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Abstract Let p = {pu ,pn} and q = {qi, ,qm) be finite probability vectors,
each having at least three non-zero components, such that - £ " = 1 p, logp, =
-ir=,<7.1°g<7. Let C = {1, , «} , D = {1, , m} and let (Cz, pz,a) and
(Dz, qz, T) be the corresponding Bernoulli shifts Then there exists an isomorphism
4> between these shifts such that for a a xeCz <l>(x)(0) is determined by finitely
many of the future co-ordinates x(0) ,x(l) , and for a a ye DZ </>~1(>')(0) is
determined by finitely many of the co-ordinates y(-l), y{0), y(l),

1 Introduction
Let C = {1, , n} and D-{\, , m} be finite sets Let X = Cz denote the space
of two-sided sequences indexed by Z and Y = D z , both equipped with their Borel
cr-algebras Suppose that p and q are probability measures on C and D Let /x = pz

and v = qz denote the corresponding product measures on X and Y The shift
transformation o- on X is defined by cr(x)(i) = x(i +1) T will denote the shift on
Y (X, /A, cr) and (Y, v, T) are called Bernoulli shifts

A homomorphism from (X, /J., cr) to (Y, v, r) is a measure-preserving map
4> (X, ix) -> (V, v) such that </>°o-=T°</>/u,-ae $ i s said to be finitary if V/ £ D
<t>~l{y e Y y(0) =j} agrees /u.-a e with a countable union of finite cylinder sets in
X Informally, for a a xeX <p(x)(Q) is determined by finitely many of the co-
ordinates , x ( - l ) , x(0), x( l) , and, by shift invanance, the same is true of
4>(x)(t) f o r a l l t e l

We will call </> forgetful if for all y e D <f>x{y e Y y(0) =j} agrees a e with a set
in 3>+, the future o--algebra in X, that is, the tr-algebra generated by the projections
x>->x(i), / = 0,1, Informally, <£(x)(0) is determined by x(0), x( l ) , We will
call (f> finitarily forgetful if for all jeD <̂> '{>>£ Y y(0) =7} agrees a e with a
countable union of cylinder sets each of which is in 3F+ It is an easy exercise that
<t> is finitarily forgetful if and only if it is finitary and forgetful

<j> is called an isomorphism if it has an a e inverse if/, that is </><£ = id ae The
entropy h(p) of p is defined by
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688 A delJunco

(We use log2 exclusively ) The purpose of this paper is to prove the following result

THEOREM 1 Ifh(p) = h(q) and p and q each have at least three non-zero components
then there is a fimtanly forgetful isomorphism <f> from (X,/t, cr) to (Y, v,o~) whose
inverse is finitary

Except for the three-state assumption Theorem 1 is a strengthening of Keane and
Smorodinsky's finitary isomorphism theorem for Bernoulli shifts [K, S] The present
paper is a continuation of the work in [J] where we established the existence of a
flnitanly forgetful homomorphism under the hypotheses of Theorem 1 Sinai [S]
established the existence of a forgetful homomorphism under more general
hypotheses (fi any ergodic tr-invariant probability and (Y, v, T) any Bernoulli shift
with /I(T) < h(a)) Ornstein and Weiss [O, W] have given another proof of Sinai's
theorem. Propp [P] has recently simultaneously generalized Sinai's theorem and
given a proof entirely analogous to the proof of Ornstein's isomorphism theorem
[O], using the Baire category theorem as in [B, R]

If one removes all finitanness requirements on <f> and <j>"', Theorem 1 asserts the
existence of a forgetful isomorphism between a and T, which is still a new result
We will call this weaker assertion Theorem 2 Because the proof of Theorem 1 is
somewhat intricate we include here a considerably simpler proof of Theorem 2
using a Baire category argument The central idea of this proof is however the same
as that of Theorem 1, namely the *-joining as denned in [J] In particular we observe
here that under the right assumptions the *-operation has a certain symmetry which
escaped notice in [J] and leads to a proof of the associativity of the *-operation

Theorem 1 falls short of its intended goal in two respects One of these is the
troublesome three-state restriction The other is the natural conjecture that one
should be able to make <j>~1 causal, that is <j>~l(y)(O) depends only on the past

, y{-\), y(0) (It is well known [W] that <\> and \p cannot both be forgetful unless
q is a re-arrangement of p) This conjecture is based on a natural desire for symmetry,
but more cogently, on the fact that the desired symmetry is quite analogous to the
aforementioned symmetry of the *-joining (In fact the </>"' we obtain is in a certain
sense close to being causal) In this connection we mention Meshalkin's construction
[M], in case p = (\, \, \,\A) and q = (\, \, \, \), of a finitanly forgetful isomorphism
with a finitanly causal inverse

As in [K, S] and [J] the three-state assumption allows us to assume that p, = qx

As in [K, S] and [J] we use the symbol 1 as a marker and </> reproduces in y each
occurrence of a marker in JC The </>~' we obtain here is marker-conditionally causal
in the sense that, once all occurrences of l's in y are known, then one need only
look at , y(-l), y(0) to determine , x ( - l ) , x(0)

The plan of this paper is as follows § 2 describes the function of markers § 3
introduces the notion of a skeleton, its rank and its filler sets This section is very
similar to § 3 of [J] although somewhat streamlined It contains most of the intricacies
which are needed to achieve finitanness Roughly speaking a skeleton if is a
configuration of l's (markers) and O's (blanks) A skeleton can be filled by inserting
one of the symbols from A = {2, ,n}(B = {2, , m} in case of the Y fillers) in
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each blank spot For each if this is done only on a certain pre-assigned subset /(SO,
in case of X-fillers, or J{if), in case of Y-fillers, of the blank spots Later, in § 5,
we assign to each if a measure TJ> on Ansf) x BJ^\ whose marginals on AI(!f) and
BHi/) are pb(V) and qJ

0
{;f), where p0 and q0 denote p and q conditioned on A and

B respectively We call such a joint measure a superposition
In § 4 we describe the *-joining which is essentially a way of combining two

superpositions nVt and n<,2 to get a superposition TTV, * TT>2 which has both nyt and
77v2 as marginals It turns out that, in certain circumstances, the *-operation is
associative Proposition 4 7 captures the key feature of the *-joining which makes
it useful for coding roughly speaking, under the right assumptions, if
">„> , "Vo, %., are superpositions and 77> , is close to being a code from An!/-x)

to BHif->\ in the sense that for most x e A " ^ 1 ' x is contained with respect to •n-y_1

in some y e f i ^ - ' 1 (that is TT> _t(x, y) = ir& _,({*} X B ' ^ - ' * ) ) , then
7Ty * * 7ryo * ir</._i is close to being a code no matter how far the rr^ are from
coding and how large n is In [K, S] coding is achieved by taking the usual product
measure 7j>n x x trv_, and then using a marriage lemma to perturb it in a way
which respects any coding accomplished by the TJ>; and makes it close to coding
However the perturbation no longer has the 77>, as marginals The advantage of our
approach is that no perturbation is required, which is what allows us to achieve
forgetfulness

In § 5 we define ir<? for each if For if of odd rank we arrange matters so that
by Proposition 4 7 ity, is close to coding from Al(if) to BHif) For even rank we
make the coding go the other way The TT> are consistent in the sense that whenever
9 is a subskeleton of if wy has marginal irg- The consistency of the vy allows us
to combine them to obtain a joining of the Bernoulli shifts a and T and we are then
able to show that this joining in fact arises from an isomorphism with the desired
properties

In § 6 we give the simpler proof of the non-finitary Theorem 2 It is essentially a
much less careful version of the proof of Theorem 1 If the reader wants to read
only Theorem 2 he should read §§ 2, 4 and 6, which form a logically self-contained
unit

2 Markers
Lemma 2 of [K, S] enables us to assume that p(l) = q(l) As in [K, S] the symbol
1 will be used as a marker in X and Y, so we review some facts from [K, S] X and
y are fibred by the positions of marker occurrences as follows For x € X, x e X =
{0,1}Z is defined by

fl ifx(i) — 1
(.0 otherwise

For £e X, X(£) denotes the fibre over £

The projection of fi onto X, denoted by fi, is the product measure pl where
p(l) = p(l), p(0) = 1 -p ( l ) We make parallel definitions for Y and evidently fi. = v
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We denote by fi( (respectively vf) the conditional measure on X(g) (respectively
Ye)so

Jx

SettingA = {2, ,n},B = {2, , m} and /(£) = {te Z f(r) = O}, X(f) is naturally
identified with A/<f) and with this identification fj.( is pl>u) where p0 denotes p
conditioned on A Similarly v( is q!>{e) where q0 is q conditioned on B

3. Skeleta
We denote an interval {i, i + l, ,j} in Z by [i, j], (i-l,j], [», j + l) or (1-1,7 + 1)
We will be dealing with sequences y indexed by a subset / of Z with entries chosen
from a symbol set Y Thus formally y e Y1, that is y I-*Y and / is the domain of
y For/'<= / we will often denote the restriction of y to / 'by y(I') (ratherthan y|/ ')

Let No< Ni< N2< • be a sequence of positive integers to be specified later
For r > 0 by a skeleton of rank r we mean the pair (r, if) where 9 is a sequence of
0's (blanks) and l's (markers) indexed by a finite interval / in Z which has the form

where m, > 0, n, > 0 and

max{n, 1 < »< k}< Nr< Mfc

Thus any r' such that max {n, 1 < I < J ; } < N r s «fc is a possible rank for the configur-
ation (3 1) We distinguish between skeleta of different rank whose associated
sequences are the same, even though we will usually speak loosely of the sequence
if as a skeleton and write r = rank if We will say if of the form (3 1) has maximal
rank if r = max {r' Nr <nk} We write

the set of blank indices of if We write l(if) for #\if\
By a subskeleton ^ of the skeleton if we mean the restriction of if to a subinterval

J ox 1 ending with a full marker run of if (1 e ^(1 +max / or max J = max /) = 0)
such that 91 is itself a skeleton with a rank not greater than that of if If ^ is a
subskeleton of if we write 9< if For any j e \if\ the restriction of if to / n [;, 00)
is a subskeleton of if with the same rank r as if (Note that this is the only sort of
restriction of if which may have a potential rank greater than r) Moreover every
subskeleton of if of full rank is of this form We denote this subskeleton by jif

A subskeleton 9 of if will be called rank-maximal in if if it is maximal among
the subskeleta of if with the same rank as 9, ordered by < Equivalently, the domain
of 9 cannot be extended to the left in if without increasing the rank of 9, for the
reason that 9 is preceded immediately to the left by a marker run in 9 of length
l>Nr, r = rankif

Subskeleta 9, and 92 of if may have overlapping domains without one containing
the other, but the following lemma asserts that this cannot happen for rank-maximal
subskeleta
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LEMMA 3 1 If 9X and 92 o.re rank-maximal subskeleta of if then either one is a
sub-skeleton of the other or their domains are disjoint

Proof If dom 9X ndom 92^<Z> then (reversing the roles of 9X and 92 if necessary)
the final marker block in 9X is a marker block of 92 It follows that the restriction
of 9 to dom 9X u dom 92 is a subskeleton 9 of if with the same rank as 92 Since
92 is rank maximal 92 = 9 so dom 9X <= dom ^2 and mm (dom 9X) = mm (dom 92)
If max (dom 9,) < max (dom y2) we necessarily have rank 9X < rank 92 so ̂  < 92

In the other case dom 9X = dom 92 so ^ , < ̂ 2 or 92 < 9X according to which has
the greater rank •

If if is a skeleton of rank r the occurrences of marker runs in if of length at least
Nr_, divide if into its rank-maximal subskeleta of rank r— 1 If these subskeleta are
9,, ,if0 listed in order from left to right we write

and refer to this as the rank decomposition of if (The apparent eccentricity in
ordering, which will recur frequently, is in anticipation of the fact that all the
constructions we shall make will have to be made from right to left in order to
ensure forgetfulness ) Note that the rank decomposition may consist of 9 alone,
with rank r - 1 rather than r We will make frequent use of induction on the rank
of if and the fact that if 9 < if and rank 9 < rank 9 then 9 < if, for some i

Our next task is to define suitable subsets 1(9) and J(if) of \if\ so that A/<5° and
BHif) can play the role of filler sets First we define a method of truncating skeleta
Let 0 < Co < C, be a sequence of positive integers to be specified later If 9 is a
0-skeleton define

Now suppose C{9) has been defined for all skeleta 9 of rank less than r and 9
has rank r,if = if,x xif0 Let

and suppose joe Sf, /> f>0 We define

It is immediate by induction that the definition of C(if) is forgetful in the sense
that, for i e \if\, C{,if) = C(9) n [;, oo) That is, in order to know how C{if) looks
to the right of i one need only look at if to the right of i It is also immediate that
for rank if = r

#C(^)<C0+C,+ +Cr

If / and / are subsets of Z we write / < J if max / < mm J The proof of the
following lemma is immediate by induction on the rank of 9

LEMMA 3 2 If 9 < if then either C(9) <C(9) orC{9)^C{9)
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If if is a skeleton we set

and
= c(if)-R(if)

We now proceed to define I(if) and J(V) If rank (if) = 0 set

I(if) = J(if) = 0

Now let
0<ml<m2<m3< ,

and
0 < M2 < M4 < M6 <

be sequences of positive integers to be specified later Suppose if =
if,x x if0 x #"_, and r = rank if is odd Let us say if, is initial in if if 0< i < mr

and say if, is pnncipal in 5̂  if />mr and C(S,)c: C(y) Note that 5^_, is neither
initial nor principal Define

I{if) = \J{C(ift) if, pnncipal} u [ J W ) ^.initial}
and

J{if) = VJ{C{if,) if, pnncipal}

Since S_, is not used we have J(if)c I{if)^ C{if)
Now suppose that if = if,x xifoxif_l and r = rank if is even For 0 < i < (let

and call if, pnncipal in if if 0 < s < M r and C(£f,)c: C(if) Call #", auxiliary in ̂
if Mr < 5 < Mr + mr and C{if,)<^ C(if) In other words we skip if-x and then working
from nght to left we label the first Mr 5̂ ,'s pnncipal, the next mr auxiliary and so
on, as long as C{if,) remains inside C{if), after which we stop We will refer to
any sequence

P =\ifj + Mr+mr-\i i<f) + \,*f))

of mr auxiliary 5̂ ,'s followed by Mr pnncipal if, as a full block of if We set

and

Note that the forgetfulness of C{if) implies the forgetfulness of l(if) and J(if)
for / e \if\

LEMMA 3 3
(a) If 9'<if then either 1(9)uJ\9)t= C(if) or
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(b) If 9 < if then either
(1) I(9)<=I(Sf) and 3(9)^3(if) or
(n) 1(9)nI(if) = 0 and J(9)n 3(if) = 0

Proof
(a) Since I(9)KJ 3(9)^ C(9) (a) follows from Lemma 3 2
(b) If rank 9 = rank if then ^ = 7 ^ for some j e |5?| so 1(9) = /(SO n [j, oo) c 7(50

and similarly J(9) c J(50 Thus we may assume rank S7 < rank if so 9 < if, for
some S*1, in the rank decomposition if = if,x x^_, We deal first with the
case when rank if is odd If if, is initial or / = -1 then 1(9) n I(if) = J(9) n
J(if) = 0 since /(SO u J(9) <=- C(if,) If 5* is neither initial nor principal then
certainly 1(9) n 7(50 = J(9) n J(50 = 0 Finally if #", is pnncipal we have by
(a) I(9)KjJ(9)^C(if.) or I(9)uJ(9)<C(if,) In the first case we actually
have 1(9) c C(^,) c I(if) (since 5̂ , is pnncipal) and similarly J(9) c /(S^) In
the second case evidently 1(9) n 7(50 = ̂ (S7) n J(5^) = 0

If rank 5̂  is even the argument is exactly the same, replacing 'initial' by 'auxiliary'
throughout •

Given a skeleton if we inductively define a family D(if) of subskeleta of if as
follows If rank if = 0, D(if) = 0 H 9 = &,xSf,_ix x if0 we let

D(if) = {if}Kj\J{D(ift) if, is not pnncipal in if).
LEMMA 3 4

(a) Each 9e D(if) is rank-maximal in if
(b) For distinct_if,,if2eD(if), I(ifx)nI(if2) = J(ifJnJ(if2)_ = 0
(c) For each 9 < if there is a 9eD(if) such that 9<9, J(9)<=J(9) and J(9) a

J(9)
(A) The operator D is forgetful for each i e \if\

D(,if) = {,9 9eD(9),ie\9\}u{9eD(if) Kmin|^|}

Proof The proofs of (a), (b) and (d) are more or less immediate by induction To
prove (c) suppose 9<if If rank 9 = rank 9 then 9 = ,if for some i&\if\ and we
can take 9 = if If rank 9 < rank if then 9 <if, for some if, in the decomposition
if = if,x xif0 If if, is pnncipal then 7(50 c 1(9) and 3(9) <= J(50 so we can
again take 9 = if\{if,\% not pnncipal then D(if,) a D(if) so the result follows by
induction •

4 The *-joining
In this section we will be dealing with probability measures on various finite sets
It will be convenient to adopt the following notational conventions for the rest of
the paper If £ is a finite set and P is the partition of E into points, for any cartesian
product X in which £ is a factor P will also denote the partition of that product
according to the £-co-ordinate Thus for pe P, p denotes a subset of £ or of X
depending on the context

If p is a probability measure on X and a is a subset of X, dp(P\a) will denote
the conditional distribution of P given a, with respect to the measure p Thus
dp(P\a) is in a natural way a measure p on £ If a = X, dp(P\a) is the marginal
of p on £ and we denote it simply by dpP

https://doi.org/10.1017/S014338570000585X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000585X


694 A del Junco

If F is another finite set and Q is the partition of F into points then PQ will
denote the partition of E x F into points, which according to our convention is the
supremum of the partitions P and Q on E x F If pe P and qeQ, pqe PQ denotes
the intersection of p and q considered as subsets of E x F Of course all these
considerations extend to any product X having E x F as a factor If p and a are
probability measures on E and F by a joining of p and cr we mean any measure
A on E x F whose marginals are p and cr We write P ± Q (A) if A = p x cr

Now suppose cr and p are probability measures on finite sets F and E each of
which it totally ordered, so that

F = {fi<fi< </,}, E = {ex<e2< <er}

We define a joining cr p of cr and p as follows Let

be points in [0,1] such that

where A denotes Lebesgue measure Similarly let

0 = x0 < x, < < xr = 1

be such that

A(x,_1,x,) = p(eI) f o r l < i < r

Define a joining cr p of cr and p by

Denoting by Q and P the partitions of F and £ into points, a p has the useful
property that, in the joining cr p, there are at most # F -1 atoms /> e P which are
split by Q (that is, (cr p)(pq1)>0 and (cr p) (p^ 2 )>0 for distinct <J,, g26 Q)

The proof of the following lemma is immediate from the definition of cr p

LEMMA 4 1 Suppose F, E2 and £, are finite totally ordered sets and E2 x Ex is given
the lexicographic ordering (e2, e,)< (e'2, e[)<£>e2< e'2 v (e2 = e'2 A e, < e\) Let Q, P2

andPx denote the partitions of F, E2andEl intopoints Suppose cr and p are probabilities
on F and E2 x E, and let

y = cr p, y = dy{QP2),

so y is the marginal of y on F x E2 Then

y = dy(Q) dy(P2) = d<T(Q) dp(P2),

andforp2e P2

dy{QPx\p2) = dy{Q\p2) dy{P,\p2)

= df(Q\p2) dp{P,\p2)

Next suppose ir2 and TT, are probability measures on E2 x F2 and £, x F, where
F2 and Ex are totally ordered For i = 2,1 P, and Q, denote the partitions of E, and
F, into points We define a joining

IT = 1T2 * TT\
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of TT2 and 7T, on (E2x F-i) x (F2x F,) by decreeing that

and

Note that this is meaningful since we assumed F2 and £, to be totally ordered
It will be important that the definition of TT2 * TTX is symmetnc with respect to

inter-changing the roles of £, and F2 and of E2 and F, To be more precise, if TT'2
IS the measure on F2 x E2 corresponding to TT2 under the natural identification of
F2x E2 with E2xF2, and TT'X IS the measure on F, x £, corresponding to TT, then
TT\ * TT2 is meaningful (since F2 and Ex are totally ordered) as a measure on
(F, x F2) x (E, x F,2) and corresponds to TT2 * TTX It is useful to keep the following
picture of TT2 * 77, in mind

Pi P,

where the arrow indicates that, conditioned on any atom of P2QX, Q2 and P, are
highly correlated, while P2 and Qx are independent The symmetry we have just
discussed should be viewed as symmetry under rotation of the picture by 180°

LEMMA 4 2 IT = TT2 * v, is a joining of ir2 and TT, Moreover with the above notation

P21 P,Q, (TT) and Qx _L P2<?2 (IT)

Proof Since

and the dot-operation is a joining we have

«U<?2|P29|) =

and averaging over q,

Since rf77(P2) = ^ ( P , ) it follows that

that is v has marginal TT2 By symmetry it also has marginal TT, Moreover we have
just observed that Q2 and Qx are P2-conditionally independent in the joining v
Since Q, and P2 are independent it follows that Q2P2 J. Qx (TT) By symmetry we
also have P 2 1 P,(?, (TT) •

The next lemma asserts that under the right assumptions the *-operation is
associative Suppose that IT, is a probability on £ , x F , for i = 3,2,1 and that F , ,
F2, E2 and £, are totally ordered Give F3x F2 the reverse lexicographic ordering

(/3,/2)<(/3,/2)O(/2</2)v(/2=/2A/,</U

https://doi.org/10.1017/S014338570000585X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000585X


696 A del Junco

and put the usual lexicographic ordering on E2 x £ , Under these assumptions both
ir3 * (TT2 * 77,) and (TT3 * TT2) * TT, are denned on (F3x E2 x £ , ) x ( F j X F 2 x F,), since
the appropriate sets are totally ordered

LEMMA 4 3 Under the above assumptions IT3 * (v2 * TT,) = (TT3 * TT,) * TT,

Proo/ As before, P, and Q, will denote the partitions of E, and F, into points We
will show that TT = TT3* (TT2* n{) has the following alternative description

dAPzPiQiQi) = <L(P3) x dn(P2Q2) x </„«?,) (i)

Clearly (1) and (n) completely determine v The following picture of this description
may be helpful

[P3] [P2~\ Px

The boxed partitions are jointly independent of each other Note that the above
picture is symmetric under the rotation by 180° Observing that rotation by 180°
interchanges the reverse and usual lexicographic ordenngs one sees that the same
description is valid for (TT3 * TT2) * IT,, establishing the lemma

To see that (1) holds observe that by Lemma 4 2 P 3 1 P2P\Q2Qi (v) and P2Q21 (?,
(e), which implies (l)

As for (n), by Lemmas 4 1 and 4 2 and the definition of IT for p 3 e P 3 , q2e Q2,
qx e C?[ we have

= d7r3(Q3\p3) d^(P2\q2)

It follows that

d*(QiPi\p3q2) = d,a(Q3\p3) dn2(P2\q2)

Since we also have P 3 1 Q2(n) we conclude that

<UP3P2Q3<?2)=773*772, (ill)

that is TT has marginal TT3 * TT2

Moreover the above calculation shows that Q3P2 and Qx are P3Q2-conditionally
independent in the joining T Since from (I) we already know we get P3Q2± Qi
(v) we get

P3P2Q3Q2±QtM (iv)

Finally by Lemma 4 1 and the definition of n we have

dAQiP^ I PiPiiiqi) = d^Q3\p3p2q2qx) dv(Px \ p3p2q2ql)

= d7r(Q3\p3p2q2) ^(Pi | /»292^i) (by (iv) and Lemma 42)

= d^,7ri{Q3\p3p2q2) rf7r,,,r,(Pi|p2<?29i) by (in),

which establishes (n) •
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If / and J are finite subsets of Z we denote by /*, and v3 the measures p'o and
go on A' and BJ respectively We denote by P' the partition of A' into points, so
in keeping with our conventions P' is also a partition of A' x BJ for any J and
/ ' => / QJ will denote the partition of BJ into points A probability measure 77 on
A' X BJ will be called a superposition if it is a joining of /u,; and vj This includes
the possibility that / (or / ) is empty then IT= Vj (or fi,)

We now fix once and for all total ordenngs of A and B We endow A' with the
lexicographic ordering and BJ with the reverse lexicographic ordering for y, y' e BJ

y<y'e>3j0eJ st y(jo)<y'(jo) and y(j) = y'(j)Vj>j0, j eJ
Since any A' and BJ are now totally ordered TT2 * 77, IS defined whenever ir2 and
77, are superpositions Moreover, since rotation by 180° interchanges the usual and
the reverse lexicographic ordenngs, TT2 * 77, IS symmetric with respect to this rotation
If 73< I2< I\ and J3<J2< J\ are subsets of Z and TT, IS a superposition on Al< x BJ<
then Lemma 4 3 implies that TT3 * (TT2 * TT,) = (TT3 * TT2) * 77, We will henceforth use
this associativity without further comment and write simply TT3 * TT2 * TTI

A superposition 77 on A' x BJ will be called forgetful if for each t e Z
plr-,(-oo I) . p/r-,[foo)^jjn[(oo) / \

LEMMA 4 4 Suppose I2, / , , J2 and J, are finite subsets of Z SMC/J that I2nlx=0 and
J2nJt = 0 and suppose that n, is a superposition on A1' x BJ'(i = 2,1) Then
(a) TT2X 7T, and -n2 * IT, are superpositions on A'2^'' x BJ^J<
(b) / / TT2 and TT, are forgetful then so is TT2 X TTX

(c) / / there are subsets K2 <KX of Z SMC/I f/iaf / , u J , c K , (i = 2,1) awd TT, and TT,
are forgetful then so is ir2 * TT,

/Voo/
(a) TT2 x 77, is obviously a superposition and TT2 * TT, IS a superposition by Lemma 4 2
(b) is easy
(c) Setting 77 = 7r2 * IT, we must show that

and we may as well assume that te K2 or t € K, If / e K, (I) becomes

which is true because of Lemma 4 2 and because 77, is forgetful If / e K2, (1) becomes

Let p2 € p'2"<-»-'>, p* e p^i"!'."0) and 9 , € <?J- Because

and because of Lemma 4 1 and the way QJ* is ordered we see that

dAQJ^'^Ph\P2PU^ = d^QJ^lx)\P'2p*2) dWl(P''k.) (in)

Since 772 is forgetful the distribution on the right above is independent of p'2,
so the same is true of the distribution on the left Thus in the joining
77, Q V ^ ' p ' . and p'2-<-°°" are P'^'^V'-conditionally independent Since
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The following lemma may be viewed as an assertion of forgetfulness of the
•-operation

LEMMA 4 5 Suppose that TT2 ond TT, are superpositions on A'2 x BJ- and A''X BJ' and
that there are subsets K2< K, of Z such that I, u / , c K, Fix t e K2 and let TT* be
the marginal ofir2 on A'^''°°) x fl-V^' °°> If-n2 is forgetful then the marginal ofir2 * TT,
on ^<'2-['.-»-', x fl^"['.»»"', ls „* * Vl

Proof Adopting the notation in the proof of Lemma 4 4(c) it follows from (in) in
that proof and the forgetfulness of TT2 that

for all pf eP'^l'x) and qteQJ> We also have p'^t"50* i QJ> ( ^ * TT,) since P'21 QJ>
(TT2* TTI), SO the result follows •

Remark. The symmetry of TT2 * TT, allows one to conclude certain 'dual' statements
from Lemmas 4 4 and 4 5 For example, the property dual to forgetfulness for a
superposition IT is

Calling such a TT causal, Lemma 4 4(c) implies that, with the same assumptions on
/, and J,, if TT2 and TTX are causal then so is TT2 * TT-,

We say a superposition TT on A' x BJ splits p^P1 (or the corresponding xe A')
if ir(pq)>0 and Tr(pq')>0 for distinct q, q'e QJ If this is not the case there is a
q&Q' such that Tr(pq) = TT(P) In this case we write p c (̂77) Analogous definitions
apply to q e Q

LEMMA 4 6 Suppose /„ < 7n^, < < /_, are finite non-empty subsets of Z, 7, <= 7,/or
i = n,n-\, ,0, 77, is a superposition on A''XBJ> for i = n,n-l, ,0 and let
7r_, = / i ( | onA ' 1 Forj = n,n-1, ,-\ let

/,= I #/„

and for j = n, n — 1, ,0 let

Leth = h(po) = h(qo)andfixe>0 IfpePJthenp = pJpJ~^ p~x with p' e P1' Let
us call p good if

^{p)<2^h-^

Call p completely good (eg) if p'p'"1 p~x e P' is good for all J > J > - 1 If
q'eQJl for ;&i>0, call q = qJqJl q0^^ good if

and completely good if q' q° is good for all j > 1 > 0 For n >7 > -1 let

11^ = 7 7 , * 7 T , _ , * * 7 T _ ,
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Finally say that pe PJ is desirable if p is not split by n,, p c q (TT,) for a good qeQ1

and p is completely good Then setting

Pj = M / U {p e PJ P is not desirable}),

for j = n, n - 1 , , -1 we have
J p is not cg})+i>j(\J{qeQ1 q is not e g } )

+ M I 2"F < I + m ) ,
i=0

where M = maxOsr«n #B7' — 1, m = #I0

Proof Notice that the definition of desirable is meaningful for pe P"1 and that we
trivially have the estimate

p_, <fiu{pe P"1 p is not eg}

To prove the lemma by induction it suffices to assume that the desired estimate on
pj holds for j = n — 1 and prove that it holds for j = n For pe P" write

p = p"p* where p" 6 P \ p*eP"~x

We obviously have

where
r = {p"p* e P" p* is desirable but p"p* is not}

We claim that

Mn(U H < M2-f(m+n) + Mn(U {bad pnp*eP" p* is c g })

+ «/n(U{badgVe<?" 9* is eg}), (n)

where bad means not good To see this first observe that if p € F then p belongs to
one of the following sets

E, = r u { p e P " p is split by nn}

E2 = Tn{peP" pcz q(nn), q good}

E3 = rn{peP" pc:q(iTn),q bad}

We estimate the measure of LJ £, by regarding it as a union of atoms of P" x Q"
and conditioning it on sets of the form p"q* where p"eP'«, q*eQ" ' In this
argument all statements are to be interpreted modulo 7rn-null sets Since U E\ is
contained in the union of completely good (^""'-atoms, when conditioning on p"q*
we may assume that q* is eg Fixing p"q* if p"p*e Ex then, since p* is contained
in a good qe Q"~\ either p*c q* and p" =p" or p"p*np"q*-0 In the first case

must be split by the partition QJ" np"q* of p"q*, for otherwise p"p* would not be
split by Q" Thus to estimate Un([J E^piq*) it suffices to estimate the
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/^""-conditional measure of desirable p* e P"~l such that

p*cq* and p*np"q* is split QJ" np"q*
Since

dun(Q
J"P" I Piq*) = <MQJ" I Pi) dnnJP"\q*),

there are at most #QJ" - 1 such p*, and the conditional measure Tln(p*\p1q*) of
such a p* is

since p* <= g* and both are completely good Thus

n n (U Et | piq*) < (#QJ- - 1 ) 2 - ' ' - <

whence also

Now if pe E2 p is bad, for otherwise p would be desirable, so TT(U £2) is less
than the second term on the right of (H) n((J E3) is clearly less than the third term
on the right of (n), which establishes (n) By (I), (n) and our induction hypothesis
we have

1=0

= M n ( U { p e P " P is not cg})+pn(\J{qzQn q is not e g } )

+ M £ 2- £ ( I + m ) D
1=0

Lemma 4 6 is the property of the *-joining which is the key to the proof of
Theorem 1 The following proposition articulates this property in a way which makes
its applicability to coding clear

PROPOSITION 4 7 Given C e Z+ and 17 > 0 there exists meZ+ such that the following
holds Suppose /„ < /„_, < < 70< /-1 are finite subsets of Z such that

#I,<C foriaO

#/_,>OT,

and J, c /, far 1 = n, ,0 are such that

#J, < #7,-1

Suppose v, is a superposition on A1' x BJ' /or 1 = n, ,0 and TT_, = /X|_( Se?

7 7 = 7Tn * 7T n _ , * * 7 T _ , ,

and / = /„ u /„_, u u l ou/ - i Tnen

/ i ,{xe/l ' x is not split by vr}> 1 -17

Proo/ We adopt all the notation and terminology of Lemma 4 6 and also write

I = £ #1
1=0
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Since # /, < C we nave

so

and

Now fix e > 0 such that

h-2e>(l-C~1)(h + e) (l)

By the a e Shannon-McMillan-Breiman theorem applied to the product measure
<?o (m fact in this setting all that is needed is the strong law of large numbers) we
can find k such that

\/K>k,n,^{yeBll-K]
 V[lJ]y[l, T]>2-

(h+e)T for fcs f< K}> 1 -V (n)

(Recall that y[\, T] is the restriction of y to [1, T]) Next choose m so that

yeB[lJ\ 0^T^k}>2(h~2e)m, (in)

H ] M[1 (]JC[1, /]<2-( / l"c> ' for m< f< K}> 1 -TJ (IV)

and

M X 2 - £ I < T ? (v)
i = m

Now if q = q" q°e Q" is not completely good (for the e we have fixed) then
for some j > 0

^ 90)<2-(fc-2.)/,<2-<*-2.)».

(since IJ = #IJ+ +# /_ ,>#/_ ,> /*! ) so, by (in), /^>fc Moreover by (l)

By (n) the vn measure of q's in Q" such that (vi) occurs for some I, > k is less than
TJ so we have

Q" q is not eg})<77 (vn)
(iv) implies that

Mn(U{/>e^" P is not cg})<!7 (vm)

In order to prove the lemma we may as well assume #/_, = m Replacing 17 by 17/3
the proposition now follows from (v), (vn), (vm) and Lemma 4 6 •

PROPOSITION 4 8 Given C e Z+ and r\ > 0 there is an me Z+
 SMC/I fhaf the following

hold Suppose J_, < /„ < Jn _, < <J0 are finite subsets of Z SUC/J

# 7 , < C i = n, n - 1 , ,0

/, <= J,, 1 = n, n — 1, ,0 are such that
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Suppose IT, is a superposition on A1' x B3< for i = n,n-l, , 0 and TT_, = v}_x Set

TT= TT_, * Trn * 7rn-i * * 77 and J = 7_! u Jn u /„_, u u / 0 77je/i

I^{J> s B J y IS not split by TT}> 1 -17

Proof This is a dual version of Proposition 4 7 which follows from the symmetry
of the *-joining

5 Construction of superpositions and proof of Theorem 1
We now define for each skeleton if a superposition TT</ on An'f) x BM9> Recall that
if rank if = 0 then I{if) = ./(S^) = 0 so there is nothing to define Now suppose 7ry

has been defined when rank if <r and suppose if — if, x if,_x x x 5̂ _i has rank r
We deal first with the case of odd r We assume t a mr, as otherwise J(5^) = 0 so
iTy is simply /H;(</) For each i > 0 such that S/)

I+mr is principal let

/, = C(ifl+mr), I, = I, -\J{H&) ^ e D(ifl+mr), 1(9)
and

/, = C(yi+Mr), J; = /, - t/{J(^) S ê D(if,+m), J(9)

Define a superposition ir, on A'' x BJ' by

7T, = n{77# 5^e D(^,+mr)} x M;- x VJi

Note that this makes sense by Lemma 3 4(b), (c) and is a superposition by Lemma
4 4(a) In particular observe that when if has rank 1, /, = /,, J, = J,, D{if,) = 0 and
IT, = (j,^ x i>j Now set

and define TTV on A " ' " x B w by

7T</ = TTf * 7T f _ , * * 7T0 * 7 T - , ,

where F is the largest 1 such that 5^,+mr is principal TT</ IS a superposition by Lemma
4 4(a) Note that it,, has a structure of the type assumed in Lemma 4 7 Of course
if t < mr then J(if) = 0 so the conclusion of Lemma 4 7 holds vacuously

When r = rank if is even we proceed in a similar manner as follows Suppose
if = if,x x9>_t For each principal if, we set

J, = C(if,), J,=J,-\J{J(9)

and define a superposition IT, on A1' x B^ by

7T, = n{7r,? S^e D{ifl+m)} x ^ x VJi

For auxiliary if, set / , = R{if,) and define TT, = vR{ / f ) on B"7' Letting F denote the

largest 1 such that C ( ^ , ) c C(S^) define TTV on / \ ' ( / ) x B J ( / ) by

7T./ = 7 T f * 7T,--, * 7T0

Note that if p=(if,, ,if}) (1 =j + Mr + mr- 1) is a full block of 9* then by
associativity of the *-operation the marginal of TT on Anii)x BMli), which we will
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denote by 77P, IS

TT^=dAP'W, Q""'J)) = (77, *77,_1* *77,_m r + 1)*77,_m r* * 77,

= 77_, * 77,_m r * * 77,

where
_ _, j D / Cf \ , , D ( CP \ , i i , D / CP \
" — 1 — " y _ i ) •* — 1 — ^ * V ^ i / *—' -**• V *^ i — 1 / ^ ^-* •** V»-' i — m + 1 /

This 77̂  has a structure of the type assumed in Proposition 4 8
For skeleta 9 and 9 we will write 9 < 9 if 9<9,1(9)vJ(9)?*0,1(9)a

and J(9)^J(9) Lemma 3 3(b) says that if 9<9 then either ^ < 5̂  or
7(50 = J(9) n J(S^) = 0 It is easy to see that 9 < 9 if and only if9 = }9 for some
7 € |y| or ̂  < y, for some principal Ŝ , in the rank decomposition of 9 and 1(9) u

LEMMA 5 1 77ie superpositions iry are consistent in the sense that if'9 < if then the
marginal ofir^ on Al(!f) x BJ(if) is irg- The family {irsA IS translation invariant in the
sense that if 9" is the shift of if then try is the shift of irv

Proof First observe that each 77̂  IS forgetful, as can be seen by induction on rank if
using Lemma 4 4 To prove the consistency assertion by induction on rank if suppose
9 < if If rank 9 < rank if we must have 9 <if, for some principal if, in the rank
decomposition of if and moreover 1(9) u J(9) <= C(if,) By Lemma 3 4(c) 9 < 9"
for some 9" e D(5^) By induction iry has marginal 77̂  and by the definition of 77̂ ,
77y has marginal wv, whence 77̂  has marginal irg> as required

Thus we may assume rank 9 = rank 9, so 9 = ,9 for some j e |5^| With j fixed,
for any I,J<=-i, 77 any measure on A' x BJ and ^ any skeleton such that j e \9\ or
j<min \9\ let

What we must show is that («>)* = 77 .̂ Let 9 = 9,x x5^_, and assume that
rank 5̂  is odd for definiteness We may suppose^ e |5^I+mJ, 1 s 0 and 9,+mr is principal,
because if j e \9k\ and 9k is not principal then what we are trying to show is tnvial

Recall that
77y = 77r* 77,--, * * 7 7 0 * 7 7 - , ,

where we adopt all the notation introduced in the definition of TT> NOW

S* = ^f+mrxS,_1+mrx xS_,
If we set

D(9,+mr) = {9e D(9,+mr) j e \9\ or j < mm \9\}

then Lemma 3 4 says that

D(9f+mr) = {9* 9eD(9,+mr)}

From this and the fact that C(9f+m) = (C(9*,+mr))* one sees that

77</» = 77^ * 7 7 , - , * * 77O * 77_!

where
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Now by our induction hypothesis 77̂ * = (TT<?)* for We D{ifl+m) so

and evidently
M/? = (/•<•/,)*, " J : = ( » ' * )

Thus ir\ = IT* Now TJ> has marginal

77, * TT,-! * 7r0 * 7T_,

and since IT, IS forgetful (Lemma 4 4(b) and the fact that all Trg> are forgetful) by
Lemma 4 5 this measure in turn has marginal

TT* * TT, - , * • TT-X = 7 7 > .

Thus 7j> has marginal v , which is what we wanted to prove
When r is even the argument is essentially the same
Finally, the assertion about translation invanance is clear •

Our next task is to construct for a a f e X a superposition ir( on Ane)xBIU)

(that is TT( is a joining of fi( and vf) whose marginal on Annx BH!/) is iry for
every skeleton if occurring in £ (the precise meaning of this will be explained below)

For f G X, y a skeleton and I = [i,j] an interval in Z we will say £f occurs in £
on / if / = dom V, the restriction £(/) = if and £0 +1) = 0 We will say Sf is rank
maximal in f if no leftwards extension in £ of the domain of if yields a skeleton
with the same rank as if

Now suppose f e X and each finite sequence of O's and l's occurs infinitely often
as a block in £ This is true for /2-aa £ Given such a f and r>0 there exists a
unique maximal interval / in Z containg 0 such that £(/) is an r-skeleton / = [/0, j0],
where

zo = max{ieZ i<0, £[i-7V-r, »] = 1N'O}

We denote the r-skeleton f(7) by ^r(f) Then 5 r̂(f) occurs in £ on / = dom
and is rank-maximal in ^ Evidently

ifr{(;) is rank-maximal in 5 r̂_((^) and

We will also wnte

Having established this notation let us now fix a sequence r]r > 0 such that J,-qr<oo
Fix an odd r and suppose that m,, M,, N, and C, have been chosen for all Kr
(only for even i in case of M, ) For any r-skeleton if = if,x xifx the sets C{if,)
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are all bounded in size by Co+ + Cr-{, so by Lemma 4 7 we can choose mr so
that for all skeleta if of rank r

eA Try splits x) < r]r (5 1)

Next we can choose Nr and then Cr so that

Mt6 X C(^r_,(^))<= /r(£), C(yr_,(f))c jr(g),

ifr-M) is principal in ifr{£), C(ifr(£)) = |^(f) |}> 1 - Vr (5 2)

(Note that in fact the first two conditions in the definition of the above set are
redundant) To see that this is possible set

and choose K so large that the fi -measure of
k

i=0

is greater than 1 - rjr/3 (a denotes the shift on X) Then setting

Nr can be chosen so large that the fi. -measure of

H2 = {£eX &'(£)£F forO</</C}

is greater than 1 - r]r/3 Finally, once Nr has been chosen it is clear that Cr can be
chosen so large that the fi. -measure of

is greater than l-Tjr/3 Now if fe / / ,n / f 2 then yr-i(i) is not initial in yr(i)
because there are at least mr +1 rank maximal r-\ skeleta in &Xi) t o t n e nght of
yr_,(^) If in addition £e H3 then all but the initial skeleta in the rank decomposition
of Sfr(i) are principal, and in particular C(^r_,(f))c Jr(£) and C(^r_,(f))c /r(f)
Since fi(HlnH2n H3)> 1 - rjr we get 5 2

Now suppose that r is even and m,, M,, TV, and C, have been chosen for all i < r
By Lemma 48 m, can be chosen so that for each r-skeleton S and full block )3
of if

70 splits y}<r,r (53)

(Recall the remarks following the definition of -nv for even if)
Next we can choose Mr, Nr and Cr, in that order, so that

principal in yr(f), ifr-M) belongs to

a full block of &,(£), C(Sfr(i)) = \Sfr(i)\] > 1 - r?r (5 4)
(Again the first two of the above conditions are redundant)

This is accomplished in much the same way as for odd r First we choose Mr

much larger then mr and then we choose Nr so that with high fi. -probability the
rank decomposition of Sfr(€) contains t r-1-skeleta with t> L{Mr + mr) and L is
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large In particular, with high probability #",._,(£) will not be among the leftmost
Mr r-1-skeleta in the rank decomposition of Sfr{£) Finally Cr is chosen so large
that with high probability #",._,(£) is pnncipal in ¥r(i;) and also not among the
leftmost Mr r — 1-skeleta in 5^r(£), which two conditions together ensure that S^_,(£)
belongs to a full block of S .̂(£) The remaining conditions in (5 4) are immediate

We now assume that mr, Mr, Nr and Cr have been chosen for all r so that (5 1)
and (5 2) hold for all odd r and (5 3) and (5 4) hold for all even r By (5 2), (5 4)
and the Borel-Cantelli lemma there is a set X ' c X such that /2(X') = 1 and for
each £e X' there is an ro(£) such that for r>ro(^) £ belongs to the appropriate set
in (5 2) or (5 4) according as r is odd or even Thus if f 6 X' then for sufficiently
large odd r

Since |#U,(f)| / /(f) we conclude

Moreover for sufficiently large r, even or odd, we have

so the sequence {/r(£)} is eventually increasing, and similarly the same goes for
{Jr(£)} Thus for sufficiently large r we have 5^r_,(f) < S^ Whenever this is the
case Lemma 5 1 implies that ir&r_^o and 7Tyr(f) are consistent measures and when
it is not the case Lemma 3 3(b) says that there is no conflict between 77>r l(f)and TT^()

In view of these remarks for ^e X* we can define TT( to be the probability measure
on A'u)xB'u) whose marginal on A'-U)xBJ'{e is 77>r for each ^ It is clear that
TT( is a joining of fif and vf and that ne has marginal TT> for any skeleton 5̂  occurring
in £ since if <ifr{i) for sufficiently large r Lemma 5 1 implies that the family {TT̂ }
IS shift-invariant

(cr x T)(IT() = ir&(()

(Recall that AHi) x B / ( f ) ~ X(f) x y(f), ^ denotes the shift on X and <r and T the
shifts on X and y, so o- X(f)^X((r(f))) Now define IT on X x Y by

(We leave it to the reader to formulate and venfy the measurabihty which makes
this meaningful) ir is a joining of fi and v and is invanant under cr x T The proof
of Theorem 1 is now completed by the following proposition

PROPOSITION 5 2 There exists a finitanly forgetful homomorphism (j> X -> Y with a
fimtary inverse ip such that for B<= X xY

ir{B) = n{xeX {x,cf>(x))eB}

Proof For £ € X', define
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by requiring that, for x e X(£), the restriction <j>((x)(Jr(g)) be yr, whenever x(/ r(f)) <

To check that this definition is unambiguous suppose that r < r',

and

(If the last condition does not hold then / r ( £ )n Jr(f) = J r ( | ) n Jr (£) = 0 , so there
is no conflict between yr and >v ) Then the marginal of % r ( { ) on A ' r l { ) xB J ' ( i l is
i7/r(f ) so, regarding the various finite sequences as cylinders in A'r<f) x BJrU), up to
77>r(f)-null sets we have

and
x(J, (£))<=*(/,(£)) <=JV

Thus

yr) = %,({)()', (/,-(£)) n yr)

This means that, as cylinders in B ^ u ) , yr(Jr(£)) = yr (since otherwise they are
disjoint), which is what we wanted to check

Next we must check that, given £, for fj.ra a x e X ( £ ) the sequence </>f(x) is
defined on all of /(£) By 5 1, for odd r

MMf ){* 6 A'M) *SM) splits x} < r)r

By Borel-Cantelh it follows that for fira a x e X(£), x(/ r(f)) is split by irSr(f) for
only finitely many odd r Thus for sufficiently large odd r 4>f(x) is defined on Jr(£)
and {/r(f) r odd} is an eventually increasing sequence whose union is / ( f ) This
means that 4>((x) is defined on /(£) This completes the proof that the definition
of <f>( is meaningful

The shift-invanance of {TT( £e X) evidently implies that the family {<f>e | e X}
is shift-invanant

We now define <f> X -* Y by

<̂ >(x) = ^ ( x ) where ^ = x , i e x e X ( ^ )

The shift invariance of {<f>f} implies that <f> ° cr = T° <f>
In order to show that <p is finitanly forgetful we will define a one-sided version

of (/> We first introduce some one-sided notation Let

x * = c[o,oc)^ Y* = D[0O0\ X* = {0,1}[OOD)

x>-*x denotes the natural projection X* -* X* and the same for Y* -> X For f € X*
let

= 0}c[0,oo)
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Then
X*(f) = {xeX* x = £}

and

x<-*x* will denote the projection X -» X* and more generally also the projection
from any two-sided sequence space to its one-sided version Thus for example if
£e X and xeX(f) then f e X * and x*eX*( f ) /**, v*, /**, ^ and ^ ( f e X * )
denote the measures on X*, V*, X*, X*(£) and Y*(£) naturally corresponding to
(j., v, fi, (if and v(

For £eX* let io(£) denote the least i such that £(i) = 0 As in the two-sided
situation there exists for each r a unique interval I = [io(€),j] beginning with io(f)
such that g(j +1) = 0 and £(/) is an r-skeleton We denote this r-skeleton by Sf?(f)
and also write /*(f) = /(SP*(f)) and /•(£) = J(ST*(g)) For f € X* we define

by requiring that, for xeX*(£)~ A'*(€), ^ |(/*(^)) be ^r whenever

*(/?(£))<=*(*>•<«)
One argues that this defines the sequence </>*(x)€ Y*(ij)~ Bl <fl unambiguously
and on all of /*(^), just as we did in the two-sided situation

Moreover for $ e X the mappings and <j>( and <j>** are consistent in the sense that

(4>((x))* = 4>(,(x*) (i)

To see this just observe that for £ e X we must have

for all sufficiently large r Since the skeleta have the same rank, £??(£*) < S r̂(f) so
the superpositions ir^*i(*) and n<,M) are consistent This in turn allows us to argue
just as in the two-sided situation that whenever

and

then j»* is the restriction of yr, which gives (I)
Now define <f>* X*H> Y* by

4>*(x) = 4>t(x) forxeX*(^)

0* is a finitary mapping since, for sufficiently large r, </>*(x)(Jr(£)) (and hence
(f>*(x)(0)) is determined by ir</.({) and *(/?(^)), both of which are determined by
the restriction of x to the domain of 5 r̂(f) (l) implies that

(<£(*))* = <*>*(**),
which in view of the finitanness of </>* means that <j> is finitanly forgetful

Next we show that for B <= X x Y

B} (n)
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Fix ^e X and suppose that poe p'r°U) and qoe QJ'°U) We recall the convention that
Po and q0 can also be regarded as subsets of larger Cartesian products By the
definition of <f> we have

= hm M * ( U {P 6 P''U) P «= Po, 3 ? e Q'''*' s t p c g c ? 0
r-»co

=£ hm U ' ( f '
r-»oo

< hm
r-»oc

Thus whenever B is a cylinder in X(g) x y(f), and hence for all Borel B c
), we have

Now as a function of B the left hand side of the above inequality is a probability
measure on X(tj) Since ir( is also a probability we can replace the inequality by
equality Integrating, we obtain (n) Note that one consequence of (n) is that $ is
measure-preserving

It now remains only to construct a fimtary t/> Y -* X inverse to <j> For f e X ' and
even r if #",._,(£) lies in a full block in &,{£) we denote this full block by /3r(f) By
(5 4) and the Borel-Cantelh lemma, for /I-a a f, )8r(^) is defined once r is sufficiently
large and even Whenever r<r' and /3r(£) and /3r-(f) are defined we have | ) |

and either

or

/r(f)n/ r(f) = / r ( f ) n / r U ) = 0 (iv)

In case (in) holds

/(&(£)) = 7r(f) n |/3r(f )| c /r (f) n |/8r (f )| = 7()8r (£))

and similarly J(Br(())^J(Br($)) Thus in case (in), irPrU), a measure on An^u)) x
BMfi'u)\ has marginal vPrii), since each is a marginal of TT̂  In case (iv) we have

Hfir(€)) n I(Br (f)) = /(/8r(f)) n /(Mf)) = 0

We have observed earlier that for a a $ (in) holds once r is sufficiently large
Moreover if Sr_i(£) is principal in Sr(£), which is the case for sufficiently large r
by (5 4), we will have

Also if r is sufficiently large 5 4 implies

and since Ur|Sr_,(f)| = /(£) we conclude U/ (£ , (£ ) )
We now define
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by requiring that tt(y)(.Hpr(€))) = x, whenever j>(/(/3r(f)))«=xr (**,<«) (5 3)
together with the remarks in the previous paragraph allow us to conclude, as we
did for </>f, that for vf-a a y ty^y) is unambiguously defined on all of /(£) We
define ip Y-»X by

Hy) = tfiy) where ye Y(£) l e p f

ip is finitary since for sufficiently large even r ip(y) is determined on I((Zr(y)), and
hence at 0, by y(J(/3r(y))) and w ^ ) both of which are determined by the restriction
of y to the domain of Sr(y), a finite portion of y (However, see the remark after
the end of this proof)

Finally for B <= X x Y we obtain

7r(B)=f{y€ Y ( ^ ) j ) e B ) (v)

in the same way that we obtained (n) (v) implies that tp is measure-preserving (n)
and (v) together imply that ip = </>~" for E •=> X

1ilf~lEnE} = fi{xeX (x,<l>(x))<= E xf'E}

Since i/f ° <f> is measure-preserving this means fi(E^(j>~1ij/~1E) = 0, so I/N/> = id a e

•
Remark. Referring to the remark after the proof of Lemma 4 5 it is not hard to see
that the TTS are all causal Recall that

where #(/_,) = mr and i—j = Mr, and v,, , -n, are products of lower rank irg,
and hence all causal The dual version of Lemma 4 5 then implies that the marginal
of ^PM) on / I ' l W i ^ - J ' i x B ' W " - ' - °l, which we denote *nPM), has the form

where *7r, denotes the marginal of 77, on the past Thus Proposition 4 8 applies to
*7r/3r(f) as well as TTPAI) This leads to the observation that we can determine
lM}')(~oo>0] 'f w e know y(-oo, 0) and *wj8r(f) for all r Since *wpr<f) is certainly
determined by f it follows that i/> is marker-conditionally causal in the sense that
once £ = y is known then the past of IA(J') depends only on the past of y However,
one needs to know all of £ because *rrPM) is not determined by the past of £ alone
Indeed, since auxiliary and principal skeleta are determined by working from right
to left, if we lose the right end of £fr(i;) we will not even know what the domain of

6 Proof of Theorem 2
The purpose of this section is to sketch a proof of Theorem 2, the non-finitary
version of Theorem 1 Technical details will for the most part be suppressed We
assume familiarity with §§2 and 4
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THEOREM 2 There exists a forgetful isomorphism <f> X -» Ysuch that <j> X(£)-» Y(£)

We continue to assume that p{\) = q(l) and we maintain all the notation intro-
duced in §§ 2 and 4 Also extend that notation as follows If / is finite we identify
the partition P' (or Q1) on any space having A' as a factor with the finite <r-algebra
it generates If / is infinite P' denotes the o--algebra generated by the projection
X-»A', A' being given the usual product Borel structure We recall also one
notational eccentricity from § 3 when JC IS a sequence indexed by Z and I c Z, x(I)
denotes the restriction of x to /

If (Z, 58, A) is a probability space, & is a sub-cr-algebra of 58 and R is a finite
58-measurable partition of Z we write R a 3F (A) if each re R agrees a e with an
r'e 9 For 17 >0 we write R <= & (A) if for each reR there is an r'e & such that
A(r Ar') < 77 It is not hard to see that if Q and R are finite partitions of Z and

A(U{<?e(? 3 r e K s t <jc rA-ae })> 1 -rj

then R <=• a{Q) (A) (o-(Q)) denotes the <r-algebra generated by Q)
To prove Theorem 2 we must construct a measurably varying family {<£f f e X}

of measurable and measure-preserving mappings <£f X(£)-» V(£) </>f corresponds
to a joining 7rf of ju,f and vf for B <= X(£) x

It is not hard to see that the family {TT$ f eX} will have to have the following
properties for /I-a a f
(6 0) V finite cylinders EcXxY, the mapping £-»wf(En(X(f)x Y(£)) is /I-

measurable
(6 1) shift invanance ir^(f) = (crx T)TT€

(6 2) 7rf is a superposition, 1 e a joining of n( and j>f

(6 3) each Vf is forgetful, that is p-<"^)"'«) 1 pti»)ni(«QU«)nf(f) ( ^ }

(6 4) the marginal -IT* of 7rf on Ani) depends only on f [0, 00)
(6 3) is a consequence of the fact that p^°°>"'^>3 QU°°W<«> ( ^ w h i c h fonows

from the forgetful nature of $ (6 4) is likewise a consequence of the fact that 4> is
forgetful However, certainly neither (6 3) nor (6 4) implies that {ir$} arises from a
mapping consider, for example, w^ = fi( x 1̂

The facts that <f>( is a forgetful homomorphism and is a e one-to-one are expressed
by
(6 5) Q{owu)cp[oooW(f) (77f)

and
(6 6) p<o>oi(«c(?i(« (w.f)

(Of course these are vacuous when 0£ /(£)) Conversely one checks that any family
{TT( f €X} satisfying (i)-(vi) arises from a 0 as in Theorem 2 In checking that <t>
is forgetful (6 4) is essential if we did not have it we might need the full marker
sequence £ to determine wf, which is needed to determine <£(x)(0) from x[0,00)

Accordingly, we turn our attention from mappings to joinings satisfying (6 0)-
(6 6) Let Me denote the space of Borel probability measures on X(f) x Y(t-). We
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denote by M the space of p. -equivalence classes of functions IT X ->{J{M( £ € X},
denoted £'-»7rf, such that 7rf e Mf and (6 0)-(6 4) hold for fi-a a £ Note that M is
not empty let ir( = ft( x v(

For f e X we define a complete metric d( on Mf which induces the weak-*
topology on Aff as follows Let F, denote the set of all cylinder sets in X x Y
depending only on coordinates in [-i, i] For B <= X x Y let B( = B n
and for m\m2e M$ let

i=0 CeT,

Now we define a complete metric d on M by

= I
Thus TT1 and IT2 are close if TT\ and TT̂  are weak-* close with high jl -probability

We introduce approximate versions of (6 5) and (6 6) by defining

and

It is straightforward to check that % and Te are open subsets of M and that
r i n a l (^i/n n ^l/n) consists precisely of those n e M satisfying (6 5) and (6 6) Thus
Theorem 2 is a consequence of the following proposition and the Baire category
theorem

PROPOSITION 6 1 The sets °Ue and °Ve are dense in M

Proof We deal with °UC first What we have to show is that for any IT e M we can
find 7T6 %E such that d^ir^, TT^) IS small for most f We can ensure that ire aUe by
ensuring that for most (that is, more than 1 — r\ in fi,-measure) £ we have

Q<ow<f)£ p[ooow(f> ( ^ (^

(The point is that we will in fact be able to make 17 small independent of e)
Roughly speaking we will produce irf by combining the marginals of ir( over

large disjoint finite chunks of Z using the *-product, in a way which takes advantage
of Proposition 4 7 to ensure that (1) holds for most £ We use the structure of £ to
determine the chunks, ensuring shift-invanance of n If the chunks are sufficiently
large then for most £ a large interval [-«,«] of Z will be contained in a single
chunk so that -ir( will have exactly the same marginal (not just close) as TT( over
[-«, n], whence ^(77^, ir() is small

To this end let Nt < N2, C and m be integers to be specified later Suppose £ e X
and / = [», _/] <= Z is an interval such that

/ will be called a 1-marker in £ if Nt<j-i + 1 / will be called a 2-marker if
N2^j — i + l (so a 2-marker is also a 1-marker) Thus a a £eX contain infinitely
many 1-markers and infinitely many 2-markers By an i-skeleton (1 = 1 or 2) in £
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we mean the set of all indices t e Z such that £( t) = 0 which he between two successive
i-markers in £ (Note that this is formally different from the definition of a 1- or
2-skeleton in § 3 ) Thus for a a £ e X /(£) decomposes disjointly into 2-skeleta each
of which decomposes into 1-skeleta If y is a 1-skeleton in £ C(y) will denote its
C rightmost indices and C(y) = C(y)-{max y}

Now fix £ e X and suppose Sf is a 2-skeleton occurring in f whose component
1-skeleta are y,, y,-\, , y0 listed in order from left to right We set

and
/(y) = C(r,)uC(y,_,)u uC(TJ

(Thus /(SO = 0 if f < m) For i > m let 77, denote the marginal of wf on A7' x 98C (T'},
for i < m let TT, denote /i% and let

77^ = 17,* 7T,_ ,* * 7 7 m * 7 7 m _ , * * 7T0

= 77, * 77, . ! * * 7Tm»flym_lW u % (ll)

Next we 'fill in the holes' of 77> by letting / ' = Sf-J{9>) and defining

77y=77yXfJ., (ill)

a superposition on A^ x 58 y Finally if

> ^ - 1 > ^ 0 j ^ 1 > ' - ' 2 >

denote the 2-skeleta of £ listed in order of appearance, we set

" > = 7Ty_, X 77y0 X 77y, X 77y2

(It is not crucial that we take the product joining here In fact, roughly speaking,
any 'canonical' joining of the v'^ which is a superposition, for example

•JO_, * wy0 * 77̂  would do )
It is not difficult to check using Lemmas 4 2 and 4 4 that 77 € M We mention only

that (6 4) is a consequence of (6 3), Lemma 4 5 and the fact that all our constructions
are made working from right to left

Moreover, given TJ > 0 and k € Z+, if TV, is sufficiently large then, with /I-probability
more than 1 - -q, 0 is enclosed in a 1-skeleton y = y(£) of f, that is

Oe[min y(£), max y(f)]

and y((;) => [-fc, fc+1] u /(£) If we next choose C sufficiently large then with high
fi-probability C(y(f)) = y(£) so

C(y(f))=>[-fc,fc]n/(f) (iv)

Now assuming y(£) is defined let #"(£) denote the 2-skeleton in £ containing
and let y*(^) = ^(^)n[0,oo) Suppose that the 1-skeleta of S?(f) are

-i , , ?o and y(f) = yr so

yfuy,-_,u • uy0

where yf = yrn[0,oo) Let /*(^(f)) = /(y(f))n[0,oo) and let £$,f) denote the
marginal of rri on A'/t({)x S3-/*(/(f)), which is the same as the marginal of 77V/U) on
this set, where v<ni, is defined by (111) with #" = 5^(f) Lemmas 4 4 and 4 5 together
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with the forgetfulness of TT$ imply that

where the TT, are the measures appearing in (n) and IT* denotes the marginal of IT-,
on Ay'xBC(y')r"[0co) Recalling that ir, is a measure on Ay-x®C(y-\ #C(y , )<C
and #(ym-i u u y0) s: m, Proposition 4 7 implies that if we choose m sufficiently
large then for all £ for which y(f) is defined we have

/*v*(f)(U {/>G Py*U) p is not split by jy({,.}) > 1 - e
so

When the partitions are considered as partitions of Ani)x <%J'() this implies

Finally, if N2 is chosen sufficiently large then with high (L-probability y(f) is not
among the rightmost m 1-skeleta in &(€) so C(y( f ) )c / (^ ( f ) ) Recalling the
definition of % ( { ) this implies that with high probability TTJ and TT( have the same
marginal on AyU)x 3&CiyU)) In view of (IV) this implies that d({n(, n() is small
Moreover (iv) together with C(y(f)) c J(5^(f)) implies that {0} n /(f) c J*((f)) so
in view of (v) we obtain that with high (L -probability

as desired This concludes the proof that °Ue is open
To show that Ye is open we proceed as follows Fixing IT e M we seek TT£VE

which is close to TT Let N,< N2, C, m and M be positive integers to be specified
later Fix f e X and define 1- and 2-skeleta in g as before, as well as 5 (̂̂ ) and y(£)
For y a 1-skeleton C(y) and C(y) are also defined as before Suppose if is a
2-skeleton in £ with component 1-skeleta y,, y,_,, , y0 For 0 < i < ( let

i = q(M + m) + r(i) 0<r(i)<M + m

Call y, principal if 0 ^ r(i) < M and auxiliary if M•& r{i) < M + m Define

7(S0 = U{C(y,) y, principal}
and

_ fmarginal of n( on AC(y>xS8T', if y, principal

I*7-,,,, if y, auxiliary

Next let

TT<f = IT, * 7T,_ , * * 7T 0 , ( v i )

a superposition on A / ( y ) x S8y, and fill in the holes of trv by defining

a superposition on A y x S8'' Finally if

are the component 2-skeleta of $ set
77^ == X 7T</_ j X 7r(/0 X 7T^_ ] X

We can now argue, much as for %r, that TTG TP and is close to TT N,, C, m, M
and N2 are chosen in that order The only significantly different feature here is how
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we ensure that for most £

(vn)
We begin, as with °UF, by choosing TV, so large that for most f y(£) is defined After
C and m are chosen (we will have something to say about them later) if we choose
M and then N2 sufficiently large then, for most £ y(£) lies in a string of M
consecutive principal 1-skeleta y,+M_,, y,+M-2, , y, of #"(£) which is preceded
by a string of m auxiliary 1-skeleta y,+M+m-i, , %+M For such a $ we set

where j = i + M + m — 1 and

/(j8(f)) = /(y(f))n/3(f) = C(rI + M_,)u uC(y.)

Now by associativity of * the marginal of TT( on AHPU))xBpu>, which we denote
f), has the form

Vpie) = (irj * ir,_, * * 7T,+M) * •"',+M-i * * T .

where the TT, are the measures appearing in (vi) Thus Lemma 4 8 guarantees that
if we chose m sufficiently large then, regardless of how M and N2 were subsequently
chosen,

so

Now, as in the argument for density of allE, the choice of N, and C could have
been made to ensure that for most (,

which ensures the closeness of 7rf and -ni for most ^ As we already have that
is principal for most f it also ensures that {0}n/(£)c /(/3(£)) for most £ so (vm)
implies that (vn) holds for most £ •
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