € X (£), the restriction ¢.(x)(J,(£)) be y,, whenever x(I1,(¢)) <
Yr (my,0)
To check that this definition 1s unambiguous suppose that r<r’,
x(L(&) =y, (mgs),

x(Ir'(f))Cyr (Wy'(f)),
and

S.(£€) < §,(8€)

(If the last condition does not hold then I.(§) N I (¢)=J,(€)nJ, (&) =, so there
1s no conflict between y, and y, ) Then the marginal of 7y, , on A"'¥x B¢ s
7 5,(¢) 50, regarding the various finite sequences as cylinders in A’ x B9 up to
Ty, ¢)-null sets we have

x(IAE)) <y, <y, (J(€)
and

x(L(&) = x(L(£)) <=y,
Thus

v, (YA (E)) 0y ) = 7y (0¥, (J(£)) N y)

= my, x(1,(£)) = g, (x(1,(£)) >0

This means that, as cylinders in B9, y, (J.(£))=y, (since otherwise they are
disjoint), which 1s what we wanted to check

Next we must check that, given £ for u,-aa xe X(£) the sequence ¢.(x) 1s
defined on all of I(£¢) By 51, for odd r

Breixe AlE Ts,¢) SPhts x} <7,

By Borel-Cantelh 1t follows that for u.,-aa xe X(¢), x(1,(£)) 1s split by s () for
only finitely many odd r Thus for sufficiently large odd r ¢.(x) 1s defined on J,(¢)
and {J,(£¢) r odd} 1s an eventually increasing sequence whose union 1s I(£) This
means that ¢.(x) 1s defined on I{¢) This completes the proof that the defimtion
of ¢, 1s meaningful

The shift-invariance of {7, £€ X} evidently implies that the family {¢, &€ X}
1s shift-invanant

bspo T =70 Py
We now define ¢ X > Y by
¢(x)= ¢ (x) where £=%,1e xe X(¢§)

The shift invanance of {¢;} implies that poo=7°¢
In order to show that ¢ 1s finitanly forgetful we will define a one-sided version
of ¢ We first introduce some one-sided notation Let

X*= C[O,OO)’ y* = p° ) X* = {0, 1}[0 )

x—#£ denotes the natural projection X* > X* and the same for Y*> X For £ X*
let

I*(§)={1 £(1)=0}<[0,)
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Then

X*(E)={xe X* i=g~Al"®
and

Y¥§)={yeY* y=¢~B"
x—x* will denote the projection X » X* and more generally also the projection
from any two-sided sequence space to its one-sided version Thus for example if
£e X and x e X(£) then ¢*e X* and x* e X*(&%) u*, v*, 4*, wiand v¥ (£€ X*)
denote the measures on X*, Y*, X * X*(¢&) and Y*(¢) naturally corresponding to
K, ¥, i, g and v,

For £¢ X* let 10(¢) denote the least 1 such that £(1)=0 As in the two-sided
situation there exists for each r a umque interval I =[1,(£), 7] beginning with 1,(£)
such that £(;+1)=0 and £(I) 1s an r-skeleton We denote this r-skeleton by F¥(¢)
and also write I*(¢) = [(F¥(£)) and J¥(£) = J(F*(£)) For £€ X* we define

oF X*(£)-» Y*(¢)
by requiring that, for xe X*(¢&)~ A", ¢¥(JF(£)) be y, whenever
x(IF(€)) < y(mone)

One argues that this defines the sequence ¢F(x)e Y*(¢)~B'® unambiguously
and on all of I*(¢), just as we did 1n the two-sided situation
Moreover for £€ X the mappings and ¢, and ¢}« are consistent 1n the sense that

for xe X(¢)
(he(x))* = er(x*) (1)
To see this just observe that for £€ X we must have
FHE) < Z(€)

for all sufficiently large r Since the skeleta have the same rank, ¥7¥(£*) <1 %,(¢) so
the superpositions 7y~ and g, are consistent This 1n turn allows us to argue
just as 1n the two-sided situation that whenever

x(IFE)) eyt (moyen)
and
x(L(E) <y, (ms,)

then y¥ 1s the restriction of y,, which gives (1)
Now define ¢* X*-> Y* by

d*(x)=¢¥(x) for xe X*(¢)
¢* 1s a fimtary mapping since, for sufficiently large r, ¢*(x)(J,(£)) (and hence
¢*(x)(0)) is determined by myx, and x(I¥(£)), both of which are determined by
the restriction of x to the domain of &,(¢) (1) imphes that
((x))*=o*(x*),
which 1n view of the fimtariness of ¢* means that ¢ 1s finitarily forgetful
Next we show that for Bc X XY

m(B)=u{x (x, ¢(x))e B} (11)
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Fix (€ X and suppose that py€ P and go€ Q""(g) We recall the convention that
po and g, can also be regarded as subsets of larger Cartesian products By the
defimtion of ¢ we have

pefxe X(€) (x, de(x)) € pogo}
=hm p(U{peP"? pcpo,3ge Q" st pcge go(my,o)})

= !L‘g pe(U{pe P"® pepy, pcqo (79,
= 122 g, ) Poqo) = !Lrg Te,06 Poo) = e Pogo)

Thus whenever B 1s a cylinder in X (¢) x Y(¢), and hence for all Borel B< X (£) %
Y (£), we have

melxe X(€) (x, ¢ps(x))e B} = m(B)

Now as a function of B the left hand side of the above inequality 1s a probability
measure on X(¢) Since m, 1s also a probability we can replace the inequality by
equality Integrating, we obtain (1) Note that one consequence of (11) 1s that ¢ 1s
measure-preserving

It now remains only to construct a finitary ¢ Y - X nverse to ¢ For é¢ X' and
even r if &,_,(£) lies 1n a full block 1n &,(£) we denote this full block by 8,(¢) By
(5 4) and the Borel-Cantelli lemma, for i-a a £ B,(¢) 1s defined once r1s sufficiently
large and even Whenever r <r’ and B8,(¢) and B,(¢) are defined we have |8,(¢)|<
18, (£)| and erther

&.(6) Q& (&) (1)
or

L) NL(§)=J(6)nJ,(6)=T (1v)
In case (11) holds
I(B,(£) = L&) n|B.(&)] < L&) n B, (&) = (B, (£))
and similarly J(B8,(£)) < J(B,(£)) Thus in case (1), mp (), a measure on A'P € x
B’A) has marginal g (), since each 1s a marginal of 7, In case (1v) we have

IB.(E)nI(B.(£) =T (BN J(BA£) =D

We have observed earlier that for aa ¢ (i) holds once r 1s sufficiently large
Moreover if S,_,(£) 1s principal in S.(£), which 1s the case for sufficiently large r
by (5 4), we will have

I(Br(g)) = C(Sr—l(f))
Also if r 1s sufficiently large 5 4 implies

|Sr—|(§)|'R(Sr—1(f))= C(Sr—l(f)),
and since U, |S,_.(&)| = (&) we conclude \J, I(B,(£)) =1(¢)

We now define

Y Y()>X(§)
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by requinng that e (y)(I(B,(£)))=x, whenever y(J(B,(£))< x, (ms) (53)
together with the remarks 1in the previous paragraph allow us to conclude, as we
did for ¢, that for v-aa y y.(y) 1s unambiguously defined on all of I(£) We
define ¥y Y- X by

Y(y) = (y) where ye Y(§) 1e y=¢
¢ 1s finitary since for sufficiently large even r ¢(y) 1s determined on I(B8,(¥)), and
hence at 0, by y(J(B,(5))) and =g (3 both of which are determined by the restriction
of y to the domain of S,(y), a fimte portion of y (However, see the remark after
the end of this proof )
Finally for B< X x Y we obtain

m(B)=v{yeY (4(y),y)e B} (v)
in the same way that we obtained (11) (v) implies that ¢ 1s measure-preserving (1)
and (v) together imply that y =¢ ' for Eo X
wi{d "W 'EnE}=p{xeX (x, ¢(x))e Exy 'E}
=m(Exy 'E)
=v{y (Yy,y)e Exy 'E}
=v(y (E))=p(E)
Since ¢ © ¢ 1s measure-preserving this means u(EA¢ "¢ 'E)=0,s50 ¢yp=1d ae
O

Remark. Referring to the remark after the proof of Lemma 4 5 1t 1s not hard to see
that the &g are all causal Recall that

T (o) = Vi_ ¥ W * T * *m

where #(I_,)=m, and 1—j=M,, and =w,, ,m, are products of lower rank ny,
and hence all causal The dual version of Lemma 4 5 then imphes that the marginal
of g ;) on ATBANN20 ¢ pIBLENA=(0 01 whch we denote * g (), has the form

* — *
T (e) = Vi_ ¥ * m_ ¥ * Ty,

where *7, denotes the marginal of 7, on the past Thus Proposition 4 8 applies to
*mg, ) as well as mg () This leads to the observation that we can determine
Y (y)(—0, 0] 1f we know y(—00,0) and *mg () for all r Since *mg (4 1s certainly
determined by £ 1t follows that ¢ 1s marker-conditionally causal 1n the sense that
once £ =§ 1s known then the past of ¥/(y) depends only on the past of y However,
one needs to know all of £ because *mg () 1s not determined by the past of ¢ alone
Indeed, since auxihiary and principal skeleta are determined by working from right
to left, if we lose the right end of &,(£) we will not even know what the domain of
g0 15

6 Proof of Theorem 2

The purpose of this section 1s to sketch a proof of Theorem 2, the non-finitary
version of Theorem 1 Technical details will for the most part be suppressed We
assume famihanty with §§ 2 and 4

https://doi.org/10.1017/5014338570000585X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000585X

Bernoull: shifts of the same entropy 711

THEOREM 2 There exists a forgetful isomorphism ¢ X - Y suchthatd X (&)~ Y(¢)

We continue to assume that p(1) = q(1) and we maintain all the notation intro-
duced 1n §§ 2 and 4 Also extend that notation as follows If I 1s finite we 1dentify
the partition P’ (or Q') on any space having A’ as a factor with the finite o-algebra
it generates If I 1s infimte P’ denotes the o-algebra generated by the projection
X ->A', A’ being given the usual product Borel structure We recall also one
notational eccentricity from § 3 when x 1s a sequence indexed by Z and I < Z, x(I)
denotes the restriction of x to I

If (Z, 8B, A) 15 a probability space, & 1s a sub-o-algebra of B and R 1s a finite
% -measurable partition of Z we write R< % (A) if each re R agrees ae with an
r'e¥ For n>0 we write R € % (A1) if for each re R there 1s an r'€ ¥ such that
A(r Ar'y<m Itis not hard to see that if Q and R are finite partitions of Z and

AU{g9eQ FreRst gcrr-ae})>1-1q

then R © o(Q) (A) (o(Q)) denotes the o-algebra generated by Q)

To prove Theorem 2 we must construct a measurably varying family {¢, £¢ X }
of measurable and measure-preserving mappings ¢, X (€)= Y(£) ¢, corresponds
to a joining 7, of u, and v, for B< X (&)X Y(¢)

we(B)=p{xe X(£) (x, p(x))e B}

It 1s not hard to see that the family {m, £¢ X } will have to have the following
properties for d-aa £
(60) V finite cylinders E < X x Y, the mapping &>, (En(X(£)xX Y(£)) 15 f-
measurable

(6 1) shift invanance s = (o X 7) 7,
(62) m, 1s a superposition, 1€ a joining of . and v,
(6 3) each m 1s forgetful, that 15 P~¢/)"1(&) | pUINI@ QL=INIE) (4
(6 4) the marginal 7 of 7, on A'*® depends only on £[0, ©)
(6 3) 1s a consequence of the fact that PU>"18) 5 QU (4y  which follows
from the forgetful nature of ¢ (6 4) 1s likewise a consequence of the fact that ¢ is
forgetful However, certainly neither (6 3) nor (6 4) implies that {=,} arises from a
mapping consider, for example, 7, = u, X ¥,

The facts that ¢, 1s a forgetful homomorphism and 1s a € one-to-one are expressed

by

(6 5) Q(O)F\'(ﬁ)c P[OOO)F\I(E) (775)
and

(6 6) P{O)ﬁl(f)c Ql(f) (77'5)

(Of course these are vacuous when 0¢ I(£)) Conversely one checks that any family
{m: &€ )?} satisfying (1)-(v1) arises from a ¢ as in Theorem 2 In checking that ¢
1s forgetful (6 4) 1s essential 1f we did not have 1t we might need the full marker
sequence ¢ to determine 7§, which 1s needed to determmne ¢(x)(0) from x[0, )

Accordingly, we turn our attention from mappings to joinings satisfying (6 0)-
(6 6) Let M, denote the space of Borel probability measures on X (&) x Y(&). We
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denote by M the space of ji-equivalence classes of functions # X >\ J{M, £e X},
denoted ¢—r,, such that 7, € M, and (6 0)-(6 4) hold for g-aa ¢ Note that M 1s
not empty let 7, =pu, X v,

For £€ X we define a complete metric d, on M, which induces the weak-*
topology on M, as follows Let I', denote the set of all cylinder sets in X x Y
depending only on coordinates in [—1,1] For B€ X x Y let B,=Bn X(£)x Y(¢)
and for m', m*e M, let

d;(m',m*) = § 27" sup [m'(C,)— m*(C,)|

1=0 Cerl,

Now we define a complete metric d on M by
d(w', n’)= J de(m, mg) du(é)
X

Thus 7' and = are close if 7} and m; are weak-* close with high f-probability
We introduce approximate versions of (6 5) and (6 6) by defining

U ={meM g{¢ QOO PUDINE (g )}>1-¢)
and
V.={meM i{m POOE QY (m)}>1-¢}

It 1s straightforward to check that %, and ¥, are open subsets of M and that
(MNpny (U0 V) consists precisely of those 7 € M satisfying (6 5) and (6 6) Thus
Theorem 2 1s a consequence of the following proposition and the Baire category
theorem

PrOPOSITION 6 1 The sets U, and V, are dense in M

Proof We deal with %, first What we have to show 1s that for any 7€ M we can
find 7 € %, such that d,(=,, 7;) 1s small for most § We can ensure that 7€ %, by
ensuring that for most (that 1s, more than 1 — 7 1n g-measure) £ we have

Q(O)ﬁl(f) & P[Ow)ﬁltf) (ﬁg) (1)

(The point 1s that we will in fact be able to make % small independent of ¢)

Roughly speaking we will produce 7, by combining the marginals of m; over
large disjoint finite chunks of Z using the *-product, in a way which takes advantage
of Proposition 4 7 to ensure that (1) holds for most ¢ We use the structure of ¢ to
determine the chunks, ensuring shift-invariance of 7 If the chunks are sufficiently
large then for most £ a large interval [—n, n] of Z will be contained 1n a single
chunk so that 7, will have exactly the same marginal (not just close) as 7, over
[—n, n], whence d.(w,, 7,) 1s small

To this end let N, < N,, C and m be integers to be specified later Suppose £ € X
and I =[1, j}< Z 1s an interval such that

§0-1=0 £()=¢0+)= =£0)=1 £G+1)=0

I will be called a 1-marker in £ if Ny=<j—1+1 I will be called a 2-marker if
N,=j—1+1 (so a 2-marker 1s also a 1-marker) Thus aa £e€ X contain infinitely
many l-markers and infinitely many 2-markers By an i-skeleton (1=1 or 2) 1n ¢
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we mean the set of all indices ¢ € Z such that £(¢) = 0 which lie between two successive
1-markers in & (Note that this 1s formally different from the definition of a 1- or
2-skeletonin § 3 ) Thus fora a &€ X I(¢) decomposes disjointly into 2-skeleta each
of which decomposes into 1-skeleta If y 1s a 1-skeleton 1n £ C(y) will denote its
C nightmost 1ndices and C(y)= C(y)—{max y}

Now fix £€ X and suppose & 1s a 2-skeleton occurring 1n ¢ whose component

1-skeleta are v,, y,_1, , ¥ listed 1n order from left to right We set
I(F=%
and
J(A)=Cly)u C(y-)v  vC(ym)
(Thus J(&) = 1f t <m) For 1= m let m, denote the marginal of 7, on A" x B,
for 1<m let =, denote u, and let
7?'5/:771*77':—1* * Ty * Ty * * o
= 7TI * 77,_1 * * Wm*ﬂym-lu Yo (ll)
Next we “fill 1n the holes’ of 7, by letting J' =% —J(¥) and defiming
Ty = Ty X Vyr, (1)
a superposition on AY x B7 Finally if
» y—l ’ y09 yl ’ 92,
denote the 2-skeleta of £ listed 1n order of appearance, we set
77'§= ﬁy_lXﬁyoxﬁle’ﬁ'yz
(It 1s not crucial that we take the product joining here In fact, roughly speaking,
any ‘canonical’ joining of the w§ which 1s a superposition, for example
‘ﬁ'J_l* ‘ﬁ'yo* 7‘7"(/' would dO)

It 1s not difficult to check using Lemmas 4 2 and 4 4 that # € M We mention only
that (6 4) 1s a consequence of (6 3), Lemma 4 5 and the fact that all our constructions
are made working from nght to left

Moreover, given > 0and k € Z*,1f N, 1s sufficiently large then, with Z-probabihity
more than 1— 7, 0 1s enclosed 1n a 1-skeleton y = y(£) of & that 1s

0¢&[min y(¢), max y(§)]
and y(&) o[k, k+1]u I(¢) If we next choose C sufficiently large then with high
f-probabihity C(y(£))=y(¢) so
Cy(®) =[-k k1nI(§) (1v)
Now assuming y(£) 1s defined let ¥(£) denote the 2-skeleton in ¢ containing
v(£) and let F*(&)=F(£)n[0,0) Suppose that the 1l-skeleta of F(¢) are
Y Yi-1> > Yo and y(£)=y; so
FHE) =yFUyiav U
where y¥=vy;n[0,0) Let J*(F(£))=J(L(£))n[0,0) and let 7%, denote the
marginal of #, on A" x B’" 7Y which 1s the same as the marginal of 7, on
this set, where 7, 1s defined by (1) with ¥ = %(£) Lemmas 4 4 and 4 5 together
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with the forgetfulness of 7, 1mply that

FHO=TE* W% X T * G Uy
where the =, are the measures appearing 1n (11) and #¥ denotes the marginal of ;
on AYix B€?"10®) Recalling that #, 1s a measure on A% x B #C(y,)=<C
and #(Ym_ 1V U Yo) = m, Proposition 4 7 implies that 1f we choose m sufficiently
large then for all £ for which y(§) 1s defined we have

ooy (U {pe P7® pis not spht by 7gw})>1—¢

so
JHHE) E pIHE (=%
Q <P (755
When the partitions are considered as partitions of A'®’x 374’ this implies
JHHE) E plOA0o) (=
Q cpn (7¢) (v)

Finally, if N, 1s chosen sufficiently large then with high Z-probability y(£) 1s not
among the nghtmost m 1-skeleta in (&) so C(y(£))<J(F(£)) Recalling the
definition of 7, this implies that with high probability 7, and #, have the same
marginal on A" x B In view of (1v) this implies that d,(,, ;) 1s small
Moreover (1v) together with C(y(£)) < J(F(£)) implies that {0}~ I(£) < J*((§)) so
in view of (v) we obtain that with high g -probability

QIO & plonio <) (7e),
as desired This concludes the proof that %, is open

To show that ¥, 1s open we proceed as follows Fixing me M we seek we ¥,
which 1s close to w Let N, <N,, C, m and M be positive integers to be specified
later Fix ¢ € X and define 1- and 2-skeleta 1n £ as before, as well as F(¢£) and y(§)
For y a 1-skeleton C(vy) and C(y) are also defined as before Suppose & 1s a
2-skeleton 1n ¢ with component 1-skeleta y,, ¥,—;, ,7v, ForO0=1=<1¢ let

1=q(M+m)+r(1) O0sr()<M+m
Call vy, principal if 0= r(1) <M and auxihiary if M < r(1) < M+ m Define

I(#)=U{C(y,) v prncipal}
and

{margmal of 7, on AP x B af y, principal
=

v,,, If v, auxilhary
Next let
Ty =1, % m_, % * 170, (v1)
a superposition on A" x 3%, and fill in the holes of #, by defimng
Ty = Ty X fhy_1(7),
a superposition on A x 37 Finally if
L1y Lo, I S
are the component 2-skeleta of ¢ set
W= XMy X Wp X Ty X

We can now argue, much as for %,, that 7€ ¥, and 1s close to # N,, C, m, M

and N, are chosen 1n that order The only significantly different feature here 1s how
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we ensure that for most ¢
P{O)r\l(f) & Ql(g) (’ﬁg) (Vll)

We begin, as with 9, , by choosing N, so large that for most £ y(¢) 1s defined After
C and m are chosen (we will have something to say about them later) if we choose
M and then N, sufficiently large then, for most & y(£) lhes 1n a string of M
consecutive principal 1-skeleta ¥, p—1, Yiem—2, > % of L(£) which 1s preceded
by a string of m auxihary 1-skeleta v, pr4im-1> » Yi+m FOr such a £ we set
BE)=%uUy-1V  UYamMUYm-aV U,
where j=1+ M+ m—1 and
I(BEN=IL(ENNB(E)=C(¥rm-)U L C(y)
Now by associativity of * the marginal of 7, on A'#*®’x B#¥) which we denote
g(s), has the form
ooy = (T, * My *  *mom)* Tama*  *
= Vy]u UYieM * T+ M—1 * * T,

where the 7, are the measures appearing in (vi) Thus Lemma 4 8 guarantees that
if we chose m sufficiently large then, regardless of how M and N, were subsequently
chosen,

Pl E OBO (7 Y
S0

PlBGEN & Ql(f) (7';.5) (vi1)
Now, as in the argument for density of %, the choice of N, and C could have
been made to ensure that for most £

C(y(&)) 2 [k k1N I(§),
which ensures the closeness of r, and 7, for most ¢ As we already have that y(¢)
1s principal for most £ 1t also ensures that {0}~ I(£) < I(B(£)) for most £ so (vi1)

implies that (vi1) holds for most ¢ O
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