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Abstract

We determine several variants of the classical interpolation formula for finite fields which produce
polynomials that induce a desirable mapping on the nonspecified elements, and without increasing the
number of terms in the formula. As a corollary, we classify those permutation polynomials over a finite
field which are their own compositional inverse, extending work of C. Wells.
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1. Introduction

The idea of polynomial interpolation has been known now for several centuries. The
classical Lagrangian form is as follows: given some field F , and some partial function
φ on F – that is, a function defined on a subset A = {a0, a2, . . . , an} of F satisfying
φ(ai) = bi ∈ F for 0 ≤ i ≤ n – the unique polynomial f ∈ F [X] of degree at most n
which satisfies f (ai) = bi is given by

f (X) =

n∑
i=0

bi

∏
a∈A
a,ai

(
X − a
ai − a

)
. (1.1)

While the Lagrange interpolation formula has many practical uses, a modern instance
being in secret-sharing schemes for example, when used in a discrete setting the
resulting polynomial may not necessarily be the most useful. For example, in discrete
settings it is often desirable to have more control over the behaviour of the polynomial
f on F \ A, and the behaviour of the polynomial f (X) in (1.1) is unpredictable on
F \ A.

In this note we are interested in looking at several alternative versions of polynomial
interpolation in the discrete setting which produce polynomials that induce a desirable
mapping on the nonspecified elements, and this without increasing the number of terms
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in the formula. For various reasons, we restrict ourselves to the case where F is a
finite field. Specifically, we are interested in versions of interpolation for representing
partial functions φ which permute a specified subset A of F . A previous study
of representing partial functions in the discrete setting and without the permutation
requirement can be found in Wesselkamper [5], though Wesselkamper’s results stem
from a different motivation. Depending on the situation, there are a variety of ways
of extending the partial function to the whole of F . Here we consider two such
circumstances, namely where the polynomial acts on the nonspecified elements as
either the identity map or a constant. The former situation yields another generic
method for constructing permutation polynomials over finite fields using interpolation
– methods for constructing permutation polynomials over finite fields via Lagrange
interpolation were noted previously by Carlitz [1], Dickson [2] and Zsigmondy [6].
An immediate corollary of this permutation result is a complete description of all
polynomials defined over a finite field which form their own compositional inverse.
We use this corollary to identify one particularly special permutation polynomial class;
those that represent a permutation of the finite field which switches some nonzero
element with its additive inverse and otherwise fixes the field. Our results are given in
Section 3.

2. Notation and preliminaries

Throughout, q is some prime power. We use Fq to denote a finite field with q
elements, F?q its nonzero elements and Fq[X] the polynomial ring in indeterminate X
over Fq. It is well known that any function on Fq can be uniquely represented by a
reduced polynomial in Fq[X]; that is, one of degree at most q − 1 – in fact, this follows
from Lagrange interpolation.

An important polynomial in what follows is the ‘all ones’ polynomial hk(X) =

1 + X + X2 + · · · + Xk, where k is a nonnegative integer. Some results concerning
hk(X) have appeared previously in the literature. Of interest is the work of Matthews
[3], who classified the permutation behaviour of these polynomials over fields of odd
characteristic; this problem remains open in even characteristic. We list some useful
identities for hk(X).

Lemma 2.1. The following statements hold.

(i) For any k, hk(1) = k + 1 and

hk(x) =
xk+1 − 1

x − 1
if x , 1. (2.1)

(ii) For a ∈ F?q , (X − a)q−1 = Xq−1 + hq−2(a−1X).
(iii) For a, x ∈ Fq,

hq−2(aq−2x) =


1 if ax = 0,
0 if ax , 0 and x , a,
−1 if x = a , 0.
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Proof. Part (i) is immediate, while (ii) follows from the binomial theorem and the
easily proved observation that

(
q−1

i

)
≡ (−1)i (mod p).

For (iii), if either a or x is zero, then hk(0) = 1 is clear for any nonnegative k. For
the remainder of the proof we assume ax , 0. If x = a, then aq−2x = aq−1 = 1, and we
can appeal to (i) to obtain hq−2(aq−2x) = q − 1 = −1, as claimed. Now suppose x , a,
so that aq−2x , 1. Then, appealing to (2.1),

hq−2(aq−2x) =
(a−1x)q−1 − 1

a−1x − 1
=

1 − 1
a−1x − 1

= 0,

completing the proof. �

Note that the last statement of the lemma shows how hq−2(X) can be used as a form
of indicator function. It is in this capacity that we use hq−2(X) below.

3. Polynomials representing partial functions
We first consider polynomial interpolation for a permutation of Fq (we use cycle

notation to represent the permutation).

Theorem 3.1. Let α be the permutation of Fq represented as the product of disjoint
cycles as

α = (a00, a01, . . . , a0n0 )(a10, a11, . . . , a1n1 ) · · · (ak0, ak1, . . . , aknk ).
Then α is represented by the reduced polynomial

T (X) = X +

k∑
i=0

ni∑
j=0

aq−1
i j hq−2(aq−2

i j X)(ai j − ai( j+1)),

where the subscript j in ai j is read modulo ni + 1.

Proof. We split the proof into two cases, depending on whether α fixes 0. Since the
degree of T is clearly at most q − 1, in either case, we need only prove T induces the
mapping α under evaluation.

Case 1: α fixes 0. Then ai j , 0 for all i, j. Consequently, aq−1
i j = 1 and the value of

hq−2(aq−2
i j x) is described by Lemma 2.1. Evaluating T (x) at x = 0 gives

T (0) = 0 +

k∑
i=0

ni∑
j=0

hq−2(0)(ai j − ai( j+1)).

By Lemma 2.1, hq−2(0) = 1, so

T (0) =

k∑
i=0

ni∑
j=0

(ai j − ai( j+1))

= (a00 − a01 + a01 − a02 + · · · + a0(n0−1) − a0n0 + a0n0 − a00)

+ · · · + (ak0 − ak1 + ak1 − ak2 + · · · + aknk − ak0)

= 0,
as desired.
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Now let a be any element of F?q fixed by α. Evaluating T (x) at x = a gives

T (a) = a +

k∑
i=0

ni∑
j=0

hq−2(aq−2
i j a)(ai j − ai( j+1)).

Since a is fixed by α, a , ai j for all i, j. Combining this with a , 0, by Lemma 2.1 we
have hq−2(aq−2

i j a) = 0 for all i, j, so that T (a) = a.
Now let a ∈ α. Then a = ast for some s, t. Evaluating T (x) at x = a gives

T (a) = a +

k∑
i=0

ni∑
j=0

hq−2(aq−2
i j a)(ai j − ai( j+1)).

Now a , 0 by the assumption of this case. By Lemma 2.1, hq−2(aq−2
i j a) = 0 for all

(i, j) , (s, t) and hq−2(aq−2
st a) = −1. Thus,

T (a) = a + (−1)(ast − as(t+1)) = ast + (−1)(ast − as(t+1)) = as(t+1),

so the polynomial T maps every element of Fq as prescribed by α.

Case 2: α does not fix 0. Without loss of generality, let a00 = 0. Then aq−1
00 = 0q−1 = 0

while aq−1
i j = 1 for ai j , a00. We have

T (X) = X +

n0∑
j=1

aq−1
0 j hq−2(a0 jX)(a0 j − a0( j+1))

+

k∑
i=1

ni∑
j=0

aq−1
i j hq−2(aq−2

i j X)(ai j − ai( j+1)).

By Lemma 2.1, if x = 0, then hq−2(aq−2
i j x) = 1 for all i, j. Evaluating T (x) at x = 0 gives

T (0) = 0 +

n0∑
j=1

(a0 j − a0( j+1)) +

k∑
i=1

ni∑
j=0

(ai j − ai( j+1))

= (a01 − a02 + a02 − a03 + · · · + a0(n0−1) − a0n0 + a0n0 − a00)

+ · · · + (ak0 − ak1 + ak1 − ak2 + · · · + aknk − ak0)

= a01.

So, 0 = a00 maps to a01, as required.
Now let a ∈ F?q be fixed by α. Evaluating T (x) at x = a gives

T (a) = a +

n0∑
j=1

aq−1
0 j hq−2(a0 ja)(a0 j − a0( j+1))

+

k∑
i=1

ni∑
j=0

aq−1
i j hq−2(aq−2

i j a)(ai j − ai( j+1)).

Since a is fixed by α, a , ai j for all i, j. Again, we combine this with a , 0 and find,
by Lemma 2.1, that hq−2(aq−2

i j a) = 0 provided (i, j) , (0, 0). Thus, T (a) = a.
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Now let a = ast for some s, t, (s, t) , (0, 0). Evaluating T (x) at x = a gives

T (a) = a +

n0∑
j=1

aq−1
0 j hq−2(a0 ja)(a0 j − ai( j+1))

+

k∑
i=1

ni∑
j=0

aq−1
i j hq−2(aq−2

i j a)(ai j − ai( j+1)).

As a , 0, Lemma 2.1 yields hq−2(aq−2
i j a) = 0 for all i, j, (i, j) < {(0, 0), (s, t)} and

hq−2(aq−2
st a) = −1. Thus,

T (a) = a + (−1)(ast − as(t+1)) = ast + (−1)(ast − as(t+1)) = as(t+1),

and we have shown that the polynomial T maps every element of Fq as prescribed
by α. �

Note that the number of terms in the double sum is equal to the number of nonfixed
points of the permutation, which is the same as in (1.1).

As an immediate application of Theorem 3.1, we classify those permutation
polynomials over Fq which are their own compositional inverse.

Corollary 3.2. Let f ∈ Fq[X] satisfy f ( f (X)) ≡ X (mod (Xq − X)). Then

f (X) = X +

k∑
i=0

(ai0 − ai1)(aq−1
i0 hq−2(a−1

i0 X) − aq−1
i1 hq−2(a−1

i1 X)),

where the ai j are distinct elements of Fq. In particular, if f (0) = 0 also holds, then

f (X) = X +

k∑
i=0

(ai0 − ai1)(hq−2(a−1
i0 X) − hq−2(a−1

i1 X))

= X +

k∑
i=0

(ai0 − ai1)((X − ai0)q−1 − (X − ai1)q−1).

The result follows immediately from Theorem 3.1 and the observation that any
f ∈ Fq[X] satisfying the hypothesis must induce an involution α ∈ S q of the form

α = (a00, a01)(a10, a11) · · · (ak0, ak1),

with ai j ∈ Fq distinct. The last observation concerning polynomials with no constant
term follows from Lemma 2.1(ii).

We note in particular the form for those reduced polynomials representing
involutions which fix all but two elements; these polynomials were previously
described by Wells [4], and could in turn be used to establish Corollary 3.2. A
particularly nice form of permutation polynomial comes from the involution α =

(a,−a).
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Corollary 3.3. Let a ∈ F?q for q odd and let hk(X) = 1 + X + X2 + · · · + Xk for any
natural number k. The polynomial fa ∈ Fq[X] given by

fa(X) = X + 4Xhq−3/2((a−1X)2)

is a permutation polynomial over Fq.

Proof. Set α = (a,−a). Appealing to Corollary 3.2,

fa(X) = X + (a − (−a))
(
hq−2(a−1X) − hq−2((−a)−1X)

)
= X + 2a

q−2∑
k=0

(
(a−1)k − (−a)−k)Xk

= X + 2a
q−2∑
k=0

(
1 − (−1)k)(a−1X)k

= X + 2a
(q−3)/2∑

k=0

2(a−1X)2k+1

= X + 4a(a−1X)
(q−3)/2∑

k=0

(a−1X)2k

= X + 4Xh(q−3)/2
(
(a−1X)2). �

We now move to our second natural situation, where we extend the partial
permutation function so that it acts as a constant on the nonspecified elements.

Theorem 3.4. Let c ∈ Fq be fixed, A be some subset of Fq and α be a permutation on
A, represented as the product of disjoint (possibly trivial) cycles as

(a00, a01, . . . , a0n0 )(a10, a11, . . . , a1n1 ) · · · (ak0, ak1, . . . , aknk ).

Then the polynomial

T (X) = c +

k∑
i=0

ni∑
j=0

(ai( j+1) − c)(1 − (X − ai j)q−1),

with the subscript j in ai j read modulo ni + 1, represents the permutation α on A while
mapping all a ∈ Fq \ A to c.

Proof. As with the proof of Theorem 3, it suffices to prove that the function induced
by T on Fq is as claimed.

Let a ∈ Fq \ A. Then a , ai j for all i, j. Consequently,

T (a) = c +

k∑
i=0

ni∑
j=0

(ai( j+1) − c)(1 − (a − ai j)q−1)

= c +

k∑
i=0

ni∑
j=0

(ai( j+1) − c)(1 − 1)

= c,

so every a ∈ Fq \ A is mapped to c.
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Now let a ∈ A. Then a = ast for some s, t. Here

T (a) = c +

k∑
i=0

ni∑
j=0

(ai( j+1) − c)(1 − (a − ai j)q−1)

= c + (as(t+1) − c)(1 − 0)
= as(t+1),

and we are done. �

Versions of the types of functions considered in Theorem 3.4 can be useful in
cryptography when attempting to construct a meet-in-the-middle attack, where one
looks to split the encryption function E into a composition of two functions on at least
some subset of the message space, and then use this to restrict the search space for
potential messages. Whether the associated polynomials produced here could also be
useful in such an attack is unclear.
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