SET COVERING NUMBER FOR A FINITE SET

H.-C. Chang and N. Prabhu

Abstract

Given a finite set S of cardinality N, the minimum number of j-subsets of S needed to cover all the r-subsets of S is called the covering number $C(N, j, r)$. While Erdös and Hanani's conjecture that $\lim _{N \rightarrow \infty}(C(N, j, r)) /\left(\binom{N}{r} /\binom{j}{r}\right)=1$ was proved by Rödl, no nontrivial upper bound for $C(N, j, r)$ was known for finite N. In this note we obtain a nontrivial upper bound by showing that for finite N, $C(N, j, r) \leqslant\left(\binom{N}{r} /\binom{j}{r}\right) \ln \binom{N}{r}$.

Let S be a set with N elements. If J_{1}, \ldots, J_{k} are j-subsets of S, (that is, subsets of S of cardinality j) then $\mathcal{J}=\left\{J_{1}, \ldots, J_{k}\right\}$ is called a k-collection of j-subset of S. Further, the k-collection \mathcal{J} is said to cover all the r-subsets of S, if for every r-subset R of S, there is some $J_{i} \in \mathcal{J}, 1 \leqslant i \leqslant k$, such that $R \subset J_{i}$. The set covering number $C(N, j, r), j>r$, is the smallest integer k such that some k-collection of j-subsets of S covers all the r-subsets of S. Clearly

$$
C(N, j, r) \geqslant \frac{\binom{N}{r}}{\binom{j}{r}}
$$

and in 1963, Erdös and Hanani [1] conjectured that

$$
\lim _{N \rightarrow \infty} \frac{C(N, j, r)}{\binom{N}{r} /\binom{j}{r}}=1
$$

Erdös and Hanani's conjecture was proved by Rödl [2] in 1985. However, for finite N a nontrivial upper bound for $C(N, j, r)$ was not known. In this note, using probabilistic arguments we obtain a nontrivial upper bound for $C(N, j, r)$ by proving:

Received 1 June 1995
Supported in part by NSF Research Initiation Award
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

Theorem 1. For $N \geqslant j>r$,

$$
C(N, j, r) \leqslant \frac{\binom{N}{r}}{\binom{j}{r}} \ln \binom{N}{r}
$$

Proof: Let S be a finite set of cardinality N. Let $\mathcal{J}=\left\{J_{1}, \ldots, J_{k}\right\}$ be a k-collection of j-subsets of S, where $J_{i}, 1 \leqslant i \leqslant k$ are chosen randomly and independently from among the $\binom{N}{j} j$-subsets of $\mathrm{S} ; J_{1}, \ldots, J_{k}$ need not all be distinct.

Consider an r-subset R of S . Then for any \boldsymbol{j}-subset \widetilde{J} of S , the probability that $R \subset \widetilde{\mathbf{J}}$ is

$$
\begin{aligned}
P[R \subset \widetilde{\mathrm{~J}}] & =\frac{\binom{N-r}{j-r}}{\binom{N}{j}}=\frac{(N-r)!(N-j)!j!}{N!(N-j)!(j-r)!}=\frac{(N-r)!j!r!}{N!(j-r)!r!} \\
& =\frac{\binom{j}{r}}{\binom{N}{r}}
\end{aligned}
$$

Therefore

$$
P\left[R \not \subset \widetilde{\mathrm{~J}} \left\lvert\,=1-\frac{\binom{j}{r}}{\binom{N}{r}}\right.\right.
$$

The probability that none of the randomly chosen j-subsets of \mathcal{J}, namely J_{1}, \ldots, J_{k}, contains R is hence

$$
R\left[\left(R \not \subset J_{1}\right) \wedge \ldots \wedge\left(R \not \subset J_{k}\right)\right]=\left(1-\frac{\binom{j}{r}}{\binom{N}{r}}\right)^{k}
$$

Label the r-subsets of $S, R_{1}, \ldots, R_{\binom{N}{r}}$. Let A_{i} be the event that R_{i} does not belong to any of the j-subsets of $\mathcal{J}, 1 \leqslant i \leqslant\binom{ N}{r}$. Then the probability that a randomly chosen \boldsymbol{k}-collection of \boldsymbol{j}-subsets \mathcal{J} does not contain at least one r-subset is

$$
R\left[A_{1} \vee \ldots \vee A_{\binom{N}{r}}\right] \leqslant\binom{ N}{r}\left(1-\frac{\binom{j}{r}}{\binom{N}{r}}\right)^{k}
$$

Therefore if $P\left[A_{1} \vee \ldots \vee A_{\binom{N}{r}}\right]<1$, then $P\left[\bar{A}_{1} \wedge \ldots \wedge \bar{A}_{\binom{N}{r}}\right]>0$ and hence some k-collection of j-subsets must cover all the r-subsets of $S . \bar{A}_{i}$ denotes the complement of the event $A_{i}, 1 \leqslant i \leqslant\binom{ N}{r}$. Thus we want

$$
\binom{N}{r}\left(1-\frac{\binom{j}{r}}{\binom{N}{r}}\right)^{k}<1
$$

or

$$
k \ln \left(1-\frac{\binom{j}{r}}{\binom{N}{r}}\right)+\ln \binom{N}{r}<0
$$

or

$$
\begin{equation*}
k>\frac{-\ln \binom{N}{r}}{\ln \left(1-\binom{j}{r} /\binom{N}{r}\right)} \tag{1}
\end{equation*}
$$

The direction of the inequality is changed in equation (1) since, for $j<N,\binom{j}{r}<$ $\binom{N}{r}$ and hence $\ln \left(1-\frac{\binom{j}{r}}{\binom{N}{r}}\right)<0$.

For $0<x<1,-\ln (1-x) \geqslant x$, since $f(x)=e^{-x}-1+x \geqslant 0$ for $0<x<1$. ($f(0)=0$ and $f^{1}(x)>0$ for $0<x<1$.) Hence

$$
k>\frac{\ln \binom{N}{r}}{\binom{j}{r} /\binom{N}{r}} \Rightarrow k>\frac{-\ln \binom{N}{r}}{\ln \left(1-\binom{j}{r} /\binom{N}{r}\right)}
$$

Therefore, for any $k>\left(\binom{N}{r} /\binom{j}{r} \ln \binom{N}{r} i\right), P\left[\bar{A}_{1} \wedge \ldots \wedge \bar{A}_{\binom{N}{r}}\right]>0$ and hence there exists a k-collection of j-subsets of S which covers all the r-substs of S.

References

[1] P. Erdös and H. Hanani, 'On a limit theorem in combinatorial analysis', Publ. Math. Debrecen 10 (1963), 10-13.
[2] V. Rödl, 'On a packing and covering problem', European J. Combin. 5 (1985), 69-78.

[^0]
[^0]: Department of Mathematics
 Purdue University MGL 1303
 West Lafayette IN 47907
 United States of America

