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immobilized
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At high surface Péclet numbers, it is common to associate the presence of surfactants with
surface immobilization, where a free surface becomes indistinguishable from a no-slip
surface. A different mechanism has recently been proposed for longitudinal shear flow
along a unidirectional trench (Baier & Hardt, J. Fluid Mech., vol. 949, 2022, A34) wherein,
at high Marangoni numbers, the meniscus spanning the finite-length trench becomes
a constant-shear-stress surface due to contamination by incompressible surfactant. That
model predicts recirculating interfacial flows on the meniscus, a phenomenon that has been
observed experimentally (Song et al., Phys. Rev. Fluids, vol. 3, issue 3, 2018, 033303).
By finding an explicit solution to the constant-shear-stress model at all protrusion angles
and calculating the effective slip length for a dilute mattress of such surfactant-laden
trenches, we show that those effective slip lengths are almost indistinguishable from
those for a surface whose menisci have the same deflection but have been completely
immobilized (i.e. they are no-slip surfaces). This means that, despite the presence of
non-trivial recirculating vortical flows on the menisci, the aggregate slip characteristics
of such surfaces are that they have been effectively immobilized. This surprising result
underscores the need for caution in comparing theory with experiments based on effective
slip properties alone.

Key words: drag reduction, microfluidics, Marangoni convection

1. Introduction

Surface engineering using superhydrophobicity is of significant current interest because
of its potential for drag reduction and self-cleaning functionality (Rothstein 2010; Lee,
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Choi & Kim 2016). Enhanced slip over these surfaces is caused by the presence of menisci
spanning interstitial microstructural grooves or asperities on such surfaces and enclosing
gas pockets in the so-called Cassie state. These menisci allow slip and replace an otherwise
no-slip zone over which the viscous drag would be larger.

There is growing evidence that these attractive slip properties can be compromised, not
only by failure of the Cassie state, but also by the presence of surfactants. Bolognesi,
Cottin-Bizonne & Pirat (2014) used effective slip quantification and imaging of the
meniscus shape to argue that superhydrophobic surfaces where the menisci are assumed
to be largely free of shear have characteristics suggesting that they are, in fact, closer to
being no-slip surfaces. Crowdy (2017) confirmed quantitatively that the data of Bolognesi
et al. (2014) are indeed more consistent with immobilization of the menisci, wherein the
menisci are taken to be no-slip rather than no-shear. This was done by producing explicit
formulae, as a function of downward protrusion angle, groove width and surface pitch, for
the effective slip length assuming the menisci are no-slip. Those new formulae were then
compared, in both the transverse and longitudinal flow scenarios, with the slip predictions
from existing formulae in the literature that take those same menisci to be shear-free
(Crowdy 2017).

Crowdy (2017) simply took the surfaces to be no-slip, without specifying any
physical reason for it. Bolognesi et al. (2014), who focused on the longitudinal flow
scenario, suggested that surface immobilization might be due to the presence of surface
contaminants. With the transverse flow setting in mind, Peaudecerf et al. (2017) have since
argued that even trace amounts of surfactants can lead to effective immobilization of a
superhydrophobic surface. Models for the slip and drag over such surfaces in the presence
of surfactants have since emerged (Landel et al. 2020). Mayer & Crowdy (2022) have
carried out a numerical study of the immobilization of superhydrophobic surfaces due
to the presence of an insoluble surfactant satisfying a nonlinear Langmuir equation of
state. Their calculations, which focused on the transverse flow scenario, show that the
menisci indeed become immobilized, although the precise cause of it, and the extent of
the immobilized meniscus portion, is a delicate function of the surface advection, surface
diffusion and surfactant concentration, as well as its intrinsic physical properties.

Baier & Hardt (2022) have, however, recently put forward another mechanism by which
surfactants can affect a meniscus in the longitudinal flow scenario. They studied the case
of a single groove, or trench, of large but finite length spanned by a meniscus contaminated
by incompressible surfactant. A model of the flow away from the ends of the trench was
produced that is argued to be valid at large Marangoni numbers. The resulting model leads
to the result that, in this surfactant-contaminated setting, the meniscus is not a no-slip
surface but a surface with constant shear stress determined by the fact that the meniscus is
of finite length and the surfactant is incompressible. A prediction of this model is that,
at least for the small protrusion angles studied by Baier & Hardt (2022), the surface
velocities on the meniscus are not zero but, in fact, comprise regions of forward and back
flow relative to the main flow direction in the bulk. We refer to these as ‘recirculating
flows’ since, when observed from above, they will resemble the surface vortices observed
experimentally by Song et al. (2018). Baier & Hardt (2022) point out that the implications
of such an effect for hydrodynamic slip are important and remain to be worked out.

That is the subject of the present paper. The interest here is in how the effective slip
associated with this constant-shear-stress model differs from one that takes the menisci to
be fully immobilized no-slip zones. It is usual to quantify slip for longitudinal shear flow
parallel to a periodic array of grooves of infinite length using the hydrodynamic slip length.
This is defined to be the quantity λ, with the dimensions of length, such that, as y → ∞,
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Figure 1. (a) A single trench with a surfactant-contaminated protruding meniscus. (b) The non-dimensional
boundary value problem for the longitudinal velocity away from the ends of the trench.

the axial flow (0, 0, w(x, y)) parallel to the grooves in an (x, y, Z) plane has the far-field
behaviour w(x, y) → γ̇ ( y + λ), where γ̇ is the shear rate. An explicit formula for this slip
length in this geometry was found by Crowdy (2010) when the menisci are assumed to be
shear-free and the grooves well spaced relative to their width; this is the ‘dilute limit’ when
the no-shear fraction is small. An important feature of the analysis in Crowdy (2010) is that
the formulae are valid for any protrusion angle of the meniscus. This is a significant point
of departure from prior work, where the effect on slip of meniscus curvature was limited
to the small-curvature scenario, as in an early important study by Sbragaglia & Prosperetti
(2007). Indeed, after deriving their model, Baier & Hardt (2022) find solutions to it under
the same small-protrusion-angle assumption as used by Sbragaglia & Prosperetti (2007).

In general conditions, where there is a significant overpressure in the working fluid,
there is no reason for this protrusion angle to be small; moreover, even in steady-state
flow conditions, this angle must be expected to evolve axially along the flow direction.
Indeed, for the different, but closely related, problem of liquid-infused surfaces where
the grooves contain a fluid of higher viscosity than the working fluid, the evolution of
the protrusion angle of the interface between the two fluids is the important quantity to
monitor in order to assess so-called ‘shear-driven failure’ (Wexler, Jacobi & Stone 2015).
Lifting any restriction to small protrusion angles on the solutions of the model of Baier &
Hardt (2022) is therefore important in extending its range of applicability.

This paper shows that it is possible to find an explicit solution to the single-trench model
of Baier & Hardt (2022) for any protrusion angle θ of the meniscus defined in figure 1(b).
This new solution is then used to find a formula, as a function of θ , for the hydrodynamic
slip length for longitudinal flow over a dilute periodic array of such trenches, following in
the spirit of the clean-flow study of Crowdy (2010). When the menisci are free of shear, of
width 2c, Crowdy (2010) found the dilute slip length formula

λ
(no shear)
||

c
= πδ

(
3π2 − 4πθ + 2θ2

12(π − θ)2

)
, δ = c

L
. (1.1a,b)

The first new result of this paper is to show that a simple generalization of the analysis
of Crowdy (2010) gives the dilute slip length when the menisci are no-slip surfaces to be

λ
(no slip)
||

c
= πδ

(
θ(θ − 2π)

6(π − θ)2

)
. (1.2)
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A second result is to show that, for the constant-shear-stress menisci of Baier & Hardt
(2022), modelling the effect of surfactants, the dilute slip length is

λ
surf
||
c

= πδ

[
3π2 − 4πθ + 2θ2

12(π − θ)2 − C(θ) cosec θ −
∫ ∞

−∞
(1 − coth πk tanh(π − θ)k) dk

]
,

(1.3)

where C(θ), which corresponds to the constant meniscus shear stress value, is determined
to be

C(θ) =
(1 − θ cot θ) + π −

∫ ∞

−∞
e(π−θ)k sinh θk

sinh πk
(coth πk − tanh(π − θ)k) dk

π −
∫ ∞

−∞
e(π−θ)k sinh θk

sinh πk
1
k
(1 − coth πk tanh(π − θ)k) dk

. (1.4)

Given these explicit formulae, valid in the dilute limit for any protrusion angle, it is
then straightforward to compare the slip associated with the different models across the
range of flow conditions. Significantly, we find that the slip lengths given by the very
different formulae (1.2) and (1.3), and having very different physical origins, are virtually
indistinguishable across all protrusion angles. The implications of this result are discussed
later.

2. Mathematical formulation

Consider simple shear flow of a Newtonian fluid with viscosity μ in the Z∗ direction in
an (x∗, y∗, Z∗) plane and having shear rate γ̇ . The fluid occupies the upper half y∗ plane
exterior to a single meniscus, extending infinitely in the Z∗ direction, and protruding with
angle θ into the fluid. Outside this meniscus, the rest of the plane y∗ = 0 is a no-slip
surface. As for the meniscus itself, this paper examines three different possibilities and
compares the effective slip lengths associated with dilute arrays, or ‘mattresses’, of such
menisci.

In the model of Baier & Hardt (2022), the vapour–fluid interface supports insoluble
incompressible surfactant in a high-Marangoni-number and low-Boussinesq-number
regime (Manikantan & Squires 2020), and essentially reduces to the situation where
the meniscus supports a constant, generally non-zero, shear stress. Following Baier &
Hardt (2022), it is assumed that c � b, so that fully developed flow in the groove can be
considered, ignoring groove end effects. It is therefore enough to consider a cross-sectional
(x∗, y∗) plane that is far enough from the ends of the groove that the flow is well
approximated by a unidirectional flow in the Z∗ direction, with velocity (0, 0, w∗); see
figure 1.

Let L∗ denote the no-slip boundary,
L∗ = {(x∗, y∗) : x∗ ∈ (−∞, −c] ∪ [c, ∞), y∗ = 0}, (2.1)

and let M∗ be the meniscus, forming a circular arc connecting (±c, 0) with protrusion
angle θ into the fluid, i.e.

M∗ =
{
(x∗, y∗) = c cosec θ (cos φ, sin φ − cos θ) : φ ∈

(π

2
− θ,

π

2
+ θ

)}
. (2.2)

Mass conservation for the surfactant along M∗, and far-field shear flow, give rise to the
conditions (Baier & Hardt 2022)

w∗ = 0 on L∗,
∫
M∗

w∗ ds = 0,
∂w∗

∂y∗ → γ̇ as y∗ → ∞. (2.3a–c)
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Dimensionless (unstarred) variables are introduced according to (x∗, y∗, Z∗) = c(x, y, Z),
w∗ = cγ̇ w and n∗ = cn. The dimensionless model put forward by Baier & Hardt (2022)
is then

∇2w = 0 in D, (2.4)

with boundary conditions

w = 0 on L,
∂w
∂n

= C on M,
∂w
∂y

= 1 as y → ∞, (2.5a–c)

where n is the fluid inward normal to M, and the constant C is determined by the condition∫
M

w ds = 0. (2.6)

This last condition describes conservation of surfactant contaminating the meniscus,
forced by its incompressible nature combined with the fact that the trenches are of finite
length. Readers are referred to Baier & Hardt (2022) where this model is described in
more detail, and where approximate solutions to it are found for small θ � 1 using a
perturbation method. The present paper finds an explicit solution to this model for all θ .

Crowdy (2010) found the solution for the flow over a single meniscus in simple shear
when the meniscus is taken to be shear-free; he used it to produce formulae (1.1a,b) for
the slip length in the dilute limit. (Using a matching procedure, Crowdy (2016) later found
higher-order approximations in the no-shear fraction, but these will not be used here.)
On the other hand, if the menisci are taken to be no-slip surfaces, it turns out that the
single-groove problem in this case can be solved by a simple generalization of the analysis
of Crowdy (2010). Crowdy’s analysis of the shear-free case uses a conformal mapping
from an upper half-unit disc in a complex ζ plane to the fluid region in a complex
z = x + iy plane and, in terms of that variable viewed as a function of z, i.e. ζ = ζ(z),
Crowdy (2010) derives the following expression for the axial fluid velocity w(x, y) in the
Z direction:

w(x, y) = Im
[
− πc

2(π − θ)

(
1

ζ(z)
− ζ(z)

)]
. (2.7)

That same mapping can be repurposed when the meniscus is taken to be a no-slip
surface; the only modification is a switch in sign of one of the terms in the analytic function
appearing in (2.7), so that the velocity now becomes

w(x, y) = Im
[
− πc

2(π − θ)

(
1

ζ(z)
+ ζ(z)

)]
. (2.8)

With this simple change, it is easy to check that the meniscus is now a no-slip zone. Now,
the same steps as taken by Crowdy (2010) to calculate (1.1a,b) lead to the dilute-limit slip
length formula (1.2) for no-slip menisci.

3. Complex variable formulation

The boundary value problem (2.4)–(2.6) can be solved by adapting the conformal mapping
methods of Crowdy (2010), but here we present a different transform approach. Let

w(z, z̄) = Im[z + f (z)], (3.1)
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where f (z) is an analytic function in the fluid, decaying in the far field, satisfying

Im[ f (z)] = 0 on L,
∂

∂n
Im[z + f (z)] = C on M. (3.2a,b)

Simple geometrical arguments reveal that the meniscus lies on a circle of radius r =
cosec θ centred at complex location z0 = −i cot θ . With s denoting arclength along the
meniscus (increasing with fluid to the left), the Cauchy–Riemann equations imply that,
on M,

∂

∂n
Im[z + f (z)] = ∂

∂s
Re[z + f (z)] = C. (3.3)

On integration on M, using ds = −r dφ, where φ = arg[z − z0] = −Re[i log(z − z0)],
one obtains

Re[z + f (z)] = −Crφ + c0 = Cr Re[i log(z − z0)] + c0

= C cosec θ Re
[
i log(cot θ − iz)

]
, (3.4)

where a convenient choice of the integration constant c0 has been made. The challenge
now is to find f (z), with Im[ f (z)] → 0 as y → ∞, satisfying

Im[ f (z)] = 0 on L, Re[ f (z)] = −Re[z] + C cosec θ Re[i log(cot θ − iz)] on M.

(3.5a,b)
Now introduce

z = Z(η) = tanh
η

2
, η = Z−1(z) = log

1 + z
1 − z

, (3.6a,b)

which are conformal mappings between D and a horizontal strip domain in a complex η

plane. The point at infinity in the z plane is mapped to η = iπ in the η plane; the edge
points z = ±1 are transplanted to the two ends of the infinite strip in the η plane. The
boundaries L and M correspond to infinite horizontal lines in the η plane:

M 	→ Γ := {η : Im[η] = θ}, L 	→ Σ := {η : Im[η] = π}. (3.7a,b)

Now define the composed function H(η) := f (Z(η)) which, by composition of analytic
functions, is an analytic function of η in the strip image of D. The boundary conditions are

H(η) − H(η) = 0 on Σ, (3.8)

1
2

(
H(η) + H(η)

)
= −Re

[
tanh

η

2

]
+ C cosec θ Re

[
i log

(
cot θ − i tanh

η

2

)]
on Γ.

(3.9)

Finding H(η) is now possible by modifying a transform method in a strip used by Crowdy
& Davis (2013) and Crowdy & Brzezicki (2017) in different contexts. First, introduce the
transform functions of a complex variable k:

ρ1(k) =
∫ ∞+iθ

−∞+iθ
H(η)e−ikη dη, ρ2(k) = −

∫ ∞+iπ

−∞+iπ
H(η)e−ikη dη. (3.10a,b)

These two functions depend on θ , but this dependence is suppressed in our notation.
Relations between these functions can be obtained by multiplying the boundary conditions
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(3.7a,b) and (3.9) by e−ikη and integrating along the respective boundaries:

ρ2(k) − e2kπρ2(−k) = 0,

1
2

(
ρ1(k) + e2kθρ1(−k)

)
= πi

sinh πk
(1 + e2kθ ) + C cosec θ

πi
k sinh πk

(1 − e2kθ ).

⎫⎬
⎭
(3.11)

There is a so-called ‘global relation’ (Crowdy & Davis 2013; Crowdy & Brzezicki 2017)
relating these functions: ρ1(k) = −ρ2(k) := ρ(k) for k ∈ R. Combining this with the
boundary conditions (3.11) allows, after some algebra, for ρ(k) to be found explicitly as

ρ(k) = 2πieπk
(

coth πk − tanh(π − θ)k − C cosec θ

k
(1 − coth πk tanh(π − θ)k)

)
.

(3.12)

The inverse transform is furnished (Crowdy & Davis 2013; Crowdy & Brzezicki 2017) by

H(η) = 1
2π

−
∫ ∞

−∞
ρ(k)eikη dk, (3.13)

where −
∫

denotes a principal value integral.
Consequently, an explicit solution for the flow is

w(z, z̄) = Im
[

z + 1
2π

−
∫ ∞

−∞
ρ(k)eikη(z) dk

]
= w0(z, z̄) − C cosec θ w1(z, z̄), (3.14)

where

w0(z, z̄) = Im

[
− 2π

π − θ

(z2 − 1)π/(2(π−θ))

(z − 1)π/(π−θ) − (z + 1)π/(π−θ)

]
, (3.15)

w1(z, z̄) = Im

[
−
∫ ∞

−∞

(
1 + z
1 − z

)ik ieπk

k
(1 − coth πk tanh(π − θ)k) dk

]
, (3.16)

with w0(z, z̄), whose inverse transform can be found analytically, retrieving the
zero-shear-stress result (1.1a,b) of Crowdy (2010). Condition (2.6) now gives C as a
function of θ as

C = C(θ) = sin θ

∫
M

w0(z, z̄) ds∫
M

w1(z, z̄) ds
, (3.17)

which, after evaluation of the integrals, yields the earlier reported (1.4). For θ � 1, this
formula reproduces C as found by Baier & Hardt (2022), as shown in figure 2.

Figure 3 depicts the contours of constant axial velocity for these solutions for a range of
protrusion angles (by symmetry, only plotting half of the physical domain). These match
with the plots given by Baier & Hardt (2022) but extend them to menisci with larger
protrusion angles. Similarly, figure 4(a) replicates their results for the velocity along the
meniscus for small protrusion angles, with figure 4(b) extending these to larger angles. The
flow reversal on the meniscus, which is necessary to maintain conservation of surfactant,
manifests differently for menisci that protrude into or out of the flow: that is, with flow
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Figure 2. Graph of C(θ) against θ . The dashed line shows the small-angle results of Baier & Hardt (2022).

0.6 1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0

–0.2

–0.4

–0.6

0

–0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0.2 0.4 0.6 0.8 1.0 1.2

0.5

0.4

0.3

0.2

0.1

0
0.6

0.5

0.4

0.3

0.2

0.1

0

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1
0 0.2 0.4 0.6 0.8 1.0 1.2

0.2 0.4 0.6 0.8 1.0 1.2

0.2 0.4 0.6 0.8 1.0 1.2

x x

y

y

y

(b)

(e)

(a) (d)

(c)

Figure 3. Velocity contours for (a) θ = 0.2, (b) θ = 0.6, (c) θ = −0.2, (d) θ = 1.2 and (e) θ = −1.2.
Panels (a)–(c) retrieve figures 3(a), 3(c) and 3(d), respectively, of Baier & Hardt (2022). The dotted contour
corresponds to w = 0.
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Figure 4. Velocity along the meniscus, w|M, plotted against x. Panel (a) replicates figure 4(a) in Baier &
Hardt (2022), while panel (b) extends this to menisci with larger protrusion angles. Note that the graphs are
multivalued for θ > π/2, as the meniscus ‘bulges’ so much that it hangs over the adjacent edge of the no-slip
surface.

reversing at the tips of the meniscus in the former case, and at the centre of the meniscus
in the latter. Figure 4 adds to this understanding, illustrating that, for larger protrusion
angles, a smaller proportion of the meniscus experiences flow reversal near the meniscus
edges.

4. Hydrodynamic slip length

Given this explicit solution, its far-field behaviour, and consequently the effective slip
length, can be extracted. Note that

w(z, z̄) ∼ Im
[

z + Λ(θ)

z
+ O

(
1
z2

)]
as y → ∞, (4.1)

where

Λ(θ) = i
π

−
∫ ∞

−∞
ke−πkρ(k) dk, (4.2)

which is a real function of θ . Consider the single groove depicted in figure 1 now repeated
periodically with period 2L in the x direction and let δ = c/L; this is the meniscus fraction
per period. For δ � 1 (Crowdy 2010, 2016) the flow is well approximated as a linear
superposition of the effect of each groove, namely,

ŵ(z, z̄) ∼ Im

[
z + Λ

∞∑
n=−∞

1
z − 2n/δ

+ O
(

1
z2

)]
. (4.3)

Referring to the identity
∞∑

n=−∞

1
z − 2n/δ

= δπ

2
cot

δπz
2

→ − iδπ
2

as y → ∞, (4.4)

and returning to dimensional variables, we infer

ŵ∗(x∗, y∗) ∼ γ̇

(
y∗ − c2Λ(θ)π

2L

)
as y∗ → ∞, (4.5)

leading to the slip length formula (1.3).
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Figure 5. Normalized effective slip length, λ/(δc), as a function of θ assuming no-shear menisci following
Crowdy (2010), no-slip menisci and constant-shear-stress menisci. The last two remain close across the range
of protrusion angles.

Figure 5 is the most important graph of this paper. It shows that both the no-slip
model and the constant-shear-stress model dramatically compromise slip compared to
the shear-free result of Crowdy (2010). But it also shows that the effective slip lengths
associated with the former two very distinct models are virtually indistinguishable across
the whole range of protrusion angles, i.e. across all operating conditions. Intuitively, the
separate regions of forward and reverse recirculating flow on the meniscus forced by the
incompressibility condition (2.6) cause flows in the bulk that ‘average out’ in the far field to
produce an effective slip length close to that where the meniscus is completely immobile.
A practical ramification of this observation is that, for the constant-shear-stress model,
the much simpler formula (1.2) can be used as a good approximation in lieu of the more
complicated (but still explicit) result (1.3). It is also known (Kirk 2018) that the slip lengths
associated with semi-infinite shear flow provide excellent estimates of the effective slip in
channel flows, rendering the new formulae of this paper of broader significance. Finally,
in principle, the same transform methods used above are likely to produce higher-order
formulae in δ in the spirit of Crowdy (2016), but these corrections are not expected to
affect the trend of the observations just made in the dilute limit.

Lee et al. (2016) have commented that ‘the widely inconsistent quantitative results in
the literature have led to some fundamental misunderstandings and false anticipations’,
and the results of this paper underscore the need for caution in interpreting experimental
data, especially when measuring effective slip and comparing to theoretical models
(Manikantan & Squires 2020). It has been demonstrated here, using exact solutions of
two distinct theoretical models, that the effective slip lengths associated with longitudinal
flow over a dilute mattress of trenches assuming fully immobilized menisci are almost
identical to the slip lengths if those menisci are, in fact, mobile constant-shear-stress
surfaces exhibiting non-trivial recirculating flow patterns caused by mass conservation
of contaminating surfactants.
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