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Dilute sedimenting suspensions of spheres
at small inertia
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The sedimentation dynamics of a dilute suspension of non-Brownian spheres is
experimentally examined at small particle Reynolds numbers but at Reynolds numbers
based on the container size extending up to the small-but-finite inertial regime. While
the long-time velocity fluctuations are independent of the Reynolds number in the Stokes
regime, they are seen to decrease with increasing Reynolds number above a critical
container Reynolds number of approximately 0.1, and more precisely to vary as a power
−0.1 of the Reynolds number. The microstructure of the suspension is also seen to evolve
with increasing Reynolds number and to depart from random positioning as it becomes
more sub-homogeneous and disordered.
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1. Introduction

Sedimentation of particles is ubiquitous in natural phenomena such as mud sedimentation
in rivers and estuaries and rain drop sedimentation in the atmosphere. It is also a
basic engineering technique of separation or clarification used in particular in the water
treatment process for removing suspended solids from water. While it can be considered
as one of the simplest suspension flows, much remains to be understood. The key difficulty
lies in the long-range nature of the multibody hydrodynamic interactions between the
particles which leads to a complex and collective dynamics. An extensive review of the
current literature and unresolved issues is given in Guazzelli & Hinch (2011).

One of the primary variables used in sedimentation is the Stokes velocity VS which gives
the terminal velocity of a single sphere falling in a quiescent fluid in the absence of inertia,
VS = (2/9)a2(ρp − ρf )g/μ, where a is the sphere radius, ρp and ρf the density of the
particle and the fluid, respectively, and μ the fluid viscosity. Going beyond a single sphere
and obtaining the mean settling speed of a concentrated suspension is much more difficult.
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As stated above, the difficulty comes from the long-range nature of the hydrodynamic
interactions which leads to integrals diverging with the size of the container when the
interactions are naively summed. This divergence paradox was solved by Batchelor (1972),
who gave the first-order correction in volume fraction φ to the Stokes velocity (i.e.
−6.55φ) assuming low φ and randomly dispersed spheres. A small polydispersity in
particle size changes the sedimentation coefficient to a lower value −5.6 as the relative
motion between particle species causes non-uniformity in the microstructure (Batchelor
1982; Batchelor & Wen 1982). This latter prediction agrees better with experimental
observation as particles always have a certain amount of polydispersity in practice (see
e.g. Bruneau et al. 1990). It is also not that far from the dilute limit of the widely
used Richardson–Zaki empirical correlation for the mean sedimentation velocity, 〈w〉 =
VS(1 − φ)nRZ , with nRZ ≈ 5 in the Stokes regime (Davis & Acrivos 1985).

The mean velocity does not characterise completely the sedimentation dynamics as
the constantly changing configuration of the suspension microstructure and the resulting
long-range hydrodynamic interactions cause significant fluctuations of the individual
particle motions about the mean. It happens that a divergence paradox again arises for
the variance of the fluctuating velocities (Caflisch & Luke 1985). A scaling argument
given by Hinch (1988) brings some understanding of this divergence. The random mixing
of the suspension creates statistical fluctuations in particle number,

√
N (where N is the

particle number), also called blobs, on all length scales l from the container size, L,
down to the mean interparticle spacing, aφ−1/3. Balancing the fluctuations in the weight,√

N 4
3πa3(ρp − ρf )g, against the Stokes drag on the blob, 6πμlw′, yields convection

currents, w′ ∼ VS
√

φl/a. Hence, the fluctuations on the length scale of the container,
L, are dominant. In experiments with large sedimentation vessels, large vortices of the
size of the container dominate the initial moments after the cessation of mixing, in
agreement with the predicted scaling with l = L (Guazzelli 2001; Bergougnoux et al.
2003; Chehata Gómez et al. 2009). But these initial large fluctuations are transient and
decay in time to weaker small-scale fluctuations of the order of 20 interparticle separations
(i.e. ≈20aφ−1/3) which remain constant in a plateau region until the arrival of the upper
sedimentation front between the suspension and the clear fluid (Segrè, Herbolzheimer
& Chaikin 1997; Guazzelli 2001; Bergougnoux et al. 2003; Chehata Gómez et al.
2009; Snabre et al. 2009). The steady plateau fluctuations are found to be varying as
VSφ

1/3 (for φ < 0.3) which corresponds to the proposed scaling with l ≈ 20aφ−1/3.
This reduction of the initially large fluctuations to a smaller steady value is consistent
with the further speculation of Hinch (1988) that the strong initial convection currents
would remove long-wavelength horizontal density fluctuations, leaving the irreducible
scale of the interparticle separation, aφ−1/3 (in fact more like ≈20 this irreducible scale
in the experiments). This description is of course valid for container size larger than
20 interparticle separations. Otherwise, the velocity fluctuations always depend on the
container size and follow the predicted scaling with l = L (Segrè et al. 1997). Numerical
simulations confirm these experimental findings (Nguyen & Ladd 2004, 2005). They show
the importance of using impenetrable top and bottom boundaries conditions for obtaining
a saturation of the velocity fluctuations with increasing container dimensions (Koch 1994;
Ladd 2002).

The above results hold for vanishing Reynolds number and much less is known when
inertia is not negligible. In experiments, whereas the particle Reynolds number, Rea =
ρf aVS/μ, may be still maintained very small, the container Reynolds number, ReL =
ρf LVS/μ = ReaL/a, may not be that small. Hinch (1988) noted that the initial large-scale
convection currents could be limited by inertial forces, ρf w′2l2, rather than by viscous
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forces, yielding w′ ∼ √
ag φ1/4(l/a)−1/4. This large-ReL prediction presents a decrease

with the size of the container whereas the Stokes-regime prediction shows an increase.
Hinch speculated that the expected fluctuations would be those with length scale at the
crossing. This leads to w′ ∼ VSφ

1/3Re−1/3
a and thus to a screening of the fluctuations by

inertia with a decrease in fluctuations scaling as Re−1/3
a . An alternative argument leading

to the same scaling was given by Brenner (1999) by proposing that inertial screening arises
when the particle diffusion constant, D = w′2τ (where the correlation time, τ , is set by
the time for a particle to move across a blob of size l), is of the order of the momentum
diffusion constant, ν = μ/ρf . These arguments are designed to be valid for vanishing
Rea. Conversely, Koch (1993) examined the case of moderate particle Reynolds numbers,
i.e. Rea ∼ 1, and considered the variance of a dilute suspension of randomly distributed
particles producing linearly superimposed Oseen fluid velocity disturbances. In that case,
the velocity fluctuations still increase with the size of the container but the divergence is
weaker, to be more precise w′ ∼ √

log L/a in this Oseen regime instead of w′ ∼ √
L/a in

the Stokes regime. These fluctuations are predicted to decrease as Re−1/2
a for large Rea,

i.e. Rea > 5. Koch (1993) also noted that the lift force acting on a particle in the wake of
another particle tends to push it outward and argued that this spreading of the wake would
lead to fluctuations independent of the system size.

Several, mostly numerical, studies have explored the regime of small to moderate inertia
beyond Stokes flows. Different approaches including the force coupling method (Climent
& Maxey 2003), the lattice Boltzmann method (Yin & Koch 2007, 2008), the extended
lattice Boltzmann method coupled to a Lagrangian particle tracking (Sungkorn & Derksen
2012), the smoothed profile method (Hamid, Molina & Yamamoto 2014) and the immersed
boundary method (Zaidi, Tsuji & Tanaka 2014) have been used to simulate the sedimenting
particles at moderate inertia (and even up to higher inertia in some cases) but only
cubic periodic domains (or boxes slightly elongated in the gravity direction) have been
considered. The numerical simulations at moderate inertia showed that the divergence
with the size of the box was much slower than that for Stokes flow (Climent & Maxey
2003; Yin & Koch 2008), in good agreement with the logarithmic prediction of Koch
(1993) and even could disappear when sufficiently large domain size and simulation time
were used (Sungkorn & Derksen 2012). They demonstrated the importance of the inertial
wake-induced interactions between the spheres and a clear tendency for a reduction of
both the average settling velocity and the relative fluctuations in the weak inertia regime.

There is, however, a lack of experiments against which the theoretical scalings
and simulations can be compared. The few experimental findings available are still
inconclusive. Cowan, Page & Weitz (2000) observed that the velocity fluctuations were
independent of Reynolds numbers for Rea < 1 in a fluidised suspension of spheres (with
φ = 20 %–50 %) examined by ultrasonic correlation spectroscopies, while Segrè (2001,
2007) found that both the magnitude and spatial extent of the fluctuations were reduced
in a sedimenting suspension studied by particle image velocimetry (PIV) above a critical
Reynolds number (∼0.05 for a suspension of initial volume fraction φ = 6 %) for which
the inertial screening length, a/Rea, became similar to the velocity correlation length. The
fluidised and sedimenting configurations certainly differ since the flow of the suspension in
a fluidised bed is a Poiseuille flow (or a plug flow if concentrated) implying a convective
motion of the particles and therefore similar behaviour may not be expected. However,
in these two experiments, the thickness of the experimental cell was rather small and
therefore the velocity structure was confined by the walls. The PIV measurements (Segrè
2001, 2007) are also likely to suffer from not having the particle–fluid system index
matched at the (not so dilute) level of concentration examined. The present work is
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Laser Laser

Camera

Figure 1. Sketch of the experimental apparatus.

meant to clarify the experimental observations and to examine experimentally how a small
amount of inertia can affect sedimenting suspension in large containers.

In this paper, we examine sedimenting suspensions in containers larger than 20
interparticle separations when inertia is increased by means of decreasing the viscosity
of the fluid. When inertia is progressively augmented, the container Reynolds number can
become greater than one whereas the particle Reynolds number remains smaller than one.
In the present experiments, the container Reynolds number is 0.01 � ReL � 25 whereas
the particle Reynolds number is 2 × 10−5 � Rea � 4 × 10−2. The experimental apparatus
and methods are described in § 2. The influence of increasing inertia on the mean velocity
and fluctuations as well as on the microstructure is presented in § 3. Predictions and
scalings are compared to the observations and discussed in § 4.

2. Experiments

The sedimentation experiments were carried out in a glass container having inner
horizontal dimensions of 100 mm × 100 mm and a height of 500 mm, see figure 1. Two
batches of spheres were used. Batch A consisted of glass spheres with radius a = 148 ±
8 μm and density ρp = 4.11 ± 0.07 g cm−3 and batch B of poly(methyl methacrylate)
spheres with radius a = 388 ± 28 μm and density ρp = 1.19 ± 0.01 g cm−3. The fluid
used was a mixture of distilled water and UCON oil (75-H-90,000). In order to vary the
particle Reynolds number, the fluid viscosity was varied by changing the percentage of
water and UCON oil in the mixture. Viscosities varied in the range of 1.02 and 0.025 Pa s
produced Rea varied in the range of 2 × 10−5 and 4 × 10−2 as well as ReL varied in the
range of 0.01 and 25. The experiments were performed at the same initial volume fraction
φ = 0.3 %. It is important to note that the dimension corresponding to L (discussed in
§ 1) is the minimum dimension of the container, i.e. L = 100 mm. It is larger than the
interparticle separation, aφ−1/3 ≈ 1.03 mm for batch A and ≈2.69 mm for batch B, and
than the ultimate size of the fluctuation correlation length, ≈20aφ−1/3 (discussed in § 1).
The Oseen inertial length, a/Rea, is also larger than the interparticle separation. In the
range of Rea studied, it decreases from ≈6727 to 4 mm for batch A and from ≈1437 to
24 mm for batch B with increasing Rea.

The experimental procedure consisted of filling the container up to a height of 400 mm
with the fluid mixture and the given number of particles to achieve the same initial volume
fraction φ = 0.3 %. The particles were then mixed by moving a small propeller (of size
≈2 cm) within the filled container for ≈10 min in order to obtain a visually uniform
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particle distribution throughout the suspension (Bergougnoux et al. 2003; Chehata Gómez
et al. 2009). The mixing started first in the bottom 5 cm of the container and consisted in
turning the sedimented particles into a homogeneously dispersed suspension. The mixing
was then progressively extended upward until a homogeneous dispersion of particles filled
the complete volume of the cell. This mixing procedure was repeated in a very systematic
way for the different runs (typically 10). The starting time of each run corresponded to
the cessation of mixing. It is worth mentioning that the initial disturbances caused by the
mixing are slower to decay when inertia is increased and thus some remnant of the initial
mixing may affect the experimental results if inertia is too large. This thus restricted the
range of ReL wherein data can be trusted (typically ReL � 25 for batch A and �5 for
batch B), see the discussion at the end of § 3.2.

A thin light sheet (of thickness ≈1 mm) produced by two red 15 mW laser diodes facing
each other was used to illuminate the median plane of the glass container, see figure 1.
A charge coupled device digital camera (1040 × 1392 pixels; Basler A102f) placed at
right angles to the light sheet was focused on the illuminated particles and sampled the
entire cross-section of the cell for a window of height 10 cm placed 25.5 cm below the
liquid–air interface. For the larger Rea explored with batch A, which required a faster
capture of the images, a FastCam Photron camera (1024 × 1024 pixels) was used. Pairs of
images separated by approximately a Stokes time, tS = a/VS, were captured every 60 to
0.02 s during sedimentation (depending on the corresponding Rea of the experiment) and
were processed using PIV to obtain a two-dimensional velocity-vector map (Bergougnoux
et al. 2003; Chehata Gómez et al. 2009). In practice, the PIV method consisted of
(i) discretising each image into a map of 33 × 33 nodes, (ii) defining small interrogation
regions to be explored around each node, (iii) using cross-correlation to compute the
local particle displacements between the two images around each node to build up the
velocity-vector map. The spatial resolution of the measurement was given by the size
of the interrogation region = 64 × 64 pixels ≈ 6 mm × 6 mm. At each captured time,
the mean velocity 〈w〉 and 〈v〉 and standard deviations w′ and v′ in the vertical and
the horizontal directions, respectively, could be obtained using all the local velocity
data coming from the different runs (typically 10) as the ensemble-average realisation.
Spatial correlations of the vertical and horizontal velocity fluctuations were also computed
as Cw′(x) = 〈w′(x0 + x)w′(x0)〉 and Cv′(x) = 〈v′(x0 + x)v′(x0)〉 respectively along the
vertical (x‖) direction and horizontal (x⊥) directions, ensemble-averaged over different
starting positions x0 on the velocity map and different runs taken at the same time after
the cessation of mixing.

The same recorded images were used to study the particle microstructure. The particle
number density statistics were measured during the sedimenting process (Lei, Ackerson &
Tong 2001; Bergougnoux & Guazzelli 2009). The grey-level images were first thresholded
and the centres of mass of the particles located inside the laser sheet were determined.
The threshold value was chosen such as to give the correct number of particles estimated
inside the light sheet. The error bar on the number of particles in the sheet provided upper
and lower bounds of the threshold, which were used to determine uncertainties in the
processed data. The particle occupancy distribution was then obtained by counting the
number of particles N within a square box of fixed area which was randomly positioned in
each of the images of the different runs corresponding to the same time. At each captured
time, the standard deviations σN of the number of particles for different average number
of particles 〈N〉, i.e. for different sampling boxes, could be determined.

To obtain a closer examination of the microstructure, and in particular to analyse the
departure from particle random positioning (Poisson distribution), an α-shape analysis
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based on Delaunay triangulation was performed (Bergougnoux & Guazzelli 2009). The
α-shape approach was chosen as it has been developed in computational geometry to
formalise the intuitive notion of ‘shape’ for an ensemble of spatial points (Edelsbrunner,
Kirkpatrick & Seidel 1983). It gives the space generated by point pairs that can be touched
by an empty disc of radius α. The level of desired detail is controlled by the parameter
α. For sufficiently large α, the α-shape is identical to the convex hull of the set of points
(the smallest convex polygon that contains the set of points). As α decreases, the shape
shrinks and gradually develops empty spaces. It thus provides a visualisation of the number
of regions devoid of particles, i.e. of the holes in the microstructure.

3. Results

3.1. Velocity-field structure and correlations
Figure 2 displays typical velocity-fluctuation fields measured within an imaging window
sampling the entire cross-section of the cell for a small ReL = 0.01 (Rea = 2.2 × 10−5)
as well as for a larger ReL = 1.17 (Rea = 4.5 × 10−3) for the two different batches of
particles. The initial mixing process creates uncorrelated velocities which are damped
(while the damping process of the initial mixing is very fast in the Stokes regime, it takes
a longer time with increasing inertia, see the discussion in the second paragraph of § 2
and at the end of § 3.2) and gives rise to a vortex structure of the size of the cell, see
figure 2(a). This vortex structure decays in size and strength with time and the velocity
field becomes a complex three-dimensional structure composed of smaller vortices of size
≈20–40aφ−1/3 which persists until the arrival of the upper sedimentation front (between
the suspension and the clear fluid) inside the imaging window, see figure 2(c). The
qualitative behaviour previously observed in the Stokes regime is recovered for the smaller
ReL = 0.01 (Rea = 2.2 × 10−5) but also for the larger ReL = 1.17 (Rea = 4.5 × 10−3), see
figures 2(b) and 2(d).

To understand how the large initial vortex decreases in size and strength with time
and what ultimate size is reached before the front arrives, the spatial correlation in
velocity fluctuations are computed. Of particular interest are the normalised correlation
functions of the vertical (horizontal respectively) fluctuations along the horizontal
(vertical respectively) direction, Cw′(x⊥)/Cw′(0) (Cv′(x‖)/Cv′(0) respectively). When
these functions go through a negative minimum, the velocities become anti-correlated.
The minima of these functions thus yield estimates of the sizes of the vortices or
equivalently of the correlation lengths in the vertical and horizontal directions, �

‖
∞

and �⊥∞ respectively (Guazzelli 2001). Typical time evolutions of Cw′(x⊥)/Cw′(0) and
Cv′(x‖)/Cv′(0) are shown in figure 3(a–d) for an inertial case (batch A at ReL = 8.20
and Rea = 1.2 × 10−2). At initial time (t = 0), the negative amplitudes of the minima of
the functions Cw′(x⊥)/Cw′(0) and Cv′(x‖)/Cv′(0) are large and the minima are located at
≈ 0.6L in the horizontal direction and ≈ L in the vertical direction. As time is increased,
the negative amplitude and the location of the minima decrease. A steady plateau regime
is reached wherein the correlation functions do not vary significantly and the correlation
lengths given by the locations of the minima are ≈30–40aφ−1/3 in both directions.

For the sake of completeness, the normalised correlation functions of the vertical
(horizontal respectively) fluctuations along the vertical (horizontal respectively) direction,
Cw′(x‖)/Cw′(0) (Cv′(x⊥)/Cv′(0) respectively) are also presented in figure 3(e–h). The
functions Cw′(x‖)/Cw′(0) and Cv′(x⊥)/Cv′(0) are not going through a minimum at initial
time (t = 0) as the vertical (horizontal respectively) fluctuations are not anticorrelated
along the vertical (horizontal respectively) direction for a typical large initial vortex of
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Figure 2. Particle velocity-fluctuation fields and centre-of-mass positions (red for particles of batch A and
blue for particles of batch B): for (a) t/tS = 5 and (c) t/tS = 890 for particles of batch A at ReL = 0.01 (Rea =
2.2 × 10−5) and for (b) t/tS = 0 and (d) t/tS = 122 for particles of batch B at ReL = 1.17 (Rea = 4.5 × 10−3).
Distance is plotted in mean interparticle spacings, aφ−1/3 and time is normalised by the Stokes time tS = a/VS.

size L. They instead decay to zero over a distance ≈0.6L in the horizontal direction and
≈L in the vertical direction. These decaying lengths are similar to the locations of the
minima of the functions Cw′(x⊥)/Cw′(0) and Cv′(x‖)/Cv′(0). With increasing time, the
functions decrease to zero over shorter distances and can even go through small negative
minima. In the steady plateau regime, the functions Cw′(x‖)/Cw′(0) and Cv′(x⊥)/Cv′(0)

present correlation lengths ≈30–40aφ−1/3 in both directions, similarly to what is seen for
the functions Cw′(x⊥)/Cw′(0) and Cv′(x‖)/Cv′(0).
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Figure 3. Time evolution of the normalised spatial correlation functions Cw′ (x⊥)/Cw′ (0), Cv′ (x‖)/Cv′ (0),
Cw′ (x‖)/Cw′ (0), and Cv′ (x⊥)/Cv′ (0), at initial times (a,c,e,g, respectively) and in the steady plateau region
(b,d, f,h, respectively) for particles of batch A at ReL = 8.20 (Rea = 1.2 × 10−2). Distance is plotted in
mean interparticle spacings, aφ−1/3. For large distances (typically x⊥ � 80aφ−1/3 and x‖ � 100aφ−1/3), the
observed oscillations of the functions are due to statistical noise.
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Dilute sedimenting suspensions of spheres at small inertia

Rea ReL 〈w〉∞/VS w′∞/VS v′∞/VS �
‖
∞/aφ−1/3 �⊥∞/aφ−1/3

Batch A 2.2 × 10−5 0.01 1.0 ± 0.1 0.44 ± 0.05 0.21 ± 0.03 31 ± 3 30 ± 7
4.8 × 10−5 0.03 0.9 ± 0.1 0.51 ± 0.06 0.22 ± 0.03 42 ± 5 31 ± 2
5.6 × 10−4 0.38 1.0 ± 0.1 0.43 ± 0.05 0.20 ± 0.02 32 ± 5 27 ± 8
1.3 × 10−3 0.87 0.9 ± 0.1 0.37 ± 0.05 0.18 ± 0.02 31 ± 3 33 ± 5
3.9 × 10−3 2.62 0.9 ± 0.1 0.36 ± 0.05 0.17 ± 0.02 30 ± 3 30 ± 7
1.2 × 10−2 8.20 0.7 ± 0.2 0.31 ± 0.05 0.16 ± 0.03 33 ± 5 33 ± 7
3.6 × 10−2 24.08 0.6 ± 0.1 0.26 ± 0.04 0.07 ± 0.01 27 ± 3 43 ± 4

Batch B 2.7 × 10−4 0.07 0.9 ± 0.1 0.52 ± 0.08 0.21 ± 0.03 21 ± 6 17 ± 4
8.7 × 10−4 0.22 0.8 ± 0.2 0.44 ± 0.07 0.16 ± 0.03 25 ± 6 17 ± 2
4.5 × 10−3 1.17 0.7 ± 0.2 0.36 ± 0.06 0.15 ± 0.02 23 ± 3 17 ± 1
1.6 × 10−2 4.20 1.0 ± 0.3 0.43 ± 0.07 0.18 ± 0.03 21 ± 1 21 ± 1

Table 1. Plateau mean vertical velocity, 〈w〉∞, standard deviations, w′∞ and v′∞, and correlation lengths in
the vertical and horizontal directions, �

‖
∞ and �⊥∞, for batches A and B.

The same qualitative behaviour as that observed in the Stokes regime (Guazzelli 2001;
Bergougnoux et al. 2003) is found across the range of Reynolds numbers explored. The
ultimate correlation lengths reached in the steady regime can be computed by averaging
the data for the respective minima of the correlation functions Cw′(x⊥)/Cw′(0) and
Cv′(x‖)/Cv′(0) over all runs. Table 1 shows that the plateau correlation lengths in the
vertical and horizontal directions, �

‖
∞ and �⊥∞ respectively, do not vary significantly with

Rea or ReL in the range of values explored. They are of similar magnitude in both directions
within the error bars, thus showing no marked anisotropy. They are ≈30aφ−1/3 for batch
A and slightly smaller ≈20aφ−1/3 for batch B likely because of the higher confinement in
this case for which 20aφ−1/3 ≈ 0.54L while it is 20aφ−1/3 ≈ 0.21L for batch A.

3.2. Mean velocity and fluctuations
The mean velocity and the velocity fluctuations (i.e. the standard deviation) ensemble
averaged over the 10 runs are plotted as a function of the time, t/tS (where tS = a/VS is
the Stokes time), after cessation of mixing in figure 4 for two typical cases in the Stokes and
weak-inertia regimes. After an initial transient, the mean velocity reaches a steady value.
The steady value of the mean horizontal velocity, 〈v〉, is always found to be zero within
the error bars. The steady value of the mean vertical velocity, 〈w〉, is close to the Stokes
velocity VS for ReL = 0.03 but is slightly smaller for ReL = 1.16. The velocity fluctuations
are large at early times since large vortices of the size of the container dominate the
dynamics just after cessation of mixing. They then decrease to a steady plateau value (grey
region in the graphs) corresponding to the predominance of the remaining vortices of size
∼20–40aφ−1/3. A smaller decrease is experienced when the sedimentation front reaches
the top of the imaging window. It is important to note that, while the plateau value of the
vertical fluctuations is w′∞/VS ≈ 0.5 for the small ReL = 0.03 as previously found at the
same φ = 0.3 % and similar small ReL by Chehata Gómez et al. (2009), it is reduced to a
value w′∞/VS ≈ 0.4 for the larger ReL = 1.16. Typical histograms of all the local (vertical
and horizontal) velocities coming from the 10 runs and taken at the different times in the
plateau are shown in figure 5. They are found to be smooth and to have a Gaussian shape
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Figure 4. Time evolution of mean velocity, 〈w〉/VS and 〈v〉/VS, and fluctuations, w′/VS and v′/VS, in the
vertical (open symbols) and the horizontal (filled symbols) directions, respectively: (a,c) for particles of
batch A (red � ) at ReL = 0.03 (Rea = 4.8 × 10−5) and (b,d) for particles of batch B (blue © ) at ReL = 1.17
(Rea = 4.5 × 10−3). The grey regions indicate the fluctuation-velocity plateaux.
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Figure 5. Histogram of the plateau particle velocities in the vertical (open bars) and the horizontal (filled
bars) directions (red for particles of batch A and blue for particles of batch B): for (a) particles of batch A at
ReL = 0.01 (Rea = 2.2 × 10−5) and for (b) particles of batch B at ReL = 1.17 (Rea = 4.5 × 10−3). The solid
black curves indicate the corresponding Gaussian distributions for the vertical direction.

even for larger inertia, for instance for ReL = 1.16. Therefore they can be well represented
by the mean and the variance (or standard deviation).

Table 1 presents the steady plateau mean velocity, 〈w〉∞, and standard fluctuations,
w′∞ and v′∞, obtained by ensemble averaging over all local velocity data recorded
from all runs in the plateau region for the different Reynolds numbers explored with
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Figure 6. Plateau velocity fluctuations, w′/VS and v′/VS, in the vertical (open symbols) and the horizontal
(filled symbols) directions, respectively, versus (a) Rea = ρf aVS/μ and (b) ReL = ρf LVS/μ: batch A (red � )
and batch B (blue © ). The black diamonds (♦) correspond to previous experiments of Chehata Gómez et al.
(2009) using particles of batch A but with a different fluid (silicon oil) and container sizes. The horizontal
dotted lines correspond to the constant plateau fluctuations in the vertical and horizontal directions for the
Stokes regime (Rea � 4 × 10−4 or ReL � 0.1). The solid lines are power-law fittings of the data in the vertical
and horizontal directions. The power laws −1/3 and −1/2 are represented by dashed and dashed-dotted lines,
respectively.

batches A and B. The plateau mean velocities do not significantly differ from the Stokes
velocity for these experiments undertaken at the same low φ = 0.3 %. The plateau
fluctuations, w′∞/VS and v′∞/VS, are plotted versus Rea and ReL = ReaL/a in figures 6(a)
and 6(b), respectively. Two clear regimes are evidenced. For Rea � 4 × 10−4 or ReL �
0.1, there is a Stokes regime of constant plateau fluctuations, w′∞/VS ≈ 0.52 (horizontal
dotted line) and v′∞/VS ≈ 0.22 (horizontal dotted line), having a fluctuation anisotropy
of ≈ 2.4, in agreement with previous low-Re experiments (Chehata Gómez et al. 2009).
For a larger value of Rea or ReL, there is a regime in which the fluctuations are reduced
with increasing inertia. A collapse of the data for the two batches of spheres is observed.
Power-law fittings of the data using the method of least squares yield variations in Re−0.1

a
and Re−0.1

L for both the vertical and horizontal directions. These decreases are weaker than
those predicted by Hinch (1988), Brenner (1999) (∼Re−1/3

a ) and Koch (1993) (∼Re−1/2
a )

as well as those found in the large-box simulations of Sungkorn & Derksen (2012)
(∼Re−0.69

a ). The fluctuation anisotropy is ≈2 in this regime of weak inertia. It should be
noted that the collapse and fitting of the data appear to be more satisfactory when plotting
versus ReL.

It should be mentioned that we tried to perform experiments for larger Reynolds
numbers. However, the dissipation time of the initial mixing and the total time of the
sedimentation experiment become of the same order of magnitude. This leads to velocity
distributions containing a larger number of small velocities (a residue of the initial mixing)
than expected for a Gaussian distribution. The plateau values of the mean velocity and
fluctuations are thus affected by the remnants of this mixing and cannot be trusted.

3.3. Microstructure
Particle occupancy distributions are obtained for sampling boxes ranging from ≈3 ×
3 (L/100)2 to ≈50 × 50 (L/100)2, i.e. ≈3 × 3 (aφ−1/3)2 to ≈50 × 50 (aφ−1/3)2 for
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Figure 7. Particle occupancy distributions at ReL = 0.07 (Rea = 2.7 × 10−4) for (a) t/tS = 0 and
(c) t/tS = 133 and at ReL = 4.20 (Rea = 1.6 × 10−2) for (b) t/tS = 0 and (d) t/tS = 172 for particles of batch
B. The red solid lines represent the corresponding Poisson distributions.

batch A and ≈1 × 1 (aφ−1/3)2 to ≈20 × 20 (aφ−1/3)2 for batch B, which are randomly
positioned 100 times in the recorded image of size L × 1.3 L and averaged over 10 runs.
Typical particle occupancy distributions obtained from data analysis of 10 runs and for a
given sampling box of ≈14 × 14 (aφ−1/3)2 are displayed in figure 7 in the Stokes and
weak-inertia regimes. The solid curves indicate the Poisson distribution for the same
average number of particles 〈N〉.

In the Stokes regime, the distributions at the initial time and in the plateau region
are similar and symmetric, see figure 7(a,c). They are slightly shorter and wider than a
Poisson distribution, as previously observed by Bergougnoux & Guazzelli (2009). The
corresponding plot of the standard deviations of the number of particles σN versus 〈N〉 for
different sampling boxes shows that σN is not = 〈N〉1/2 (Poisson statistics) but not too far
from it as it is = 〈N〉n with an exponent n ≈ 0.59, see figure 8(a). There is no evolution
of this power law with time until the sedimentation front enters the imaging window. The
exponent n has been seen to increase with increasing polydispersity and volume fraction
and to decrease with confinement (Bergougnoux & Guazzelli 2009). Therefore, in the
Stokes regime, the microstructure is not a perfect random positioning (but is close to it)
and is maintained throughout the sedimentation process.

A different behaviour is observed in the weak-inertia regime. While the distribution
at initial time (due to the initial mixing) is rather symmetric, it is seen at later times
to be positively skewed as the mass of the distribution is concentrated on the left with
a longer tail spreading toward the right, see figure 7(b,d). This change is also revealed
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Figure 8. Standard deviation σN of the number of particles versus 〈N〉 in log–log coordinates for batch B at
(a) ReL = 0.07 (Rea = 2.7 × 10−4) and (b) ReL = 4.20 (Rea = 1.6 × 10−2). The red dotted lines represent the
Poisson law, σN = 〈N〉0.5. The red solid lines are the power-law fits of all the data from the different times
(at the exception of those at t/tS = 0) using the method of least squares, giving for (a) σN = 〈N〉0.59 and for
(b) σN = 〈N〉0.69. The data at t/tS = 0 are in black while those for the other times are in blue. In graph (b), the
dashed line represents the power-law fit for the data at t/tS = 0, σN = 〈N〉0.59.

Rea ReL n P1 P2

Batch A 2.2 × 10−5 0.01 0.66 ± 0.01 0.3 ± 0.3 0.3 ± 0.2
4.8 × 10−5 0.03 0.69 ± 0.01 0.1 ± 0.3 0.2 ± 0.2
5.6 × 10−4 0.38 0.70 ± 0.01 0.2 ± 0.3 0.2 ± 0.2
1.3 × 10−3 0.87 0.72 ± 0.01 0.1 ± 0.2 0.3 ± 0.1
3.9 × 10−3 2.62 0.81 ± 0.01 0.3 ± 0.2 0.5 ± 0.1
1.2 × 10−2 8.20 0.81 ± 0.01 0.3 ± 0.2 0.6 ± 0.1
3.6 × 10−2 24.08 0.95 ± 0.02 0.5 ± 0.2 0.9 ± 0.1

Batch B 2.7 × 10−4 0.07 0.59 ± 0.01 0.3 ± 0.2 0.4 ± 0.2
8.7 × 10−4 0.22 0.64 ± 0.01 0.4 ± 0.2 0.5 ± 0.2
4.5 × 10−3 1.17 0.60 ± 0.02 0.3 ± 0.2 0.3 ± 0.2
1.6 × 10−2 4.20 0.69 ± 0.02 0.3 ± 0.1 0.6 ± 0.1

Table 2. Exponent, n, as well as mean and (±) standard deviation of the Pearson mode, P1, and median, P2,
skewnesses averaged in the plateau region for batches A and B.

in figure 8(b) where the slope of the data differs at initial and later times: at the initial
time, n is similar to the value obtained in the Stokes case (≈0.59) whereas at a later
time n is much larger (≈0.69). The standard deviation σN still varies approximately as
〈N〉n with an exponent n calculated in the plateau region which increases significantly
with inertia, see table 2. We also computed the skewness, though it is less robust and
thus less reliable than the first two moments of the distributions (the mean and the
variance). Conversely to what is observed for σN , the computed skewnesses do not vary
significantly with 〈N〉. However, they experience a marked increase with increasing inertia,
in particular for the largest Reynolds numbers explored, see the Pearson mode, P1, and
median, P2, skewnesses listed in table 2. With increasing inertia, the structure in the
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Figure 9. Particle centre-of-mass positions (red for particles of batch A and blue for particles of batch B)
and holes found by the approach of α-shapes (delimited by green solid lines) for (a) particles of batch A at
ReL = 24.08 (Rea = 3.6 × 10−2), (b) particles of batch B at ReL = 4.20 (Rea = 1.6 × 10−2), (c) particles of
batch A at ReL = 0.01 (Rea = 2.2 × 10−5) and (d) particles of batch A at ReL = 2.62 (Rea = 3.9 × 10−3), in
the plateau region. Delaunay triangulation is represented by black dotted lines inside the holes and by yellow
solid lines outside the holes. The convex hull of the centre-of-mass positions corresponds to the black solid
curve. Distance is plotted in mean interparticle spacings, aφ−1/3.

plateau region becomes more sub-homogeneous in the sense that the variance grows faster
than the mean (de Coninck, Dunlop & Huillet 2008) and thus more disordered with many
depopulated regions and a few regions which are more concentrated in particles. The
inhomogeneity of the structure is evidenced in figure 9(a,b) using the approach of α-shapes
for two typical particle centre-of-mass arrangements in the plateau region at the highest
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Reynolds numbers explored. Large holes having sizes ranging from 5 to a little more than
20 aφ−1/3 are clearly displayed. These holes are somewhat larger, more numerous and
more complex than those observed in the Stokes regime (Bergougnoux & Guazzelli 2009).
This is shown in figure 9(c,d) by comparing two typical particle arrangements in the Stokes
and weak-inertia regimes for a similar total number of particles in the plateau region.

4. Comparison and concluding remarks

We have examined dilute (φ = 0.3 %) sedimenting suspensions in large containers (larger
than 20 mean interparticle separations) when inertia is progressively increased. In these
experiments, whereas the particle Reynolds number remains smaller than one (2 ×
10−5 � Rea � 4 × 10−2), the container Reynolds number can become greater than one
(0.01 � ReL � 25). The velocity fluctuations fields present the same qualitative structure
as that observed in the Stokes regime across the range of Reynolds numbers explored.
Initially, large-scale fluctuations dominate the dynamics. But these initial large fluctuations
are transient and decay in time to weaker smaller-scale fluctuations. The smaller-scale
fluctuations are then dominant in a steady plateau regime until the arrival of the upper
sedimentation front. The size of these plateau fluctuations does not vary significantly with
inertia in the range of Reynolds numbers explored and the long-time plateau correlation
lengths in the vertical and horizontal directions are seen to be �

‖
∞ ≈ �⊥∞ ≈ 20–30

mean interparticle spacings. Conversely, the magnitude of the long-time plateau velocity
fluctuations is seen to decrease with increasing inertia above critical Reynolds numbers
Rec

a ≈ 4 × 10−4 and Rec
L ≈ 0.1, and more precisely to vary as a power −0.1 of the

Reynolds numbers, i.e. ∼Re−0.1
a and ∼Re−0.1

L .
This decrease with increasing inertia differs from the theoretical prediction in Re−1/2

a of
Koch (1993). This is not surprising as the present experiments are performed at Rea � 1
whereas the theoretical model of Koch (1993) addresses dilute suspensions with Oseen
wake interactions and thus the case of Rea ∼ O(1). What is more striking is that this
decrease is weaker than the prediction in Re−1/3

a of Hinch (1988) and Brenner (1999)
designed to work for Rea � 1 as it is the case in the present experiments.

Numerical simulations also indicate a reduction in relative fluctuations with increasing
inertia (Climent & Maxey 2003; Yin & Koch 2008; Sungkorn & Derksen 2012; Hamid
et al. 2014). However, the onset of the inertial effects occurs at a particle Reynolds
number much higher (Rec

a ≈ 0.1) in the simulations than that found in the present
experiments (Rec

a ≈ 4 × 10−4), see e.g. the simulations of Yin & Koch (2008) and
Sungkorn & Derksen (2012) for φ = 1 % and = 0.5 % similar to the present experimental
φ = 0.3 %. The decrease in fluctuations computed in the numerical simulations is also
stronger than in the present experiments. The simulations of Yin & Koch (2008) in
cubic periodic domains find a decrease in Re−1/2

a , in agreement with the theory of
Koch (1993) above a region of cross-over, 0.1 < Rea < 5, between low- and finite-Rea
behaviours. The large-box simulations of Sungkorn & Derksen (2012) suggest instead
a decrease in Re−0.69

a but for 0.1 � Rea � 3. The correlation lengths of the velocity
fluctuations are also seen to decrease with increasing inertia but for Rea � 0.1 (Climent
& Maxey 2003; Sungkorn & Derksen 2012). Overall, most of these simulations examined
the regime Rea ∼ O(0.1–1) and higher wherein the inertial hydrodynamic interactions
between particles may dominate. This is an inertial regime differing from that explored in
the present experiments for which Rea � 1 but ReL ∼ O(1). Also, a potential issue is the
use of periodic boundary conditions which somehow implies re-injecting the fluctuations
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from the bottom to the top of the simulation domain and may lead to an unrealistic
magnitude of the fluctuations as seen in the Stokes regime (Koch 1994; Ladd 2002).

We now turn to the comparison with the two experimental results available in the
literature which were performed in a more confined geometry. The present findings
disagree with those of Cowan et al. (2000) who found no influence of inertia for Rea < 1
in a fluidised bed. But these experiments were performed at large φ = 20 %–50 % and, as
mentioned in § 1, the flow of particles in a fluidised bed differs from that of sedimenting
particles in a quiescent fluid. The findings of Segrè (2001, 2007) for a sedimenting
suspension of spheres quantitatively differ from the present experimental results as the
onset of inertial influence is found at a higher critical Rea (∼0.05 for a suspension
of initial volume fraction φ = 6 %). But, as mentioned in § 1, using particle image
velocimetry without index matching at such a (not so dilute) concentration is doubtful and
may lead to inaccurate measurements. This may explain the disagreement. However, the
idea developed that inertia onset would occur when the inertial screening length, a/Rea,
becomes as small as the ultimate velocity correlation length, �∞, seems reasonable. This
translates to a criterion on the value of the Reynolds number, Re�∞ = Rea�∞/a and on
the size of the ultimate correlation length (i.e. the ultimate size of the density fluctuation
blob). But inertial effects are likely to happen as early as Rec

�∞ ∼ 0.1 instead of ∼1, as
observed for the drag on a sphere (Maxworthy 1965; Kumagai & Fujiwara 1983).

At that stage of the discussion, it is tempting to follow this latter idea from Segrè
(2001, 2007) and to extend the Caflisch–Luke–Hinch scaling to a drag experienced by
the blobs which accounts for small inertial corrections instead of the large inertial forces
considered by Hinch (1988) and Brenner (1999). In other words, the idea is to develop
the argument in the intermediate region between Stokes drag and Newton drag. Using
then a transitional drag 6πμlw′F(Rel) to balance the buoyancy force acting on the blob
of size l leads to w′(l) ∼ [VS/F(Rel)]

√
φl/a where F(Rel) is the small-inertia expansion

given for instance by the formula of Oseen (1913), F(Rel) = 1 + 3Rel/4, or the empirical
correlation of Schiller & Naumann (1933), F(Rel) = 1 + 0.15Re0.687

l , with Rel = Real/a
(note that here l corresponds to the diameter of the blob and not its radius). As in the
original argument meant for the Stokes regime, the fluctuations of largest size should
dominate the initial dynamics, which is indeed seen in the present experiments. But again,
the large initial fluctuations decay to smaller-scale fluctuations which stay constant in a
steady plateau regime. The extension of the blob model to small inertial correction is
tested against the experimental data in this steady plateau regime in figure 10 by taking
l = �∞ ≈ �

‖
∞ ≈ �⊥∞ ≈ 30aφ−1/3 as found experimentally in § 3.1. A decent agreement is

found using the correlation of Schiller & Naumann (1933) with a constant ultimate blob
size of 30aφ−1/3. The onset of inertia is also correctly given by Rec

�∞ ∼ 0.1 leading to
Rec

a ∼ 5 × 10−4. The reduction of the fluctuations can thus be interpreted as due to the
small inertial increase of the drag on the density fluctuation blob.

However, the model underlying assumption of a random particle density distribution
does not hold when inertia is increased. While, in the Stokes regime, the microstructure
is not a random positioning but is still not too far from it, it becomes even more
sub-homogeneous in the weak-inertia regime with many regions depopulated of particles
and a few more concentrated regions. Anisotropy in the microstructure has been observed
in numerical simulations and related to the wake interactions between particles in the
regime Rea ∼ O(0.1–1) (see e.g. Yin & Koch 2007; Hamid et al. 2014). Clustering of
particles has been also observed but for larger Rea ∼ O(200) (Zaidi et al. 2014). It would
be of interest to undertake further investigations in the present regime for which Rea � 1
but ReL ∼ O(1) and to examine the interactions of the fluctuating density blobs when
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10−5 10−4 10−3 10−2 10−1

Rea

10–1

100

v
′ ∞

/V
S

w
′ ∞

/V
S

Figure 10. Same as figure 6(a) but with a comparison with the Caflisch–Luke–Hinch model extended to a drag
experienced by the density fluctuation blobs which accounts for small inertial corrections: Schiller–Naumann
(black solid curve) and Oseen (black dashed-dotted curve) corrections. The yellow dotted vertical line indicates
the onset of inertial effects given by Rec

l = Rec
a30φ−1/3 ∼ 0.1, i.e. Rec

a ∼ 5 × 10−4.

inertia becomes finite. An important point to understand is how a small amount of inertia
leads to the growth of holes in the microstructure. One possible physical mechanism
may be that centrifugal forces eject the heavy particles from the fluctuation vortices.
This process is seen for particles settling in random or turbulent flows and known as
preferential sweeping wherein particles preferentially sample low vorticity regions of the
fluid velocity field along the gravity direction as they are centrifuged out of regions of
strong vorticity (see e.g. Maxey 1987; Wang & Maxey 1993). This is also reminiscent
of a scenario proposed by Batchelor & Nitsche (1994) discussing particles expelled by
centrifugal forces from buoyant blobs leading to bubbles in fluidised beds.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Laurence Bergougnoux http://orcid.org/0000-0002-2988-4394;
Élisabeth Guazzelli http://orcid.org/0000-0003-3019-462X.

REFERENCES

BATCHELOR, G. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245–268.
BATCHELOR, G. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General

theory. J. Fluid Mech. 119, 379–408.
BATCHELOR, G. & NITSCHE, J. 1994 Expulsion of particles from a buoyant blob in a fluidized bed. J. Fluid

Mech. 278, 63–81.
BATCHELOR, G. & WEN, C. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part

2. Numerical results. J. Fluid Mech. 124, 495–528.
BERGOUGNOUX, L., GHICINI, S., GUAZZELLI, E. & HINCH, E.J. 2003 Spreading fronts and fluctuations in

sedimentation. Phys. Fluids 15, 1875–1887.
BERGOUGNOUX, L. & GUAZZELLI, É. 2009 Non-Poisson statistics of settling spheres. Phys. Fluids

21, 091701.

914 A33-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-2988-4394
http://orcid.org/0000-0002-2988-4394
http://orcid.org/0000-0003-3019-462X
http://orcid.org/0000-0003-3019-462X
https://doi.org/10.1017/jfm.2020.610


L. Bergougnoux and É. Guazzelli

BRENNER, M.P. 1999 Screening mechanisms in sedimentation. Phys. Fluids 11, 754–772.
BRUNEAU, D., ANTHORE, R., FEUILLEBOIS, F., AUVRAY, X. & PETIPAS, C. 1990 Measurement of the

average velocity of sedimentation in a dilute polydisperse suspension of spheres. J. Fluid Mech. 221,
577–596.

CAFLISCH, R.E. & LUKE, J.H.C. 1985 Variance in the sedimentation speed of a suspension. Phys. Fluids 28,
759–760.

CHEHATA GÓMEZ, D., BERGOUGNOUX, L., GUAZZELLI, É. & HINCH, E.J. 2009 Fluctuations and
stratification in sedimentation of dilute suspensions of spheres. Phys. Fluids 21, 093304.

CLIMENT, E. & MAXEY, M.R. 2003 Numerical simulations of random suspensions at finite Reynolds
numbers. Intl J. Multiphase Flow 29, 579–601.

DE CONINCK, J., DUNLOP, F. & HUILLET, T. 2008 On the correlation structure of some random point
processes on the line. Physica A 387, 725–744.

COWAN, M.L., PAGE, J.H. & WEITZ, D.A. 2000 Velocity fluctuations in fluidized suspensions probed by
ultrasonic correlation spectroscopy. Phys. Rev. Lett. 85, 453–456.

DAVIS, R.H. & ACRIVOS, A. 1985 Sedimentation of noncolloidal particles at low Reynolds numbers. Annu.
Rev. Fluid Mech. 17, 91–118.

EDELSBRUNNER, H., KIRKPATRICK, D. & SEIDEL, R. 1983 On the shape of a set of points in the plane.
IEEE Trans. Inf. Theory 29, 551–559.

GUAZZELLI, E. 2001 Evolution of particle-velocity correlations in sedimentation. Phys. Fluids 13, 1537–1540.
GUAZZELLI, E. & HINCH, E.J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech.

43, 97–116.
HAMID, A., MOLINA, J.J. & YAMAMOTO, R. 2014 Direct numerical simulations of sedimenting spherical

particles at non-zero Reynolds number. RSC Adv. 4, 53681–53693.
HINCH, E.J. 1988 Sedimentation of small particles. In Disorder and Mixing (ed. E. Guyon, J.-P. Nadal

& Y. Pomeau), NATO ASI Series E: Applied Sciences, vol. 152, pp. 153–161. Kluwer Academic
Publishers.

KOCH, D.L. 1993 Hydrodynamic diffusion in dilute sedimenting suspensions at moderate Reynolds numbers.
Phys. Fluids 5, 1141–1155.

KOCH, D.L. 1994 Hydrodynamic diffusion in a suspension of sedimenting point particles with periodic
boundary conditions. Phys. Fluids 6, 2894–2900.

KUMAGAI, T. & FUJIWARA, J. 1983 On the motion of spheres in fluid at low Reynolds numbers. Part 1. Flow
past a solid sphere. Bull. JSME 26, 1900–1907.

LADD, A.J.C. 2002 Effects of container walls on the velocity fluctuations of sedimenting spheres. Phys. Rev.
Lett. 88, 48301.

LEI, X., ACKERSON, B.J. & TONG, P. 2001 Settling statistics of hard sphere particles. Phys. Rev. Lett. 86,
3300–3303.

MAXEY, M.R. 1987 The motion of small spherical-particles in a cellular-flow field. Phys. Fluids
30, 1915–1928.

MAXWORTHY, T. 1965 Accurate measurements of sphere drag at low Reynolds numbers. J. Fluid Mech. 23,
369–372.

NGUYEN, N.-Q. & LADD, A.J.C. 2004 Microstructure in a settling suspension of hard spheres. Phys. Rev. E
69, 50401.

NGUYEN, N.-Q. & LADD, A.J.C. 2005 Sedimentation of hard-sphere suspensions at low Reynolds number.
J. Fluid Mech. 525, 73–104.

OSEEN, C.W. 1913 Über den Gültigkeitsbereich der Stokesschen Widerstandsformel. Ark. Mat. Astr.
Fys. 9(16), 1–15.

SCHILLER, L. & NAUMANN, A. 1933 Über die grundlegenden Berechnungen bei der Schwerkraftaufbe-
reitung. Z. Ver. Dtsch. Ing. 77, 318–320.

SEGRÈ, P.N. 2001 Inertial screening in sedimentation. In 54th Annual Meeting of the Division of Fluid
Dynamics DFD01, DF.005. American Physical Society.

SEGRÈ, P.N. 2007 Inertial screening in sedimentation. arXiv:0709.0995.
SEGRÈ, P.N., HERBOLZHEIMER, E. & CHAIKIN, P.M. 1997 Long-range correlations in sedimentation. Phys.

Rev. Lett. 79, 2574–2577.
SNABRE, P., POULIGNY, B., METAYER, C. & NADAL, F. 2009 Size segregation and particle velocity

fluctuations in settling concentrated suspensions. Rheol. Acta 48, 855–870.
SUNGKORN, R. & DERKSEN, J.J. 2012 Simulations of dilute sedimenting suspensions at finite-particle

Reynolds numbers. Phys. Fluids 24, 123303.
WANG, L.P. & MAXEY, M.R. 1993 Settling velocity and concentration distribution of heavy-particles in

homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68.

914 A33-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/0709.0995
https://doi.org/10.1017/jfm.2020.610


Dilute sedimenting suspensions of spheres at small inertia

YIN, X. & KOCH, D.L. 2007 Hindered settling velocity and microstructure in suspensions of solid spheres
with moderate Reynolds numbers. Phys. Fluids 19, 093302.

YIN, X. & KOCH, D.L. 2008 Velocity fluctuations and hydrodynamic diffusion in finite-Reynolds-number
sedimenting suspensions. Phys. Fluids 20, 043305.

ZAIDI, A.A., TSUJI, T. & TANAKA, T. 2014 Direct numerical simulation of finite sized particles settling for
high Reynolds number and dilute suspension. Intl J. Heat Fluid Flow 50, 330–341.

914 A33-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

61
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.610

	1 Introduction
	2 Experiments
	3 Results
	3.1 Velocity-field structure and correlations
	3.2 Mean velocity and fluctuations
	3.3 Microstructure

	4 Comparison and concluding remarks
	References

