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Abstract

Biofortification of cassava with the provitamin A carotenoid b-carotene is a potential mechanism for alleviating vitamin A deficiency.

Cassava is a staple food in the African diet, but data regarding the human bioavailability of b-carotene from this food are scarce. The objec-

tive of the present study was to evaluate provitamin A-enhanced cassava as a source of b-carotene and vitamin A for healthy adult women.

The study was a randomised, cross-over trial of ten American women. The subjects consumed three different porridges separated by 2 week

washout periods. Treatment meals (containing 100 g cassava) included: biofortified cassava (2 mg b-carotene) porridge with added oil

(15 ml peanut or rapeseed oil, 20 g total fat); biofortified cassava porridge without added oil (6 g total fat); unfortified white cassava

porridge with a 0·3 mg retinyl palmitate reference dose and added oil (20 g total fat). Blood was collected six times from 20·5 to 9·5 h

post-feeding. TAG-rich lipoprotein (TRL) plasma was separated by ultracentrifugation and analysed using HPLC with coulometric array

electrochemical detection. The AUC for retinyl palmitate increased after the biofortified cassava meals were fed (P,0·05). Vitamin A

conversion was 4·2 (SD 3·1) and 4·5 (SD 3·1)mg b-carotene:1mg retinol, with and without added oil, respectively. These results show

that biofortified cassava increases b-carotene and retinyl palmitate TRL plasma concentrations in healthy well-nourished adult women,

suggesting that it is a viable intervention food for preventing vitamin A deficiency.
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Vitamin A deficiency is a leading cause of morbidity and

mortality, especially in young children and pregnant and

lactating women(1). Food-based interventions focused on

alleviating vitamin A deficiency in susceptible populations

have advantages over supplementation and fortification

programmes, especially in rural areas, because they can pro-

vide a sustainable source of a variety of nutrients and other

phytochemicals without the recurring transport and adminis-

tration costs of these other methods(2).

Cassava is a root vegetable, specifically a starchy tuber,

with many positive attributes. It can survive droughts, is

inexpensive, resistant to pests and easy to grow. Although it

is a valuable source of energy, typically it is a poor source

of provitamin A carotenoids(3,4). Not coincidently, it is a

staple crop in three regions where vitamin A deficiency is

prevalent: Africa, South America and Southeast Asia(2,5).

Recently, multi-national non-governmental organisations (esp-

ecially HarvestPlus) have enhanced the provitamin A carotenoid

content of cassava, either through traditional plant-breeding

(HarvestPlus) or bioengineering (BioCassavaPlus)(2,6,7). Their

efforts have resulted in yellow-orange-fleshed cassava cultivars

with moderately high concentrations of b-carotene and other

provitamin A carotenoids. Only HarvestPlus varieties have

been disseminated in countries to date.

Cassava contains cyanogenic compounds that require

processing in order to make it safe for consumption. Unfor-

tunately, the type of processing, as well as cooking tem-

perature and time(8), can also decrease the retention of

carotenoids(9,10).

In general, carotenoid bioavailability in food is considered

to be low, with the bioconversion rate of b-carotene estimated

to be as low as 12mg to 1mg retinol(11). However, biofortified

cassava enriched with provitamin A carotenoids has success-

fully maintained vitamin A status in Mongolian gerbils(12).

Thus, more information is required on the bioavailability

and bioconversion of carotenoids from cassava in human

subjects. Also, since provitamin A bioavailability generally
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increases with the addition of fat(11), the effect of consuming

varying amounts of fat with biofortified cassava is of interest.

Both common white and provitamin A-enriched cassava

were fed to ten healthy well-nourished American women.

The objectives of the present study were to estimate the effec-

tiveness of biofortified cassava for increasing provitamin A

carotenoid and vitamin A concentrations in healthy adult

women, and to determine whether increased fat in the diet

improved these concentrations.

Experimental methods

Subjects

A total of twelve healthy, non-smoking, non-pregnant women

aged 21–44 years were enrolled in the study. A woman was

judged as ‘healthy’ if she had a BMI of 18–30 kg/m2, blood

pressure less than 135/90 mmHg and TAG, cholesterol, total

protein, electrolytes, kidney and liver function tests (such as

blood urea N), Hb, haematocrit, erythrocytes and leucocytes

within the clinically normal ranges (Table 1). Exclusion criteria

included the use of medications that affect retinoid, carotenoid

or cholesterol absorption from food such as fat-, TAG- or

cholesterol-lowering medications, medicines containing high

dosages of retinoids, vitamin A or carotenoid supplements,

illegal drugs or tobacco. In addition, subjects could not be

allergic to cassava, peanuts or peanut oil. The present study

was conducted according to the guidelines laid down in the

Declaration of Helsinki, and all procedures involving human

subjects were approved by the University of California,

Davis Institutional Review Board. Written informed consent

was obtained from all subjects.

Cassava preparation

Biofortified cassava, cross-bred to contain high amounts

of b-carotene (Genotype GM 905-69), was provided by the

International Center for Tropical Agriculture (CIAT). GM905-

69 was derived from crosses among cassava genotypes

from South and Central America that naturally contain little

b-carotene, because the African germplasm lacked enough

genetic variability to allow for the development of b-carotene-

biofortified cassava. Typical unfortified white cassava was

purchased from Las Montañas Supermarket. Initial weights of

the cassava varieties were 3·44 and 3·38 kg for the biofortified

and unfortified white cassava, respectively. Upon arrival at

the Western Human Nutrition Research Center, roots were

washed, peeled and flash frozen and then stored in a food-

safe freezer at 2208C in the Metabolic Kitchen and Human

Feeding Laboratory until use. For preparation, roots were

thawed overnight at 48C and then rinsed twice with deionised

water. Tips from the distal and proximal ends were removed

(1–2 cm) and discarded and the roots were diced (about

1 cm3). Deionised water (four volumes) was added to the

chopped roots and stirred. The roots were then refrigerated

overnight for 12 h, after which they were drained to remove

cyanogenic glycosides. Another round of four volumes of

deionised water was added and subsequently drained after

2 h. This process was repeated every 2 h for 8 h. Following the

last draining, the cassava cubes were rinsed with deionised

water and lightly simmered (958C) in ten volumes of deionised

water for 30 min. Constant stirring of the cassava helped to

ensure its homogeneity and minimised variations in carotenoid

concentration. Cooked cassava was drained, cooled and

aliquots were stored in 50 ml polypropylene screw-capped

tubes wrapped in aluminium foil under N2 at 2208C in the

food-safe freezer. All procedures were conducted under dim

lights to minimise light exposure. Fig. 1 shows the biofortified

cassava before and after preparation.

Cassava preparations were analysed for cyanogenic glyco-

sides by two methods. Each step of the cassava preparation

was monitored by our laboratory using a La Motte colorimetric

assay (LaMotte). Cassava preparations (1 g) were placed in a

15 ml test-tube, sliced into small pieces, mashed with a mortar

and then mixed with 7 ml deionised water by vortexing for

1 min. Preparations were left at room temperature for 20 min,

then vortexed for 20 s and filtered through a 0·2mm Pall

Gelman Acrodisc (Sigma Aldrich) into a LaMotte test-tube.

The water extract was tested using the LaMotte Cyanide in

Water Test Kit, according to the manufacturer’s specifications.

Table 1. Subject demographics and blood chemistries

(Mean values, ranges and standard deviations)

US units UK units

Mean SD Normal range* Mean SD Normal range*

Age (years) 29·3 8·8 NA 29·3 8·8 NA
Body weight (kg) 63·8 6·3 NA 63·8 6·3 NA
BMI (kg/m2) 23·1 2·3 18·5–25 23·1 2·3 18·5–25
Glucose 822 mg/l 45 mg/l 700–1100 mg/l 2·13 mmol/l 0·06 mmol/l 1·81–2·84 mmol/l
Total cholesterol 1590 mg/l 160 mg/l ,2250 mg/l 4·11 mmol/l 0·41 mmol/l ,5·82 mmol/l
HDL-cholesterol 566 mg/l 102 mg/l .600 mg/l 1·46 mmol/l 0·26 mmol/l .1·55 mmol/l
LDL-cholesterol 867 mg/l 170 mg/l ,1000 mg/l 2·24 mmol/l 0·44 mmol/l ,2·59 mmol/l
TAG 787 mg/l 280 mg/l 530–1390 mg/l† 2·04 mmol/l 0·72 mmol/l 1·37–3·59 mmol/l†
Hb 131 mg/l 6 mg/l 120–160 mg/l 0·34 mmol/l 0·02 mmol/l 0·31–41 mmol/l
Haematocrit (%) 38·5 1·9 37–48 38·5 1·9 37–48

NA, not available.
* Normal range for females.
† Normal range from 10 to 49 years old.
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For confirmation, the final prepared samples were sent to an

outside laboratory (Applied Specialization and Consulting

LLC) and analysed using alkaline hydrolysis, distillation and

ion chromatography with pulsed amperometric detection.

Dietary protocols

Each subject consumed three randomised dietary interven-

tions of cassava porridge separated by 2-week washout

periods. Before each intervention, subjects were required to

eat a diet low in vitamin A and carotenoids (Table 2). On

the first 4 d, subjects were instructed on how to reduce their

dietary intake of provitamin A carotenoids and vitamin A

(the dietary guidance for the subjects is provided as Sup-

plementary material, available online) and were required to

complete a 4 d food record to assess their adherence with

the dietary restriction. On the 3 d leading up to each interven-

tion, subjects were provided with nutrient-controlled research

meals and required to eat only from what was provided to

them, but were not required to eat everything. The nutrient-

controlled meals were designed by a registered dietitian and

were prepared in the Metabolic Kitchen of the Western

Human Nutrition Research Center, then given to the subjects

for reheating. The meals were low in fat, protein, carotenoids

and vitamin A. Nutrient data were calculated using the Nutri-

tion Data System for Research (The Nutrition Coordinating

Center, University of Minnesota) software. The United States

Department of Agriculture Nutrient Data Laboratory is the

primary source of the nutrient values and nutrient compo-

sition in this database, which contains information on over

18 000 foods. A total of five aliquots were collected from

each of the test meals and analysed for vitamin A and provita-

min A content. The extraction procedure used was similar to

that described by Howe et al.(12). Briefly, approximately 1 g

homogenised cassava was mixed with 6 ml ethanol (contain-

ing butylated hydroxytoluene 0·05 % (w/v)) and 120ml potass-

ium hydroxide (80 % (w/v)) and saponified at 608C for 10 min,

before 3 ml deionised water were added and it was extracted

twice with 3 ml hexane. The diet consumed on the 3 d prior

to the test day contained 107·8mg b-carotene, 181·7mg

b-cryptoxanthin and 0mg a-carotene and retinol by analysis

(Table 3). Total calculated energy was 9113 kJ (2178 kcal),

with 67·7 g protein (12 % of energy), 24 g fat (9·7 % of

energy) and 428·9 g carbohydrate (78·1 % of energy) (Table 3).

On each test day, subjects consumed one of the following

randomised porridge meals for breakfast: (1) b-carotene-

biofortified cassava porridge with oil, containing 100 g drained

cassava, 15 ml added rapeseed or peanut oil (20 g total fat) and

approximately 2 mg b-carotene; (2) biofortified cassava por-

ridge without added oil (6 g total fat); (3) unfortified white cas-

sava porridge with added rapeseed or peanut oil (20 g total fat)

containing a reference dose of 0·3 mg pure food-grade retinyl

palmitate. The test meals were consumed under supervision

by the Metabolic Kitchen and Human Feeding Laboratory staff.

We attempted to make this a double-blind study, wherein

the rest of the foods in the porridge masked the differences

in colour between yellow-orange biofortified and white unfor-

tified cassava. However, small differences in the colour of the

porridges could be detected by a trained eye. Furthermore,

adding oil changed the viscosity of the porridge slightly.

Therefore, the present study can best be called a single-

blind study, with the researchers blinded, conducted under

controlled conditions.

The cassava porridge consisted of 100 g cassava, 40 g quick-

cooking unfortified oatmeal (Quaker Oats), 150 g canned

pears in light syrup (Dole), 0·5 g salt (Sysco), 21·0 g honey

(Sue Bee), 18·9 g raisins (Sysco) and 245·5 g unfortified rice

milk (Hain Celestial Group). For the first two subjects, 14·0 g

peanut oil was added to the test meals that included additional

oil. However, subjects complained about the taste and

viscosity of the porridges prepared with peanut oil (Hain

Celestial Group) and had difficulty eating them. Subsequently,

the peanut oil was replaced by 14·0 g rapeseed oil (Sysco) and

added to the test meals. Food-grade retinyl palmitate,

kindly donated by Kazi Jamil of the International Centre

for Diarrhoeal Disease Research, was diluted in peanut oil.

Each of the porridges was prepared immediately prior to

consumption.

A proximate analysis was performed on each of the biofor-

tified cassava porridges (Covance), but was calculated for the

unfortified white cassava porridge using the Nutrition Data

System for Research (The Nutrition Coordinating Center,

University of Minnesota) software (Table 2). Macronutrient

and micronutrient concentrations for Fe, phytate, vitamin C

Fig. 1. Appearance of biofortified cassava before and after processing,

including the drained water after simmering.
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and other micronutrients and food constituents of interest

were also estimated with the Nutrition Data System for

Research (The Nutrition Coordinating Center, University of

Minnesota) software (Table 3). The three test meals were

served in random order. An evening meal that was low in

fat, vitamin A and provitamin A carotenoids was fed 9.5 h

after the test meal. The evening meal provided the same

nutrient specification as the foods provided during the 3 d

before the test.

Isolation of postprandial lipoprotein fraction

Throughout all blood processing procedures and analyses,

laboratory workers were blinded to the dietary treatment

received by the subject. Blood was typically collected by a

catheter inserted into an anticubital vein. Approximately

30 min before the porridge test meal, the catheter was

inserted and a baseline sample of 13 ml blood was collected.

Baseline blood was used for complete blood count analysis

performed on a CellDyn 3200 (Abbott Laboratories), as well

as for carotenoid and vitamin A tests. Postprandial blood

samples (10 ml) were collected at 2, 3·5, 5, 7·25 and 9·5 h

after the test meal. After the 9·5 h blood draw, the catheter

was withdrawn.

Blood was transferred into EDTA vacutainers, wrapped

in foil to protect from light and placed on ice. Plasma was

separated by centrifugation at 1300 g for 10 min at 48C on a

Sorvall DuPont RC-3C (Thermo-Fisher Scientific). All plasma

Table 3. Estimated macro- and micronutrient composition for run-in menu, test day meal excluding porridge and for
white cassava porridge alone*

Analyte Run-in menu Test day excluding porridge Porridge with oil Porridge without oil

Energy
kcal 2178 1781 762 638
kJ 9112 7451 3188 2669

Carbohydrates (g) 428·9 341·5 142·3 142·3
Fat (g) 24·2 24·5 19·5 5·5
Protein (g) 67·7 51·0 9·5 9·5
Fibre (g) 30·9 17·8 9·0 9·0
Vitamin A (mg) 0·004 0·001 0·001† 0·001†
b-Carotene (mg) 0·002 0·009 0·007 0·007
a-Carotene (mg) 0·0 0·0 0·0 0·0
b-Cryptoxanthin (mg)† 0·0 0·0 0·0 0·0
Oxalic acid (mg) 134·8 110·6 1273·5 1271·7
Phytic acid (mg) 922·2 445·9 407·1 407·1
Cu (mg) 1·4 1·0 0·5 0·5
Fe (mg) 17·8 14·6 3·1 3·1
K (mg) 2163·0 1373·0 740·0 740·0
Se (mg) 110·9 97·9 16·3 16·3
Zn (mg) 8·7 7·6 2·0 2·0
Folate (mg) 535·0 398·0 37·0 37·0
Niacin (mg) 20·6 17·3 4·1 4·1
Riboflavin (mg) 1·3 1·3 0·3 0·3
Vitamin C (mg) 19·7 33·7 15·1 15·1
Vitamin D (mg) 0·4 0·4 0·0 0·0

* Values by calculation using the Nutrition Data System for Research version 2009 (The Nutrition Coordinating Center, University of Minne-
sota). Data are based on typical (non-biofortified) white cassava.

† Vitamin A was added in the form of a reference dose of retinyl palmitate, but was not included in this table.

Table 2. Composition of cassava porridge meals (per 100 g)

Biofortified with oil* Biofortified without oil* White with oil†

Energy
kcal 704·0 631·0 762·0
kJ 2945·5 2640·1 3188·2

Fat (g) 19·9 6·0 19·5
Carbohydrates (g) 127·0 139·8 142·3
Protein (g) 6·1 6·0 9·5
Ash (g) 1·5 1·5 3·7
Moisture (g) 420·9 407·4 600·0
Vitamin A (mg)* 0 0 0·30‡
b-Carotene (mg)* 2·02 2·02 0·099
a-Carotene (mg)* 0 0 0
b-Cryptoxanthin (mg)* 0·050 0·050 0·019

* As analysed.
† As calculated using Nutrition Data System for Research (The Nutrition Coordinating Center, University of

Minnesota) software.
‡ Vitamin A was added in the form of a reference dose of retinyl palmitate.
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handling was carried out under gold fluorescent lights in order

to protect these compounds.

The TAG-rich lipoprotein (TRL) fraction, containing newly

absorbed carotenoids and retinyl palmitate, was separated

from plasma by ultracentrifugation(13). A 1 ml aliquot of

plasma was overlaid with NaCl salt solution (density ¼ 1·006

kg/l) in 2·2 ml polyallomer ultracentrifuge tubes (Beckman

Coulter, Inc.). Samples were ultracentrifuged at 100 000 g for

20 min at 48C in a Beckman Coulter Optima TLX (Beckman

Coulter, Inc.), with the use of a swing-out rotor-type Beckman

TLA 100 (Beckman Coulter, Inc.). Tubes were removed from

the ultracentrifuge, placed in a Beckman Centritube Slicer

(Beckman Coulter, Inc.) and sliced at a fixed position. These

procedures resulted in a reproducible TRL fraction consisting

of chylomicrons and large VLDL. Approximately 100ml of the

plasma TRL fraction was removed and dispensed into a 15 ml

test-tube, along with 100ml of echinenone as an internal stan-

dard, and immediately deproteinised with 1 ml methanol

before it was extracted twice with 1 ml hexane. The hexane

layers were dried under N2 and reconstituted in 100ml 90:10

(v/v) methanol–isopropanol. TAG, cholesterol and HDL con-

centrations were measured at each blood draw time point

using a clinical chemistry analyser (Integra 400 Plus, Roche

Diagnostics), while LDL concentrations were measured by

difference.

Analytical procedures

Food samples and the plasma TRL fraction were analysed by

HPLC using reversed-phase chromatography with coulometric

array electrochemical detection. Carotenoids and retinoids

were separated by an ESA MD-150 column (150 mm £

3·2 mm; Dionex (ESA)(14)). The HPLC consisted of an ESA

model 582 solvent delivery system, 542 autosampler and

5600 Coularray electrochemical detector, with a CH30 Eppen-

dorf column heater (Eppendorf). The gradient mobile phases

used were: solvent A (methanol–0·2 M-aqueous ammonium

acetate, 90:10 (v/v), pH 4) and solvent B (methanol–isopropa-

nol–1 M aqueous ammonium acetate, 78:20:2 (by vol.), pH 4).

The column was maintained at 378C throughout. The follow-

ing gradient was used: the mobile phase was maintained at

0 % solvent B from 0 to 10 min, before increasing linearly

from 10 to 20 min to 80 % B and from 20 to 27 min to 100 %

B. It was then abruptly changed to 0 % B at 27 min and main-

tained until the runtime ended at 32 min. Cell potential settings

were 200, 400, 500 and 700 mV. Flow rate was 0·8 ml/min and

the injection volume was 20ml. All samples were analysed in

duplicate. ESA Coularray software version 3.1 (Thermo

Fisher Scientific) was used to collect and integrate all chroma-

tographic data. b-Carotene and echinenone responded predo-

minantly at 400 mV and retinyl palmitate at 700 mV.

Methanol, isopropanol and ammonium acetate were

purchased from Thermo Fisher Scientific. The calibration stan-

dards b-carotene, retinol and retinyl palmitate were purchased

from Sigma-Aldrich and b-cryptoxanthin and a-carotene

standards were purchased from Santa Cruz Biochemicals.

Echinenone, an internal calibration standard, was purchased

from Carotenature. A pooled plasma sample purchased from

UTAK was used to evaluate inter-assay precision of the

plasma TRL fraction. Inter-assay precision ranged between

5 and 11 % for carotenoids and retinoids.

Data analysis

Areas under the concentration–time curve (AUC) were calcu-

lated using trapezoidal approximation after subtracting initial

fasting concentrations for retinyl palmitate and TAG, while

the AUC for b-carotene was calculated by subtracting the

unfortified white cassava control group concentrations at

each time point.

Many retinyl esters in the plasma TRL fraction were too low in

concentration to quantify accurately. As the postprandial retinyl

ester profile is relatively constant, retinyl palmitate, the most

common retinyl ester, can be used to estimate total retinyl

ester formation(15,16). With retinyl palmitate absorption typically

ranging between 75 and 99 %(17,18), we assumed a mid-range

recovery of 90 % retinyl palmitate.

To quantify the bioavailability of b-carotene from the

cassava porridges, fractional absorption was calculated

as described by O’Neill & Thurnham(19). Absorption calculations

were estimated using the assumption that the t1/2 of b-carotene,

retinyl palmitate and chylomicrons were equivalent

(0·192 h)(20,21). The plasma volume (ml) ¼ 927 þ (31·47 £

body weight in kg)(22) and the molecular mass was 536·9 for

b-carotene.

Fractional absorption ¼ ððln 2Þ=t1=2 £ ðAUC £ mass

£ plasma volumeÞÞ=oral dose:

The percentage of b-carotene absorbed was calculated in

two ways using the sum of b-carotene plus retinyl palmitate

AUC(13,19). The first calculation assumed that 1 mol of b-caro-

tene formed 1 mol of retinyl palmitate, which would happen

by eccentric cleavage(23). The second calculation assumed cen-

tral cleavage of b-carotene, the major path of retinyl palmitate

formation. In central cleavage, 2 mol of retinyl palmitate are

formed from 1 mol of b-carotene(23).

To quantify bioconversion, vitamin A equivalence was

calculated as described by Li et al.(16). The retinyl palmitate

AUC values were converted to mass (nmol) retinyl palmitate

in the entire plasma pool by multiplying the TRL retinyl palmi-

tate concentration (nmol/l plasma) by the calculated plasma

volume (0·0427 litres £ kg body weight) of each subject(24,25).

Vitamin A (nmol) formed from the biofortified cassava ¼

(retinyl palmitate AUC after ingestion of the biofortified

cassava/retinyl palmitate AUC after ingestion of the white

cassava with retinyl palmitate reference dose) £ the vitamin

A reference dose of 1047·1 nmol.

Bioconversion factor for b-carotene in biofortified cassava ¼

b-carotene equivalents in biofortified cassava (nmol) £ molecular

weight (MW) b-carotene (536·8)/vitamin A formed from

b-carotene equivalents (nmol) £ MW retinol (286·5).

Differences in AUC and plasma TRL fraction values

were analysed using repeated-measures ANOVA, while vita-

min A equivalence differences were analysed using paired
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Student t tests. One-tailed t tests were used for a priori

hypotheses, including the greater values of b-carotene and

retinyl palmitate expected in the biofortified meal with oil v.

without oil and the higher levels of b-carotene expected

in the biofortified meals v. the non-fortified white cassava.

Two tailed t tests were used when there was no hypothesis

regarding the direction of the effect. P values ,0·05 were

considered to be statistically significant. Statistical analyses

were performed using Statistical Analysis Systems statistical

software (Windows version 9.3; SAS Institute, Inc.).

Results

Subject characteristics

Healthy premenopausal women with normal BMI, cholesterol

and TAG were recruited for the present study. Their blood

chemistries and demographic characteristics are shown in

Table 1. Although the cassava meals were large (approxi-

mately 34 % of a 8368 kJ (2000 kcal) diet), ten of twelve sub-

jects completed the study and only one left because of

portion size. BMI, cholesterol and TAG concentrations did

not change during the study.

Two women left the study prior to completion, one for

scheduling conflicts, while the other disliked the porridge

portion size served. Table 1 shows the demographic character-

istics of the subjects who completed the study.

Composition of test meal

Biofortified cassava had pale cream-orange coloured flesh

before processing and thus appeared to be an unpromising

food source for enhancing carotenoids. However, gentle sim-

mering appeared to release carotenoids from the food matrix,

resulting in a yellow-orange appearance (Fig. 1).

The carotenoid concentrations and proximate analysis

measurements for the biofortified cassava porridges are

shown in Table 2. The macro- and micronutrient composition

of these porridges and of the entire run-in and test day meals

was also calculated with Nutrition Data System for Research

(The Nutrition Coordinating Center, University of Minnesota)

software (Table 3). The composition of these meals did not

differ substantially, except for the increase of fat in the

biofortified cassava with oil (BFO) test meal. The meals pro-

vided were low in vitamin A, provitamin A carotenoids and

fat, as planned.

Two lots of cassava were shipped from CIAT, 4 months

apart. The first lot was used for method development and

the second for the intervention study. Despite being from

the same cultivar, they had substantially different carotenoid

and cyanogenic glycoside concentrations. The b-carotene

concentration of the first lot was 8·0mg/g fresh weight,

while that of the second lot was 21·1mg/g after transporting,

freezing and thawing. Cassava roots were not waxed during

shipment or storage, and the second lot appeared to have

lost moisture, with a higher percentage dry weight (40.9 %)

and carotenoid concentration than typical. The b-carotene

concentrations for the second lot of cassava during processing

are shown in Table 4. Despite the developing yellow-orange

colour brought on by simmering, the b-carotene concentra-

tion in cassava actually decreased to 20·2mg/g, a loss of 4 %

during processing and cooking.

The small amount of b-carotene in the white cassava

appeared to decrease less than 1 % during these procedures.

These relatively small losses were probably due to the precau-

tions taken to preserve b-carotene content during processing,

such as heating the cassava to a temperature that resulted

in only a slight simmer and later reheating it for the least

amount of time necessary to reach minimal reheating tempera-

ture of 748C just prior to feeding.

The initial cyanide content of the biofortified cassava for

the first lot was 282 parts per million (ppm) and 5·5 ppm for

the second lot, a 50-fold difference. Low cyanogenic glycoside

concentrations were also found in the locally purchased

white cassava (5·3 ppm). The washing procedures developed

for the present study removed almost all of the cyanogenic

glycosides from the cassava. The effects of all processing

procedures, including transportation, freezing and thawing,

storage, washing and simmering, on cyanogen concentrations

are also shown in Table 4. Both testing methods showed

non-detectable cyanide concentrations in our final prepared

products (by both the in-house test and the confirmatory

testing by Applied Specialization and Consulting).

Postprandial TAG response

The difference in TAG AUC after consuming the high-fat BFO

(P,0·0002) and unfortified white cassava porridge with reti-

nyl palmitate (WCþRP; P,0·0001) meals was significant com-

pared with the low-fat (BF, biofortified cassava without oil)

meal (Table 5). After consuming the BFO and WCþRP

meals, plasma TRL fraction concentrations (nmol/l) rose

Table 4. Comparison of change in b-carotene and cyanide concentrations
before and after processing

Biofortified cassava

Lot no. 1 Lot no. 2 White cassava

Initial cyanide content (ppm) 280 5·51 5·27
Final cyanide content (ppm) 0 0 0
Initial b-carotene content (mg/g) 8* 21·1† 0·99
Final b-carotene content (mg/g) NT 20·2 0·99

ppm, Parts per million; NT, not tested.
* Fresh weight.
† Weight after transport, storage, freezing and thawing.
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within 2 h and maintained high concentrations for several

hours before decreasing (Fig. 2).

Postprandial b-carotene and retinyl palmitate response

The chromatography method used in the present study was

sensitive enough to measure b-carotene and retinyl palmitate

in the TRL fraction of plasma, but could not quantify all the

less common retinyl esters and carotenoids found in plasma

(data not shown). The TRL fraction had properties character-

istic of chylomicrons and large VLDL(26–30). This is appropri-

ate, as recently consumed b-carotene and retinyl palmitate

are found in both of these lipoprotein fractions(16,28,31).

The plasma TRL fraction b-carotene concentrations were

greater in the BFO meal than in the WC þ RP meal (P¼0·05;

Table 5). However, the BF meal was non-significantly different

from the WCþRP meal (P¼0·16). b-Carotene concentrations

were highest in the BFO meal, as expected, but the effect of

added oil compared with the BF meal was not significant

(P,0·4). The high b-carotene concentration after consuming

the BFO meal at 2 h suggests that added oil may have resulted

in faster absorption and metabolism of the b-carotene in the

biofortified cassava (Fig. 3).

Retinyl palmitate concentrations increased with all treat-

ments, because a retinyl palmitate reference dose was

included in the WCþRP meal (Fig. 4). The retinyl palmitate

AUC for the BFO and BF meals were significantly greater

than that of WCþRP (P,0·02 and P,0·05, respectively;

Table 5). The AUC for the BFO and BF meals were compared

with baseline (as retinyl palmitate would not be expected

to be generated by WC alone, without the retinyl palmitate

reference dose). Both increased significantly (P,0·0001 for

both). The retinyl palmitate AUC for the BFO meal did not

differ from the BF meal (P,0·35).

If we calculate the fractional absorption rate of b-carotene

and retinyl palmitate assuming eccentric cleavage, it was

33·6 % for the BFO meal and 27·4 % for the BF meal. Assuming

central cleavage, fractional absorption was 21·4 % for the BFO

meal and 16·7 % for the BF meal.

The mean vitamin A equivalence values for each of the

biofortified cassava meals are shown in Table 6. The mean

amount of b-carotene in the biofortified cassava, with the

vitamin A activity equivalent of 1mg retinol, ranged from

0·3 to 10·6 and 1·4 to 12·1mg for the BFO and BF meals,

respectively. The vitamin A equivalence values for the BFO

and BF meals was non-significantly different (P,0·44).

Discussion

The present study measured the effect of meals containing

b-carotene-biofortified cassava on the plasma TRL fraction

response of b-carotene and retinyl palmitate in healthy,

well-nourished women. It used ultracentrifugation to isolate

the plasma TRL fraction, which allows one to separate and

measure newly absorbed b-carotene and newly formed retinyl

palmitate to evaluate the bioavailability and bioconversion of

b-carotene from biofortified cassava in human subjects. One

important result from the present study is that feeding biofor-

tified cassava increased b-carotene and retinyl palmitate in the

plasma TRL fraction of these women. A second important

result is that b-carotene from biofortified cassava, with or

without added oil, was efficiently converted into vitamin A,

with an average vitamin A equivalence of 4·4:1.

The inclusion of fat in a meal can increase carotenoid

bioavailability(11). However, there is considerable debate

about the effect of different concentrations of fat on caroten-

oid absorption(11). In the present study, we compared the

effects of a low-fat meal (6 g) with a higher-fat meal (20 g).

Similar to other high-fat v. low-fat meal studies, the higher

amount of fat included in the BFO and WC þ RP meals

resulted in a significantly higher TAG AUC in the TRL

plasma fraction compared with the low-fat meal(30). Despite

Table 5. AUC values for TAG, b-carotene and retinyl palmitate in TAG-rich lipoprotein layer after
consumption of cassava porridges

(Mean values with their standard errors)

Biofortified cas-
sava with oil

Biofortified cas-
sava without oil

White cassava
retinyl palmitate

with oil

Variable Mean SEM Mean SEM Mean SEM

TAG (mmol £ h/l) 6·65* 1·59 2·11 0·54 6·83* 1·36
b-Carotene (normalised, nmol £ h/l) 32·41† 20·91 21·45 13·18 0‡
Retinyl palmitate (nmol £ h/l) 86·93* 12·75 75·88* 11·56 48·38 9·25

* Mean value was significantly different from the biofortified cassava without oil meal (P,0·0002).
† Mean value was significantly different from the white cassava meal (P¼0·05).
‡ Not detectable.
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Fig. 2. Change in TAG content in plasma TAG-rich lipoproteins after subjects

ingested biofortified cassava with oil ( ) containing 20 g total fat, bioforti-

fied cassava without oil ( ) containing 6 g total fat or an unfortified white

cassava meal with oil (retinyl palmitate, ) containing 20 g total fat. Values

are means, with their standard errors represented by vertical bars.
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this result, there was no significant difference in the AUC for

b-carotene or retinyl palmitate after consuming the higher-

fat BFO meal (v. the lower-fat BF meal). However, the AUC

for b-carotene was 66 % higher in the BFO meal (v. the BF

meal). Thus, the present results are somewhat equivocal, as

they suggest a real difference that did not attain statistical sig-

nificance because of our small number of subjects and the

large variation in b-carotene concentrations commonly

observed in human studies. The results from other investi-

gations on the effect of different amounts of fat on carotenoid

absorption are also mixed. Some studies indicate that only a

small amount of fat (3–5 g) is required to substantially

increase carotenoid bioavailability(32,33) and that b-carotene

bioavailability does not significantly improve when consumed

with a high-fat v. a low fat meal(34). Other studies show

improved absorption of b-carotene with high fat v. low fat

intake(30,35). Further studies are necessary to determine the

effects of adding fat to the diet.

Interestingly, although the two biofortified cassava meals

had similar bioavailability overall, the rate at which b-carotene

appeared in the plasma TRL fraction appeared to be different

(Fig. 3). However, the difference at this time point was not

statistically significant (P,0·21), presumably because of the

large variation in b-carotene concentrations in the group

and the low number of subjects. Although other studies

have reported rapid b-carotene appearances in the plasma

TRL fraction(13,36–38), their peak concentrations appeared

later. It is possible that the increased amount of fat in the

BFO resulted in b-carotene being packaged into chylomicrons

and secreted out of the enterocyte at a faster rate, as TAG con-

centrations also increased rapidly (Fig. 2). Another potential

influence on the absorption results for the present study was

the processing procedure. In order to remove cyanide, the

cassava was chopped, lightly heated in water and cooled

before being re-heated prior to serving. This may be relevant

because the chopping and heating involved in this procedure

effectively disrupts plant cell walls and carotenoid–protein

complexes and results in increased bioavailability(39,40).

The fractional absorption rates that we determined for the

BFO and BF meals are somewhat difficult to compare with

past human studies, because most of these studies had sub-

jects consuming high-dose b-carotene supplements given in

oil, which tend to be better absorbed than carotenoids from

food(13,19,28). Nevertheless, fractional absorption rates seen in

these studies ranged from 2·5 to 22·3 % for eccentric cleavage.

The only human study measuring fractional absorption of

b-carotene in food used red palm oil and had an absorption

of 65–68 %(38).

Furthermore, even when pure supplements are given,

absorption and conversion of b-carotene to vitamin A are

variable(41–43), in part because of polymorphisms in the

b,b-carotene-15,150-monoxygenase gene(44). Although the

b-carotene and retinyl palmitate AUC values in the present

study were low, they are similar to other studies using food-

derived b-carotene(16,45).

The vitamin A equivalence of the biofortified cassava was

4·2:1 for the BFO meal and 4·5:1 for the BF meal. This is com-

parable to a study that estimated vitamin A equivalence to be

3·7:1 in vitamin A-depleted Mongolian gerbils(12), an appropri-

ate small animal model for human provitamin A absorption

and metabolism(46). In addition, a human study that measured

b-carotene and retinyl palmitate response in the TRL plasma

fraction estimated biofortified cassava to have a vitamin A

equivalence of 2·8:1 (W. Liu, unpublished results). This effi-

cient conversion is also similar to that seen in other b-caro-

tene-biofortified foods, which appear to have higher

bioconversion rates than natural sources of this compound(47).

For example, studies in human subjects, mostly involving

stable isotopes, have estimated the vitamin A equivalence of

b-carotene in biofortified maize and rice to range from 3:1

to 6·5:1(16,45,48), while natural sources of b-carotene have

ranged from 10:1 to 28:1(25,49–53). These results indicate a

more efficient conversion than the present estimate (12mg

b-carotene:1mg retinol from food)(11).

The efficiency of b-carotene bioconversion appears to be

influenced by vitamin A status(47). The subjects in the present

study were well-nourished and probably had more than ade-

quate reserves of vitamin A. The absorption of b-carotene

from biofortified cassava might be greater in healthy people

with marginal vitamin A status. Furthermore, studies in target

populations of Africans or Asians with marginal vitamin A

status might produce even stronger results than those seen

in the present study (Figs. 3 and 4).

Table 6. Vitamin A equivalence of biofortified cassava meal with or
without oil*†

Biofortified cassava with
oil by weight

Biofortified cassava
without oil by weight

Mean SD Mean SD

4·2 3·1 4·5 3·1

* Calculated as mg of b-carotene equivalents in biofortified cassava without oil cas-
sava/mg of retinol formed.

† The present US Institute of Medicine retinol activity equivalents state that 12mg
of food-derived b-carotene equivalents form 1mg retinol(11).
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Fig. 3. b-Carotene concentration in plasma TAG-rich lipoproteins after sub-

jects ingested either 2 mg b-carotene from biofortified cassava with oil

(BFO, ) or biofortified cassava without oil (BF, ). The unfortified white

cassava, containing a negligible amount of b-carotene, was used as a control

and its concentrations at each time point were subtracted from the BFO and

BF groups. Values are means, with their standard errors represented by

vertical bars.
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The biofortified cassava used in the present study contained

b-carotene concentrations similar to those observed in other

varieties of biofortified cassava, which have concentrations

as high as 2·55 mg/100 g fresh weight(54). Therefore, the

present results may be extrapolated to other biofortified

cassava varieties. Given its substantial b-carotene concen-

trations, efficient bioconversion and the high dietary intake

of cassava in many African countries (310–820 g/d)(3), current

varieties of biofortified cassava may be suitable for food-based

interventions(54).

That being said, there remain issues with biofortified

cassava that should be addressed before it can be promoted

as a vitamin A food source and incorporated into food-

based interventions. For example, cyanide concentrations in

cassava can potentially reach toxic concentrations, typically

ranging from 10 to 500 mg cyanide equivalents/kg dry

weight(55). Nevertheless, our observation of a 50-fold variation

in cyanogenic glycoside concentration is surprising, given that

the two lots were from within the same cultivar. Variations

may be due to differences in the plants’ age and variety or

environmental factors(56). This is important information,

because biofortified cassava is likely to be grown in a variety

of conditions and climates, which might influence both

the carotenoid and cyanide concentrations of these plants.

The present results indicate that concentrations of cyanogenic

glycosides can vary significantly even in the same variety

of biofortified cassava, suggesting that great care should be

taken during its preparation.

The cassava processing method that we used to remove

cyanide was developed so that we could control the cyanide

removal process while retaining carotenoids. It is more elabo-

rate than most methods used by consumers of cassava and

requires a large amount of water. Furthermore, although the

cyanide content of the biofortified cassava from lot 2 probably

could have been removed by simple soaking, roasting or

drying, the high cyanide concentration of lot 1 would

have required more extensive processing, such as prolonged

soaking in running water or garification. Eating the cassava

from lot 2 with minimal preparation would be safe, but con-

suming the cassava from lot 1 would have been inadvisable.

Unfortunately, these procedures may negatively affect

b-carotene concentrations. Although the mild processing

techniques used in the present study resulted in a relatively

low loss of b-carotene (4 %), studies testing more common

processing procedures, such as sun-drying, boiling, frying

and gari preparation, show decreases in b-carotene concen-

tration ranging from 5·5 to 78·5 %(9,10). Therefore, when

attempting to lower cyanide content, the effects of processing

on the b-carotene content of biofortified cassava must also

be considered.

Even so, the present results are promising. These results

indicate that present cultivars of biofortified cassava may

be an effective component of food-based interventions in

vitamin A deficiency in populations who consume this food

as a staple part of their diet.
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