84

On an Asymptotic Expansion of the Hypergeometric Function.

By Dr T. M. MACROBERT.

(Read and Received 7th December 1923.)

In a previous paper* the author has employed the expansion

where

$$T_{r} = \frac{\alpha(\alpha+1)\dots(\dot{\alpha}+r-2)\beta(\beta+1)\dots(\beta+r-2)}{(r-1)!\gamma(\gamma+1)\dots(\gamma+r-2)}z^{r-1},$$

$$P_{s} = \frac{1}{B(\beta+s,\gamma-\beta)}T_{s+1}\int_{0}^{1}s(1-t)^{s-1}Idt,$$

$$I = \int_{0}^{1}\zeta^{\beta+s-1}(1-\zeta)^{\gamma-\beta-1}(1-\zeta tz)^{-\alpha-s}d\zeta,$$

and †

to establish the theorem that, if $-\pi/2 < amp \gamma < \pi/2$, the function P_s/T_{s+1} remains finite as $\gamma \rightarrow \infty$. This theorem is valid provided that z is not real and ≥ 1 .

It will now be shown that the theorem is true for a more extended range of values of $amp \gamma$.

In the integral I put $\zeta = 1 - e^{-\lambda \ddagger}$; then

$$I = \int_0^\infty (1 - e^{-\lambda})^{\beta + s - 1} e^{-\lambda(\gamma - \beta)} \{1 - tz(1 - e^{-\lambda})\}^{-\alpha - s} d\lambda, \dots \dots (2)$$

the path of integration being the real axis from 0 to ∞ . This path may now be deformed into that straight line from the origin to infinity which makes an acute angle $-\phi$ with the positive real axis, and the integral is still convergent provided that, on the path of integration, $1 - tz(1 - e^{-\lambda}) \neq 0$, and provided that

$$-\pi/2 < amp(\lambda\gamma) < \pi/2.$$

* Proc. Edin. Math. Soc., Vol. XLI., pp. 82-92.

⁺ $R(\gamma)$ and s are taken so large that $R(\gamma - \beta) > 0$ and $R(\beta + s) > 0$.

[‡] Cf. G. N. Watson, Trans. Camb. Phil. Soc., Vol. 22, 1918, p. 299.

Since amp $\lambda = -\phi$ the latter inequality may be written

$$-\pi/2 + \phi < \operatorname{amp} \gamma < \pi/2 + \phi$$

and, by reversing the transformation $\zeta = 1 - e^{-\lambda}$, it can be made clear that the first condition may be replaced by the proviso that $1 - tz\zeta$ must not vanish at any point on the contour in the ζ -plane which corresponds to the path of integration in the λ -plane.

To determine this contour put $\lambda = \mu(1 - it)$, where μ is real and $t = tan\phi$; then

$$\zeta = \xi + i\eta = 1 - e^{-\lambda} = 1 - e^{-\mu + i\mu t},$$

so that

$$\xi = 1 - e^{-\mu} \cos \mu t, \ \eta = -e^{-\mu} \sin \mu t.$$

Hence, if (r, θ) are the polar coordinates of the point (ξ, η) referred to axes parallel to the ξ and η axes and passing through the point (1, 0) in the ζ -plane

$$r = e^{-\mu}, \tan \theta = \tan \mu t,$$

and the contour is an equiangular spiral (see Fig.) whose equation may be written

where $\theta = -\pi$ and r = 1 when $\mu = 0$, $\lambda = 0$, $\zeta = 0$; at this point $\frac{d\zeta}{d\lambda} = 1$, so that the contour makes an angle $-\phi$ with the ξ -axis, and the path is described from $\zeta = 0$ in the direction indicated by the arrow.

It can easily be shown that the entire contour of integration lies between the lines $amp\zeta = \pm \phi$. Now $1 - tz\zeta$ must not vanish for any point ζ on this contour. But, since $0 \le t \le 1$, the values of z which satisfy $z = 1/(t\zeta)$ will lie in the region to the right of the η -axis which is bounded by the lines $amp\zeta = \pm \phi$. Also the hypergeometric expansion is valid within the unit circle; hence the expansion (1) is valid for

$$-\pi/2 + \phi < \operatorname{amp} \gamma < \pi/2 + \phi$$

at all points external to a region B which is bounded by the lines $amp\zeta = \pm \phi$ and the circle $|\zeta| = 1$.

But if z is any interior point of the region A consisting of the entire complex plane bounded by a cross-cut along the positive real axis from +1 to $+\infty$, ϕ can be chosen so small (< | amp z |) that z does not lie in B. Hence for any interior point of A a ϕ can be found such that the expansion defined by (1) and (2) is valid for $-\pi/2 + \phi < amp \gamma < \pi/2 + \phi$.

It remains to prove that the theorem is true under these conditions. Now, for points on the path of integration in the λ -plane

$$|1-e^{-\lambda}| = \sqrt{(1-2e^{-\mu}\cos\mu t + e^{-2\mu})} = \sqrt{\{(1-e^{-\mu})^2 + 2e^{-\mu}(1-\cos\mu t)\}} = (1-e^{-\mu})\sqrt{\{1+\left(\frac{\sin\frac{1}{2}\mu t}{\sinh\frac{1}{2}\mu}\right)^2\}} < C(1-e^{-\mu}),$$

where C is a definite positive constant $(|\phi| < \pi/2)$. Also, let $\gamma = ge^{i\phi}$, so that $-\pi/2 < amp \ g < \pi/2$, and note that $\lambda = \mu \sec \phi e^{-i\phi}$. Then, if $\beta - \sigma + i\tau$ and g = l + im,

$$R\{\lambda(\gamma-\beta)\}=\mu(l\sec\phi-\sigma-\tau\tan\phi).$$

Accordingly, for any point z within the region A,

$$|I| < K \int_0^\infty (1 - e^{-\mu})^{\sigma+s-1} e^{-\mu (l \sec \phi - \sigma - \tau \tan \phi)} d\mu,$$

where K is a definite constant. Here put $\xi = 1 - e^{-\mu}$ and get

$$|I| < K \int_0^1 \xi^{\sigma+s-1} (1-\xi)^{l \sec \phi - \sigma - \tau \tan \phi - 1} d\xi$$

= KB(\sigma + s, l \sec \phi - \sigma - \tau \phi):

 \mathbf{thus}

$$\left|\frac{P_{i}}{T_{i+1}}\right| < K \frac{B(\sigma+s, l \sec \phi - \sigma - \tau \tan \phi)}{|B(\beta+s, \gamma-\beta)|}$$

$$\Gamma(\sigma+s) = \frac{\Gamma(l \sec \phi - \sigma - \tau \tan \phi)}{|\Gamma(\gamma+s)|} + \frac{\Gamma(\gamma+s)}{|\Gamma(\gamma+s)|}$$

$$=K\frac{\Gamma(\sigma+s)}{\mid \Gamma(\beta+s)\mid} \frac{\Gamma(l\sec\phi-\sigma-\tau\tan\phi)}{\Gamma(l\sec\phi-\tau\tan\phi+s)} \left|\frac{\Gamma(\gamma+s)}{\Gamma(\gamma-\beta)}\right|,$$

and when $\gamma \rightarrow \infty$, $l \rightarrow \infty$, and

$$\left|\frac{P_{\bullet}}{T_{\bullet+1}}\right| < K \frac{\Gamma(\sigma+s)}{|\Gamma(\beta+s)|} \frac{|\gamma^{\beta+s}|}{(l \sec \phi)^{\sigma+s}} = K \frac{\Gamma(\sigma+s)}{|\Gamma(\beta+s)|} \left(\frac{|\gamma|}{l \sec \phi}\right)^{\sigma+s} e^{-\chi\tau},$$

where $amp \gamma = \chi$. But $|\gamma| / l$ is finite; hence the theorem holds.

Similarly the theorem can be shown to hold for the region $-\pi/2 - \phi < amp \gamma < \pi/2 - \phi$; thus it holds for the entire region

$$-\pi/2 - \phi < \operatorname{amp} \gamma < \pi/2 + \phi.$$

The Asymptotic Expansion of $P_n^m(z)$. It follows that, for any interior point z of the region in which the asymptotic expansion of $P_n^m(z)$ for n large is valid, a ϕ can be found such that the asymptotic expansion holds for $-\pi/2 - \phi < amp \, n < \pi/2 + \phi$. Hence, as $P_{-n-1}^m(z) = P_n^m(z)$, the function possesses an asymptotic expansion for any value of $amp \, n$.

By means of the formula

$$Q_n^m(z) = Q_{-n-1}^m(z) + \frac{\pi e^{m\pi i} \cos n\pi}{\sin (n-m)\pi} \frac{\prod (n+m)}{\prod (n-m)} P_{-n-1}^{-m}(z)$$

a similar result can be obtained for the function $Q_n^m(z)$.