Abundance determinations in the dIrr galaxy Leo A

Francisco Ruiz-Escobedo¹, Miriam Peña¹, Liliana Hernández-Martínez² and Jorge García-Rojas³

¹Instituto de Astronomía, Universidad Nacional Autónoma de México Apdo. Postal 70264, Ciudad de México, 04510, México email: fdruiz,miriam@astro.unam.mx

²Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70543, Ciudad de México, 04510, México email: lilihe.mtz@gmail.com

³Instituto de Astrofísica de Canarias (IAC), E-38200; Universidad de La Laguna, Dept. Astrofísica. E-38206, La Laguna, Tenerife, Spain email: jogarcia@iac.es

Abstract. Physical conditions and chemical abundances of two H II regions and a planetary nebula in the dIrr galaxy Leo A are presented. These determinations were performed using the direct method (T_e measured) and the ONS method. We also constructed photoionization models for the three nebulae to determine the abundances and to analyse the ionizing stars. The O abundance was determined to be $12 + \log(O/H) = 7.4 \pm 0.2$ in all cases.

Keywords. galaxies: irregulars, galaxies : individual (Leo A), galaxies: ISM, ISM: abundances, planetary nebulae: general

1. Introduction

Dwarf Irregular galaxies (dIrr) are low-mass, gas-rich, low-metallicity systems and seem to be dominated by dark matter. These galaxies are considered the building blocks of large-scale galaxies. The study of the ISM abundances of these galaxies, derived from H II regions and planetary nebulae, allow us to infer their chemical evolution (Hernández-Martínez *et al.* 2009).

Leo A is an isolated dIrr galaxy of the Local Group located at 803 kpc from the MW (McConnachie 2012). Only a small number of H II regions and one PN have been found in Leo A. van Zee *et al.* (2006) determine the abundances of four H II regions in this galaxy, from strong-line and semi-empirical methods; they also determine abundances for the PN by using the direct method. They found that Leo A is a very low metallicity galaxy, with an average value of $12 + \log(O/H) = 7.30 \pm 0.05$.

In this work, our main goal was to obtain accurate determinations of chemical abundances (in particular of O) of two H II regions in Leo A: from deep spectra measure the [O III] λ 4363 line to determine T_e and, with it, the abundances using the direct method. Also, we re-analyse the data for the PN published by van Zee *et al.* (2006) to calculate its physical conditions and abundances using the same methodology as for H II regions. In this proceeding, we present some of the results recently published by Ruiz-Escobedo *et al.* (2018).

			U			
	H II West		H II East		\mathbf{PN}	
	Direct Method	Best Model	Direct Method	Best Model	${f Direct} {f Method}$	Best Model
$n_e \ (cm^{-3})$	113 ± 120	100	<100	100	1000*	1000
Г [О III] (K)	17046 ± 2925	14790		13994	20897 ± 931	18725
Г [О II] (K)	14932 ± 2048	13889		12402	17628 ± 651	17528

 Table 1. Physical conditions

*Assumed density.

Figure 1. Calibrated spectra of H II region West (left) and H II region East (right).

2. Observations

The spectra of the two H II regions in Leo A were obtained with the OSIRIS spectrograph in long slit mode, attached to GTC 10-m telescope, and the R1000B grism. Coordinates for H II regions are: $\alpha = 09:59:17.2$; $\delta = +30:44:07$ (J2000) for H II region West (H II W), and $\alpha = 09:59:24.5$; $\delta = +30:44:59$ (J2000) for H II region East (H II E). The total exposure time was of 3.75 hrs. The data reduction was performed with IRAF standard procedures. **Reduced spectra of both H II regions are presented in Figure 1**. The [O III] auroral line $\lambda 4363$ was only detected in H II W.

3. Physical conditions and abundances

PyNeb v1.1.1 (Luridiana *et al.* 2015) was used to derive the physical conditions, ionic and total abundances of the H II regions and the PN: electronic density n_e was derived from the [S II] $\lambda\lambda 6731/6716$ lines ratio and T_e was derived from the [O III] $\lambda\lambda(5007+4959)/4363$ lines ratio (T[O III]). The [O III] line $\lambda 4363$ was not detected in H II E, thus it was not possible to determine its T_e and its abundances from the direct method. Physical conditions of the three nebulae are presented in Table 1.

Ionic abundances of O^+ , N^+ , S^+ , O^{+2} , Ne^{+2} and Ar^{+2} were derived assuming a twotemperature zones model, where T[O III] is the temperature of the high-ionization zone, while the low ionization zone temperature, T[O II], was derived from Campbell *et al.* (1986) relation. Total abundances of O, N, S, Ne and Ar were obtained by adding the ionic abundances and the respective ICFs from literature for each element. O and N total abundances were also calculated using the ONS method (Pilyugin *et al.* 2010). Results are presented in Table 2.

4. Photoionization models

For the three nebulae, we constructed simple photoionization models using CLOUDY v.17 (Ferland *et al.* 2017) aiming to reproduce the observed parameters and estimate the

	H II West			H II East	\mathbf{PN}	
	Direct method	ONS Method	Best Model	Best Model	Direct method	Best Model
$12 + \log(He/H)$	10.98 ± 0.06		11.00	11.00	10.97 ± 0.04	11.00
$12 + \log(O/H)$	7.39 ± 0.10	7.40 ± 0.15	7.55	7.40	7.34 ± 0.02	7.45
$12 + \log(N/H)$	5.74 ± 0.09	5.58 ± 0.21	5.80	5.80		7.00
$\log(S/O)$	-1.19 ± 0.04		-1.40	-1.70		-1.70
$\log(Ne/O)$			-0.80	-0.80	-0.77 ± 0.01	-0.70
$\log(\mathrm{Ar}/\mathrm{O})$			-2.10	-2.10	-2.65 ± 0.12	-2.60
T_{eff} (K)			35600	28000		125000
$\log(g)$			3.9	4.0		7.0
$\log(Q(H^0))$			48.8	48.0		48.0

Table 2. Total abundances and input parameters for the photoionization models.

objects abundances. Stellar atmosphere grids were used to simulate the ionizing source (central star) of each object: the Tlusty OB stars Atlas by Lanz & Hubeny (2003, 2007) for the H II regions and the Rauch (2003) grid for the PN. Input parameters for the models were:

• For the gas: n_e , inner radius (r_{in}) and abundances of He, C, N, O, Ne and Ar.

• For the central star: effective temperature (T_{eff}) , surface gravity (g) and ionizing photons rate $(Q(H^0))$.

Input parameters and results of photoinization models are presented in Table 2.

5. Conclusions

In this work, we were able to determine O, N and S total abundances in the highest excited H II region of Leo A (H II W) and O, Ne, Ar in the PN using the direct method; we also estimated the abundances of the three regions by constructing photoionization models. Observational results and models show that the three regions have similar metallicities $12+\log(O/H) \sim 7.4 \pm 0.2$ (Table 2). This results confirm that Leo A is a very low metallicity galaxy in the Local Group. The models also show that the ionizing stars of the H II regions have effective temperatures $T_{eff} \sim 35\ 600\ K\ (O8V\ star)$ and 28 000 K (B0V star), for H II W and H II E respectively; for the PN its central star has a $T_{eff} \sim 125\ 000\ K$ and $\log(g) = 7.0$. Leo A is a very low-mass galaxy producing high-mass stars of about 25 M_{\odot} .

Acknowledgement

This work has received financial support from grant UNAM-PAPIIT IN103117.

References

Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, Rev. Mexicana AyA, 53, 385
Hernández-Martínez, L., Peña, M., Carigi, L., & García-Rojas, J. 2009, A&A, 505, 1027
Lanz, T., & Hubeny, I. 2003, ApJS, 146, 417
Lanz, T., & Hubeny, I. 2007, ApJS, 169, 83
Luridiana, V., Morisset, C., & Shaw, R. A. 2015, A&A, 573, A42
McConnachie, A. W. 2012, AJ, 144, 4
Pilyugin, L. S., Vílchez, J. M., & Thuan, T. X. 2010, MNRAS, 720, 1738
Rauch, T. 2003, A&A, 403, 709
Ruiz-Escobedo, F., Peña, M., Hernández-Martínez, L., & García-Rojas, J. 2018, MNRAS, 481, 396
van Zee, L., Skillman, E. D., & Haynes, M. P. 2006, ApJ, 637, 269