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Free Multivariate w*-Semicrossed Products:
Reflexivity and the Bicommutant Property
Dedicated to thememory of Donald E. Sarason

Robert T. Bickerton and Evgenios T. A. Kakariadis

Abstract. We study w*-semicrossed products over actions of the free semigroup and the free abelian
semigroup on (possibly non-selfadjoint) w*-closed algebras. We show that they are re�exive when
the dynamics are implemented by uniformly bounded families of invertible row operators. Combin-
ingwith results ofHelmer,we derive thatw*-semicrossed products of factors (on a separableHilbert
space) are re�exive. Furthermore, we show that w*-semicrossed products of automorphic actions
on maximal abelian selfadjoint algebras are re�exive. In all cases we prove that the w*-semicrossed
products have the bicommutant property if and only if the ambient algebra of the dynamics does
also.

1 Introduction

Re�exivity and the bicommutant property are closely related to invariant subspaces
problems. Aw*-closed algebraA is re�exive if it coincideswith the algebra that leaves
invariant the invariant subspaces of A. It is said to have the bicommutant property if
it coincides with its bicommutant A′′. Von Neumann algebras are re�exive and have
the bicommutant property; however, this seems to be too crude to be the prototype.
Results are considerably harder to get for nonselfadjoint algebras. For exampleA(∞)

is always re�exive but it may diòer from (A(∞))′′, e.g., when A /= A′′. Arveson [4]
also introduced a function β to measure re�exivity. An algebraA is hyper-re�exive if
β is equivalent to the distance function from A. A remarkable result of Bercovici [7]
asserts that every wot-closed algebrawhose commutant contains two isometrieswith
orthogonal ranges is hyper-re�exive.

_e re�exivity term is attributed to Halmos and was ûrst used by Radjavi–Rosen-
thal [43]. It is considered as Noncommutative Spectral Synthesis in conjunction with
synthesis problems in commutativeHarmonic Analysis, and it oòers a systematicway
of reconstructing an algebra from a set of invariant subspaces; see the excellent expo-
sition of Arveson [5]. _e ûrst result regarding re�exivity concerns theHardy algebra
of the disc and itwas proved by Sarason [45]. It inspired a great amount of subsequent
research, e.g., Radjavi-Rosenthal [44], including the seminal work of Arveson [3] on
CSL algebras. Further examples include the important class of nest algebras [13], the
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Hp Hardy algebras examined by Peligrad [39], and algebras of commuting isometries
or tensor products with the Hardy algebras studied by Ptak [42]. Algebras related to
the free semigroup Fd+ were examined in a number of papers by Arias and Popescu
[2,41], Davidson, Katsoulis, and Pitts [16, 18], Kennedy [32], and Fuller and Kennedy
[19]. In far more generality, free semigroupoid algebras were also tackled by Kribs-
Power [33]. Representations of the Heisenberg semigroup were recently studied by
Anoussis, Katavolos, and Todorov [1].
Algebras related to dynamical systems (sometimes appearing as “analytic crossed

products” in older papers)were considered byMcAsey,Muhly, and Saito [37],Katavo-
los and Power [31], andKastis and Power [30]. One-variable systemswere further ex-
amined by the second author [24]. Hisworkwas extended byHelmer [22] to themuch
broader context ofHardy algebras ofW*-correspondences in the sense ofMuhly-Solel
[38], and by Peligrad [40] to �ows on von Neumann algebras. Essential properties of
the algebras of [24] were explored by Hasegawa [21].

_e term “analytic crossed products” has now been replaced by “semicrossed prod-
ucts”. In the last û�y years there has been a systematic approach, especially for their
norm-closed variants. _e list of references is substantially too long to be included
here and the reader may refer to [15]. We follow the work of the second author with
Peters [28] andwithDavidson and Fuller [14], andwe interpret a semicrossed product
as an algebra densely spanned by generalized analytic polynomials subject to a set of
covariance relations. From the study in [14] it appears that semicrossed products over
Fd+ and Zd+ are themost tractable as the semigroups are ûnitely generated. _erefore,
it is natural to examine their w*-closed variants, i.e., the w*-semicrossed products in
the sense of [24]. _ese algebras arise through a Fock construction, and in this paper
we study the re�exivity and the bicommutant property for this speciûc representation.
Additional motivation comes from the recent results of Helmer [22]. An applica-

tion of his results shows re�exivity of semicrossed products of Type II or III factors
over Fd+. With somemodiûcations the arguments of [22] apply for Type II or III fac-
tors over Zd+. Here we wish to conclude this programme by considering endomor-
phisms of B(H). _us we focus on actions of Fd+ or Zd+ such that each generator is
implemented by a Cuntz family. However we do not restrict just on B(H). _ere
exists a plethora of dynamics implemented by Cuntz families appearing previously in
the works of Laca [35], Courtney, Muhly, and Schmidt [10], and the second author
with Peters [28]. _ey arise naturally and form generalizations of the Cuntz–Krieger
odometer (Examples 3.5).

We underline that our setting accommodates Zd+-actions where the generators αi
are implemented by unitaries but thosemay not li� to a unitary action of Zd+, i.e., the
unitaries implementing the actions may not commute. For example, any two com-
muting automorphisms over B(H) are implemented by two unitaries that satisfy a
Weyl’s relation andmay not commute (see Example 3.10). By using results of Laca [35]
we are able to determine when an automorphism of B(H) commutes with speciûc
endomorphisms induced by two Cuntz isometries (see Examples 3.12 and 3.13). _e
interested reader is directed to the PhD thesis of the ûrst author (in progress) for a
more systematic study of automorphisms commutingwith endomorphisms ofB(H)

that are induced by a cyclic free atomic representation.
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Our main results on re�exivity appear in Corollaries 5.3 and 5.12 and are summa-
rized in the following theorem. If n i is the multiplicity of the Cuntz family imple-
menting the i-th generator of the action, then we deûne the capacity of a system to
be

N ∶=
d

∑
i=1

n i for an Fd+-system, and M ∶=
d

∏
i=1

n i for a Zd+-system.

_eorem 1.1 (Corollaries 5.3 and 5.12) Let α be an action of Fd+ or Zd+ on A such
that each generator of α is implemented by a Cuntz family. If the capacity of the system
is greater than 1, then the resulting w*-semicrossed products are (hereditarily) hyper-
re�exive. If the capacity of the system is 1 and A is re�exive then the resulting w*-
semicrossed products are re�exive.

In fact wemanage to tackle actions implemented by invertible row operators that
satisfy a uniform bound hypothesis (_eorems 5.2 and 5.11). We call these uniformly
bounded spatial actions.

_e strategy we follow for Fd+-systems is to realize the w*-semicrossed product as
a subspace of B(H)⊗LN (_eorem 5.1). Here LN denotes the free semigroup alge-
bra generated by the Fock representation for the capacity N of the system. Notice that
evenwhen d = 1wemanage to pass to (a subspace of) the tensor productB(H)⊗Ln1 .
When N ≥ 2,B(H)⊗LN is hyper-re�exive and has property A1(1) by [7, 17]. Hence,
by results ofKraus–Larson [29] andDavidson [12], it follows thatB(H)⊗LN ishered-
itarily hyper-re�exive. WhenN = 1 then the result follows from [24]. For theZd+-cases
we decompose the w*-semicrossed product along the directions (Proposition 3.16)
and apply similar arguments for the last factor of such a decomposition.

_e passage insideB(H)⊗LN relies on the strange phenomenon that every system
on B(H) given by a Cuntz family ofmultiplicity n i is equivalent to the trivial action
of Fn i

+ onB(H). _iswas ûrst observed by the second authorwith Katsoulis [26] and
with Peters [28]. Surprisingly there is a strong connection with the fact that module
sums over the Cuntz algebra do not attain a unique basis. Gipson [20] attacks this
problem eòectively by introducing the notion of the invariant basis number.

In combination with [22] we encounter systems over any factor and automorphic
systems overmaximal abelian selfadjoint algebras (Corollaries 5.4, 5.10, 5.14, and 5.17).
It appears that the arguments ofHelmer [22] treat awider class of dynamical systems.
We include this information in _eorems 5.9 and 5.16. Alongside this, we translate
his re�exivity proof in our context.

Wemention that our re�exivity results can be acquiredwithout referring to hyper-
re�exivity, when A is re�exive. To this end we provide a straightforward proof of
that B(H)⊗Ld is re�exive (Proposition 2.8). _e line of reasoning resembles to [24,
33] andmay ûnd applications to other settings, e.g., algebras over weighted graphs of
Kribs, Levene, and Power [34].
By applying [12,29] we get that the hyper-re�exivity constant in _eorems 5.2 and

5.11 is at most 7 ⋅ K4 when N ,M ≥ 2 (where K is the uniform bound for the invert-
ible row operators). However, it can be decreased further to 3 ⋅ K4. _is follows by
analyzing their commutant. In each case we identify the commutant with a twisted
w*-semicrossed product over the commutant (_eorems 4.1 and 4.4). In the norm
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context, such algebras were studied by the second author with Peters [27]. _ey form
the nonselfadjoint analogues of the twisted C*-crossed product introduced earlier by
Cuntz [11]. _emethod of twisting for w*-closed algebras was explored for automor-
phic Z+-actions in [24] and applies also for Zd+-actions here. Twisting twice brings
us back to the w*-semicrossed product over the bicommutant. _erefore, we obtain
Corollaries 4.2 and 4.5, which can be summarized in the following statement.

_eorem 1.2 (Corollaries 4.2 and 4.5) Let α be an action of Fd+ or Zd+ on a w*-
closed algebra A. Suppose that each generator of α is implemented by a Cuntz family.
_en A has the bicommutant property if and only if any (and thus all) of the resulting
w*-semicrossed products does so.

For our analysis we use a generalized Fejér Lemma; details are given in Section 2.
For directly showing the re�exivity of B(H)⊗Ld we use ûnite dimensional cyclic
modules. In Section 3 we deûne the algebras that play the role of the w*-semicrossed
products. However, the important feature in Fd+ is the separation between le� and
right lower triangular operators. Obviously this separation is redundant for Zd+. _e
results about the commutant and re�exivity appear in Sections 4 and 5, respectively.

We underline that Fd+ and Zd+ are tractable due to their simple structure. Another
interesting class of algebras is formed by systems over the Heisenberg semigroup [1].
We leave this class for a subsequent project.

2 Preliminaries

For d ∈ Z+ ∪ {∞}, we write [d] ∶= {1, . . . , d}, so that [∞] = Z+. We highlight that d
is always ûnite in Zd+, but d ∈ {1, 2, . . . ,∞} in Fd+. We will write fµ for a symbol f and
a word µ = µm ⋅ ⋅ ⋅ µ1 ∈ Fd+ to denote fµ = fµm ⋅ ⋅ ⋅ fµ1 . To avoid any ambiguity as to what
f∗µ means we use the notation (fµ)

∗.
We use capital letters for operators acting on tensor product Hilbert spaces and

small letters for operators acting on their factors. _is reduces considerably the usage
of parentheses (whichwe omit)when the operators act on elementary tensor vectors.

Sums over an inûnite family of operators are taken in the strong operator topol-
ogy with respect to the net over ûnite subsets. For the algebras A1 ⊆ B(H1) and
A2 ⊆ B(H2) we write A1⊗A2 for the w*-closure of their algebraic tensor product in
B(H1 ⊗H2).

2.1 Free Semigroup Operators

We endow Fd+ with a (le�) partial ordering given by

ν ≤l µ if there exists z ∈ Fd+ such that µ = zν.

We want to keep track of whether we concatenate on the le� or on the right, and we
also consider the right version

ν ≤r µ if there exists z ∈ Fd+ such that µ = νz.
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For a word µ = µk ⋅ ⋅ ⋅ µ1 we write µ ∶= µ1 ⋅ ⋅ ⋅ µk for the reversed word of µ. We deûne
the le� and right creation operators on ℓ2(Fd+) by

lµew = eµw and rνew = ewν .

Notice here that rν is the product rν∣ν∣ ⋅ ⋅ ⋅ rν1 and it is the reverse notation of what was
used in [18]. We write

Ld ∶= alg
wot

{lµ ∣ µ ∈ Fd+} and Rd ∶= alg
wot

{rµ ∣ µ ∈ Fd+}.

Fejér’s Lemma (which applies) implies that there is no diòerence in considering the
w*-topology instead, i.e.,

Ld = alg
w*

{lµ ∣ µ ∈ Fd+} and Rd = alg
w*

{rµ ∣ µ ∈ Fd+}.

_e Fourier co-eõcients in the w*- and the wot-setting coincide.

Deûnition 2.1 For n ∈ Z+ ∪ {∞} we say that a row operator u = [u1 ⋅ ⋅ ⋅un ⋅ ⋅ ⋅] ∈

B(H ⊗ ℓ2(n),H) is invertible if there exists a column operator v = [v1 ⋅ ⋅ ⋅ vn ⋅ ⋅ ⋅]
t ∈

B(H,H ⊗ ℓ2(n)) such that

vu = IH⊗ℓ2(n) and ∑
i∈[n]

u iv i = IH .

In particular we have that v iu j = δ i , jIH and that ∥∑i∈F u iv i∥ ≤ 1 for any ûnite
F ⊆ [n]. Indeed, if PF is the projection on HF ∶= span{ξ ⊗ e i ∣ i ∈ F}, then

∥∑
i∈F

u iv ih∥ = ∥ ∑
i∈[n]

u iv iPFh∥ = ∥PFh∥ = ∥h∥

for all h ∈ HF . We will consider actions implemented by invertible row operators
subject to a uniform bound.

Deûnition 2.2 Let {u i}i∈[d] be a family of invertible row operators such that u i =

[u i , j i ] j i∈[n i]. We say that {u i}i∈[d] is uniformly bounded if the operators

ûµm ⋅⋅⋅µ1 = uµm ⋅ (uµm−1 ⊗ I[nµm ]) ⋅ ⋅ ⋅ (uµ1 ⊗ I[nµm ⋅⋅⋅nµ2 ]
)

and their inverses

v̂µ1 ⋅⋅⋅µm = (vµ1 ⊗ I[nµm ⋅⋅⋅nµ2 ]
) ⋅ ⋅ ⋅ (vµm−1 ⊗ I[nµm ]) ⋅ vµm

are uniformly bounded with respect to µm ⋅ ⋅ ⋅ µ1 ∈ Fd+.

Notice that if n i = 1 for all i ∈ [d], then ûµm ⋅⋅⋅µ1 = uµm ⋅ ⋅ ⋅uµ1 = uµ . In fact ûµm ⋅⋅⋅µ1 is
the row operator of all possible products of the uµ i , jνi . Let us exhibit this construction
with an example for ûnitemultiplicities.

Example 2.3 Let the row operators u1 and u2 with n1 = 2 and n2 = 3. _en the
operator û12 is given by

û12 = u1 ⋅ (u2 ⊗ In1) = [u1,1 u1,2] ⋅ [
[u2,1 u2,2 u2,3] ⋅

⋅ [u2,1 u2,2 u2,3]
]

= [u1,1u2,1 u1,1u2,2 u1,1u2,3 u1,2u2,1 u1,2u2,2 u1,2u2,3].
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Similar remarks hold for Zd+. Following the notation of [14] we write i for the ele-
ments in the canonical basis of Zd+ and

n = (n1 , . . . , nd) =
d

∑
i=1

n i i

for the elements in Zd+. We use the same notation for elements in Rd .
_e positive cone Zd+ induces a partial order in Zd given by

n ≤ m if there exists z ∈ Zd+ such that m = z + n.

Due to commutativity, there is no distinction between a le� and a right version. We
deûne the creation operators in ℓ2(Zd+) by lmew = em+w , and we write

H∞
(Zd+) ∶= alg

wot
{lm ∣ m ∈ Zd+}.

Fejér’s Lemma (which applies) forH∞(Zd+) implies that there is no diòerence in con-
sidering the w*-topology instead of the weak operator topology.

2.2 Lower Triangular Operators

We ûx a Hilbert spaceH and consider H ⊗ ℓ2(Fd+). _en B(H ⊗ ℓ2(Fd+)) admits a
point-w*-continuous action induced by the unitaries

Us ξ ⊗ ew = e i∣w∣s ξ ⊗ ew for all ξ ⊗ ew ,

with s ∈ [−π, π]. For T ∈ B(H ⊗ ℓ2(Fd+)) and m ∈ Z+ the m-th Fourier coeõcient is
then given by

Gm(T) ∶=
1
2π ∫

π

−π
UsTU∗

s e
−imsds,

where the integral is considered in the w*-topology of B(H ⊗ ℓ2(Fd+)) for the Rie-
mann sums. An application of Fejér’s Lemma implies that the Cesàro sums

σn+1(T) ∶=
n

∑
k=−n

( 1 −
∣k∣

n + 1
)Gk(T)

converge to T in the w*-topology. For T ∈ B(H ⊗ ℓ2(Fd+)), we write Tµ ,ν ∈ B(H)

for the (µ, ν)-entry given by

⟨Tµ ,ν ξ, η⟩ = ⟨T ξ ⊗ eν , η ⊗ eµ⟩ for all ξ, η ∈H.

Deûnition 2.4 An operator T ∈ B(H⊗ ℓ2(Fd+)) is a le� lower triangular operator if
Tµ ,ν = 0 whenever ν /<l µ. In a dualway T ∈ B(H⊗ℓ2(Fd+)) is a right lower triangular
operator if Tµ ,ν = 0 whenever ν /<r µ.

_e next proposition shows that the Fourier co-eõcients induce a graded structure
on lower triangular operators. For µ, ν ∈ Fd+ we write

Lµ ∶= IH ⊗ lµ and Rν ∶= IH ⊗ rν .

From now on we write pw for the projection of ℓ2(Fd+) to ew .
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Proposition 2.5 If T is a le� lower triangular operator in B(H ⊗ ℓ2(Fd+)), then

Gm(T) =

⎧⎪⎪
⎨
⎪⎪⎩

∑∣µ∣=m∑w∈Fd
+
Lµ(Tµw ,w ⊗ pw) if m ≥ 0,

0 if m < 0.

In a dual way if T is a right lower triangular operator in B(H ⊗ ℓ2(Fd+)), then

Gm(T) =

⎧⎪⎪
⎨
⎪⎪⎩

∑∣µ∣=m∑w∈Fd
+
Rµ(Twµ ,w ⊗ pw) if m ≥ 0,

0 if m < 0.

Proof We will consider just the le� case. _e right case is proved in a similar way.
Fix ν, ν′ ∈ Fd+ and ξ, η ∈H. _en we have that

⟨Gm(T)ξ ⊗ eν , η ⊗ eν′⟩ =
1
2π ∫

π

−π
⟨T ξ ⊗ eν , η ⊗ eν′⟩ e i(−m−∣ν∣+∣ν′∣)sds

= δ∣ν′∣,m+∣ν∣ ⟨Tν′ ,ν ξ, η⟩

for all T ∈ B(H ⊗ ℓ2(Fd+)). Hence, ⟨Gm(T)ξ ⊗ eν , η ⊗ eν′⟩ = 0 when ∣ν′∣ /= m + ∣ν∣.
Suppose that T is in addition a le� lower triangular operator.
First, consider the case where m < 0. If ∣ν′∣ = m + ∣ν∣, then ∣ν′∣ < ∣ν∣, and thus

ν /<l ν′. But then we get that ⟨Tν′ ,ν ξ, η⟩ = 0, since T is le� lower triangular. Hence,
Gm(T) = 0 when m < 0.

Secondly, for m ≥ 0 we have that ⟨Tν′ ,ν ξ, η⟩ = 0 whenever ν /<l ν′. Consequently,
we obtain

⟨Gm(T)ξ ⊗ eν , η ⊗ eν′⟩ =
⎧⎪⎪
⎨
⎪⎪⎩

⟨Tν′ ,ν ξ, η⟩ if ν ≤l ν′ and ∣ν′∣ − ∣ν∣ = m,
0 otherwise.

On the other hand, we compute

∑
∣µ∣=m

∑
w∈Fd

+

⟨Lµ(Tµw ,w ⊗ pw)ξ ⊗ eν , η ⊗ eν′⟩

= ∑
∣µ∣=m

δµν ,ν′ ⟨Tµν ,ν ξ, η⟩

=

⎧⎪⎪
⎨
⎪⎪⎩

⟨Tν′ ,ν ξ, η⟩ if ν ≤l ν′ and ∣ν′∣ − ∣ν∣ = m,
0 otherwise,

and the proof is complete.

Similar conclusions hold for B(H ⊗ ℓ2(Zd+)) by considering the unitaries

Us ξ ⊗ ew = e i∑
d
i=1 w i s i ξ ⊗ ew for all ξ ⊗ ew

for s ∈ [−π, π]d , and the induced Fourier transform on T ∈ B(H⊗ ℓ2(Zd+)) given by

Gm(T) ∶=
1

(2π)d ∫[−π ,π]d
UsTU∗

s e
−i∑d

i=1 m i s ids for m ∈ Zd .

_is follows by extending the arguments concerning the Fourier transform on
B(H ⊗ ℓ2) to the multi-dimensional case. Alternatively, one can see Gm as the
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composition of appropriate in�ations of Gm along the directions of ℓ2(Zd+). For
T ∈ B(H ⊗ ℓ2(Zd+)) we write Tm ,n ∈ B(H) for the operator given by

⟨Tm ,n ξ, η⟩ = ⟨T ξ ⊗ en , η ⊗ em⟩ .

Deûnition 2.6 An operator T ∈ B(H ⊗ ℓ2(Zd+)) is a lower triangular operator if
Tm ,n = 0 whenever n /< m.

By analogy, to Fd+ we write Lm = IH ⊗ lm , which is used for the graded structure
induced by the Fourier co-eõcients. Now we write pw for the projection of ℓ2(Zd+)
to ew .

Proposition 2.7 If T is a lower triangular operator in B(H ⊗ ℓ2(Zd+)), then

Gm(T) =

⎧⎪⎪
⎨
⎪⎪⎩

∑w∈Zd
+
Lm(Tm+w ,w ⊗ pw) if m ∈ Zd+,

0 otherwise.

Proof Let T be a lower triangular operator. _en for n, n′ ∈ Zd+ and ξ, η ∈ H, we
obtain

⟨Gm(T)ξ ⊗ en , η ⊗ en′⟩

=
1

(2π)d ∫[−π ,π]d
⟨T ξ ⊗ en , η ⊗ en′⟩ e−i∑d

i=1(m i+n i−n′i)s ids

= δn′ ,m+n ⟨Tn′ ,n ξ, η⟩ .

If n′ = m + n for m ∉ Zd+, then there exists an i = 1, . . . , d such that n′i < n i . In this
case n /< n′, hence Tn′ ,n = 0 and thus Gm(T) = 0. On the other hand, if m ∈ Zd+, then
a straightforward computation gives

∑
w∈Zd

+

⟨Lm(Tm+w ⊗ pw)ξ ⊗ en , η ⊗ en′⟩ = ⟨Tm+n ,n ξ ⊗ em+n , η ⊗ en′⟩

= δn′ ,m+n ⟨Tm+n ,n ξ, η⟩ ,

and the proof is complete.

2.3 Reflexivity and the A1-property

_e reader is referred to [9] for full details. In short, let A be a unital subalgebra of
B(H). It will be called re�exive if it coincides with

Alg Lat(A) ∶= {T ∈ B(H) ∣ (1 − P)TP = 0 for all P ∈ Lat(A)} .

SinceA is unital, we get that the Alg Lat(A) coincides with the re�exive cover ofA in
the sense of Loginov and Shulman [36], i.e., with

Ref(A) ∶= {T ∈ B(H) ∣ T ξ ∈ Aξ for all ξ ∈H} .

_e algebra A is called hereditarily re�exive if every w*-closed subalgebra of A is re-
�exive. It is immediate that (hereditary) re�exivity is preserved under similarities.
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A w*-closed algebraA ⊆ B(H) is said to have the A1 property if every w*-contin-
uous linear functional on A is given by a rank one functional. It follows by [36] that
a w*-closed algebra A is hereditarily re�exive if and only if it is re�exive and has the
A1 property. In particular, A is said to have the A1(1) property if for every ε > 0 and
every w*-continuous linear functional ϕ on A, there are vectors h, g ∈ H such that
ϕ(a) = ⟨ah, g⟩ and ∥h∥ ∥g∥ ≤ (1 + ε) ∥ϕ∥. _e origins of the A1(1) property can be
traced to the work of Brown [8].
Davidson and Pitts [17] show that the wot-closure of the algebraic tensor product

of B(H) with Ld satisûes the A1(1) property, when d ≥ 2. _eir arguments depend
on the existence of two isometries with orthogonal ranges in the commutant; thus,
they also apply for the tensor product of B(H) with Rd . It follows that the tensor
products with respect to the weak operator topology coincide with those taken in the
weak*-topology.
Arias and Popescu [2] ûrst showed that the algebras B(H)⊗Ld and B(H)⊗Rd

are re�exive. In fact, they satisfy much stronger properties as we will soon present.
_eir results concern thewot-versions and d <∞. Let us give here a direct proof that
treats the d =∞ case as well.

We require the following notation. For λ ∈ Bd and w = wm ⋅ ⋅ ⋅w1 ∈ Fd+, we write

w(λ) = λwm ⋅ ⋅ ⋅ λw1 .

In [2, Example 8] and [18,_eorem 2.6] it has been observed that the eigenvectors of
L∗
d are of the form

νλ = (1 − ∥λ∥2
)
1/2
∑
w∈Fd

+

w(λ)ew for λ ∈ Bd .

Proposition 2.8 ([2]) _e algebras B(H)⊗Ld and B(H)⊗Rd are re�exive.

Proof We just show that B(H)⊗Ld is re�exive. Since the gauge action of B(H ⊗

ℓ2(Fd+)) restricts to a gauge action ofB(H)⊗Ld , it suõces to show that everyGm(T)

is in B(H)⊗Ld whenever T is in Ref(B(H)⊗Ld).
For ξ, η ∈H and ν, µ ∈ Fd+, there is a sequence Xn ∈ B(H)⊗Ld such that

⟨Tµ ,ν ξ, η⟩ = ⟨T ξ ⊗ eν , η ⊗ eµ⟩ = lim
n

⟨Xn ξ ⊗ eν , η ⊗ eµ⟩ = lim
n

⟨[Xn]µ ,ν ξ, η⟩ .

Taking ν /<l µ gives that T is le� lower triangular as every Xn is so. _erefore, it
suõces to show that Tµz ,z = Tµ ,∅ for all z ∈ Fd+. Indeed,when this holds,we canwrite

Gm(T) =

⎧⎪⎪
⎨
⎪⎪⎩

∑∣µ∣=m Lµ(Tµ ,∅ ⊗ I) if m ≥ 0,
0 if m < 0,

and thus Gm(T) ∈ B(H)⊗Ld . For convenience we use the notation

T(µ) ∶= L∗µGm(T) = ∑
w∈Fd

+

Tµw ,w ⊗ pw .

We treat the cases m = 0 and m ≥ 1 separately.
●_e case m = 0. Let z ∈ Fd+ and assume that {z1 , . . . , z∣z∣} ⊆ [d′] for some ûnite d′.
If d < ∞, then take d′ = d. Let λ ∈ Bd′ ⊆ Bd such that λ i /= 0 for every i ∈ [d′], and
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consider the vector
g = ∑

w∈Fd′
+

w(λ)ew .

As g is an eigenvector for L∗
d we have that (Lµ(x ⊗ I))∗ξ ⊗ g is in the closure of

{yξ⊗ g ∣ y ∈ B(H)}. _erefore, for ξ ∈H there exists a sequence (xn) inB(H) such
that

(2.1) G0(T)
∗ξ ⊗ g = lim

n
x∗n ξ ⊗ g .

Hence, for η ∈H, we get

w(λ) ⟨ξ, Tw ,wη⟩ = ⟨ξ, Tw ,wη⟩ ⟨g , ew⟩ = ⟨G0(T)
∗ξ ⊗ g , η ⊗ ew⟩

(2.1)
= lim

n
⟨x∗n ξ ⊗ g , η ⊗ ew⟩ = lim

n
⟨ξ, xnη⟩ ⟨g , ew⟩

= w(λ) lim
n

⟨ξ, xnη⟩ .

Applying for w = ∅ and w = z, we have that Tz ,z = T∅,∅ as z(λ) /= 0. Since z was
arbitrary we have that G0(T) = T∅,∅ ⊗ I.

●_e casem ≥ 1. We have to show that Tµz ,z = Tµ ,∅ for all z ∈ Fd+ and ∣µ∣ = m. Notice
that every µ of length m can be written as µ = qiω for some i ∈ [d] and ω ≥ 1. By
symmetry it suõces to treat the case where i = 1.

Hence, in what follows we ûx a word µ = q1ω of length m = ∣q∣ + ω with

ω ≥ 1 and q = q∣q∣ ⋅ ⋅ ⋅ q1 with q1 /= 1 or q = ∅.

We will use induction on ∣z∣. To this end ûx an r ∈ (0, 1). For w = w∣w∣ ⋅ ⋅ ⋅w1 ∈ Fd+, we
write

w(t) = wt ⋅ ⋅ ⋅w1 for t = 1, . . . , ∣w∣.
For ∣z∣ = 1: First suppose that q /= ∅. Let the vectors

v ∶= e∅ +
∞

∑
k=1

rk e1k and lq(t)v = eq(t) +
∞

∑
k=1

rk eq(t)1k for t = 1, . . . , ∣q∣

and ûx ξ ∈H. As v is an eigenvector for L∗
d , we get that X

∗ξ⊗ lqv is in the closure of

{xξ ⊗ v +
∣q∣

∑
t=1

xt ξ ⊗ lq(t)v ∣ x , xt ∈ B(H), t = 1, . . . , ∣q∣}

for all X ∈ B(H)⊗Ld . Hence, there are sequences (xn) and (xt ,n) inB(H) such that

(2.2) Gm(T)
∗ξ ⊗ lqv = lim

n
x∗n ξ ⊗ v +

∣q∣

∑
t=1

x∗t ,n ξ ⊗ lq(t)v .

Furthermore, for ∣µ′∣ = m we have that (lµ′)∗lqv = δµ′ ,µrωv. Now for all η ∈ H and
z ∈ Fd+ we get that

⟨Gm(T)
∗ξ ⊗ lqv , η ⊗ ez⟩ = rω ⟨ξ, Tq1ω z ,zη⟩ ⟨v , ez⟩ .

Every lq(t)v is supported on q(t)1k with ∣q(t)1k ∣ ≥ t ≥ 1, and so ⟨lq(t)v , e∅⟩ = 0 for
all t. By taking the inner product with η ⊗ e∅ in equation (2.2) we get

rω ⟨ξ, Tq1ω ,∅η⟩ = lim
n

⟨ξ, xnη⟩ .

https://doi.org/10.4153/CJM-2017-031-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-031-0


FreeMultivariate w*-Semicrossed Products 1211

On the other hand, the only vector of length 1 in the support of lq(t)v is achievedwhen
t = 1 and k = 0, in which case it is q(1) /= 1 by assumption. _erefore, by taking the
inner product with η ⊗ e1 in equation (2.2) we obtain

rω+1 ⟨ξ, Tq1ω 1,1η⟩ = lim
n

r ⟨ξ, xnη⟩ .

_erefore, ⟨ξ, Tq1ω 1,1η⟩ = limn r−ω ⟨ξ, xnη⟩ = ⟨ξ, Tq1ω ,∅η⟩which implies that Tq1ω 1,1 =

Tq1ω ,∅ when q /= ∅.
On the other hand, if q = ∅, then we repeat the above argument by substituting

lq(t)v with zeroes to get again that T1ω 1,1 = T1ω ,∅. In every case, we have that Tµ1,1 =

Tµ ,∅.
Next we show that Tµ2,2 = Tµ ,∅. To this end, let the vectors

w = e∅ +
∞

∑
k=1

rk e2k and lµ(s)w = eµ(s) +
∞

∑
k=1

rk eµ(s)2k for s = 1, . . . ,m.

As above, for ξ ∈H there are sequences (yn) and (ys ,n) in B(H) such that

(2.3) Gm(T)
∗ξ ⊗ lµw = lim

n
y∗n ξ ⊗w +

m

∑
s=1

y∗s ,n ξ ⊗ lµ(s)w ,

since w is an eigenvector of L∗
d . Notice here that (lµ′)∗lµw = δµ′ ,µw when ∣µ′∣ = m.

Now for η ∈H and z ∈ Fd+, we get

⟨Gm(T)
∗ξ ⊗ lµw , η ⊗ ez⟩ = ⟨ξ, Tµz ,zη⟩ ⟨w , ez⟩ .

For z = ∅ we have that ⟨lµ(s)w , e∅⟩ = 0 for all s ∈ [m], and therefore equation (2.3)
gives

⟨ξ, Tµ ,∅η⟩ = lim
n

⟨ξ, ynη⟩ .

For z = 2 we have that ⟨lµ(1)w , e2⟩ = ⟨l1w , e2⟩ = 0. Moreover, we have that
⟨lµ(s)w , e2⟩ = 0 when s ≥ 2. _erefore, equation (2.3) gives

r ⟨ξ, Tq1ω2,2e2⟩ = lim
n

r ⟨ξ, ynη⟩ .

As a consequence,we have ⟨ξ, Tµ2,2e2⟩ = ⟨ξ, Tµ ,∅η⟩, and thus Tµ2,2 = Tµ ,∅. Applying
this for i ∈ {3, . . . , d} yields Tµi , i = Tµ ,∅ for all i ∈ [d].
● Inductive hypothesis: Assume that Tq1ω z ,z = Tq1ω ,∅ when ∣z∣ ≤ N . Wewill show that
the same is true for words of length N + 1.
Consider ûrst the word 1z with ∣z∣ = N . Suppose that q /= ∅ so that q(1) /= 1. We

apply the same arguments for the vectors rzv and rz lq(t)v with t = 1, . . . , ∣q∣. Since rz
commutes with every lν , we get that

rz(rz)∗(lν)∗rzv = rz(lν)∗v and rz(rz)∗(lν)∗rz lq(t)v = rz(lν)∗lq(t)v .

As every Rz(Rz)
∗ commutes with every x ⊗ I for x ∈ B(H), we have that for a ûxed

ξ ∈H, there are sequences (xn) and (xt ,n) in B(H) such that

Rz(Rz)
∗Gm(T)

∗ξ ⊗ rz lqv = lim
n

x∗n ξ ⊗ rzv +
∣q∣

∑
t=1

x∗t ,n ξ ⊗ rz lq(t)v .
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Arguing as above for η ⊗ ez and η ⊗ e1z yields ⟨ξ, Tq1ω 1z ,1zη⟩ = ⟨ξ, Tq1ω z ,zη⟩. Conse-
quently, Tq1ω 1z ,1z = Tq1ω z ,z , which is Tq1ω ,∅ by the inductive hypothesis.

On the other hand, if q = ∅, then we repeat the above arguments by substituting
the lq(t)v with zeroes. _erefore in any case we have that Tµ1z ,1z = Tµ ,∅.
For 2z with ∣z∣ = N we take the vectors rzw and rz lµ(s)w for s ∈ [m]. _en for a

ûxed ξ ∈H, there are sequences (yn) and (ys ,n) in B(H) such that

Rz(Rz)
∗Gm(T)

∗ξ ⊗ rz lµw = lim
n

y∗n ξ ⊗ rzw +
m

∑
s=1

y∗s ,n ξ ⊗ rz lµ(s)w .

Taking the inner productwith η⊗ ez and η⊗ e2z gives that ⟨ξ, Tµ2z ,2zη⟩ = ⟨ξ, Tµz ,zη⟩.
As η and ξ are arbitrary, we then derive that Tµ2z ,2z = Tµz ,z , which is Tµ ,∅ by the in-
ductive hypothesis. Substituting i ∈ {3, . . . , d} in place of 2 gives the same conclusion,
thus Tµiz , iz = Tµ ,∅ for all i ∈ [d] and ∣z∣ = N . Induction then shows that Tµz ,z = Tµ ,∅

for all z ∈ Fd+.

Remark 2.9 Re�exivity of B(H)⊗H∞(Zd+) can be proved along the same lines of
reasoning by using the co-invariant subspaces [xξ ⊗ gi ∣ x ∈ B(H)] for the vectors

gi = ∑
k∈Z+

rk eki with r ∈ (0, 1) and i = 1, . . . , d .

In fact, one can show that T is inB(H)⊗H∞(Zd+) if and only if T is lower triangular
and Gm = Lm(xm ⊗ I) for some xm ∈ B(H) whenever m ∈ Zd+. _e same holds for
the tensor product of B(H) with H∞(Zd+) in the weak operator topology, inducing
just one type of spatial tensor product.

2.4 Hyper-reflexivity

Arveson [4] introduced ameasurement for re�exivity. ForA ⊆ B(H), let the function
β∶B(H)→ R be given by

β(T ,A) = sup{ ∥(1 − P)TP∥ ∣ P ∈ Lat(A)} .

Aw*-closed algebraA ⊆ B(H) is called hyper-re�exivewith distance constant atmost
C if it satisûes

dist(T ,A) ≤ Cβ(T ,A) for all T ∈ B(H).
_erefore, hyper-re�exive algebras are re�exive. Notice that β(T ,A) ≤ dist(T ,A)

always holds.
It follows that hyper-re�exivity can also be a hereditary property. Kraus–Larson

[29] and Davidson [12] have shown that if A has the A1(1) property and is hyper-
re�exive with distance constant at most C, then every w*-closed subspace of A is
hyper-re�exive with distance constant at most 2C + 1.

_ere is an alternative characterization ofhyper-re�exivity throughA⊥:A ishyper-
re�exive1 if and only if for every ϕ ∈ A⊥ there are rank one functionals ϕn ∈ A⊥ such
that ϕ = ∑n ϕn and ∑n ∥ϕn∥ < ∞; see e.g., [5, _eorem 7.4]. _e hyper-re�exivity
constant is at most K when we achieve ∑n ∥ϕn∥ ≤ K ⋅ ∥ϕ∥ for ϕ = ∑n ϕn ∈ A⊥ as in

1 Re�exivity is equivalent to A⊥ just being the closed linear span of its rank one functionals, e.g.,
[5,_eorem 7.1].
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the representation above. From this characterization it is readily veriûed that (hered-
itary) hyper-re�exivity is preserved under similarities. _erefore, if a similarity is
given by an invertible u, then the hyper-re�exivity constant can change as much as
∥u∥2

⋅ ∥u−1∥2.
A remarkable result of Bercovici [7] asserts that a wot-closed algebra is hyper-

re�exivewithdistance constant atmost 3when its commutant contains two isometries
with orthogonal ranges. Consequently, every w*-closed subalgebra of B(H)⊗Ld is
hyper-re�exive with distance constant at most 3 when d ≥ 2, as its commutant con-
tains IH⊗Rd .

3 Dynamical Systems

We give the basic deûnitions of thew*-semicrossed productswewill consider. Hence-
forth,we ûx aw*-closed subalgebraA ofB(H). Sincewe areworking towards re�ex-
ivity and the bicommutant property wewill assume thatA is unital. Wewrite End(A)

for the unital w*-continuous completely bounded endomorphisms of A, i.e., every
α ∈ End(A) satisûes

∥α∥cb ∶= sup{∥α ⊗ idn∥ ∣ n ∈ Z+} <∞.

3.1 Dynamical Systems Over Fd+

A (unital) w*-dynamical system denoted by (A, {α i}i∈[d]) consists of d (unital) α i ∈

End(A) such that
sup{ ∥αµ∥ ∣ µ ∈ Fd+} <∞.

Given a w*-dynamical system (A, {α i}i∈[d]), we deûne two representations π and π
ofA acting on K =H ⊗ ℓ2(Fd+) by

π(a)ξ ⊗ eµ = αµ(a)ξ ⊗ eµ and π(a)ξ ⊗ eµ = αµ(a)ξ ⊗ eµ .

We need this distinction, as the α i induce both a homomorphism and an anti-homo-
morphism of Fd+ in End(A). Note that π(a) and π(a) are indeed in B(K) as the αµ
are uniformly bounded.

Deûnition 3.1 Let (A, {α i}i∈[d]) be a w*-dynamical system. We deûne the w*-se-
microssed products

A×αLd ∶= spanw*
{Lµπ(a) ∣ a ∈ A, µ ∈ Fd+},

A×αRd ∶= spanw*
{Rµπ(a) ∣ a ∈ A, µ ∈ Fd+}.

_e pairs (π, {L i}
d
i=1) and (π, {R i}

d
i=1) satisfy the covariance relations

π(a)L i = L iπα i(a) and π(a)R i = R iπα i(a)

for all a ∈ A and i ∈ [d]. Indeed, for every w ∈ Fd+, we have that

π(a)L i ξ ⊗ ew = α iw(a)ξ ⊗ e iw = αwα i(a)ξ ⊗ e iw = L iπα i(a)ξ ⊗ ew ,

and similarly for the right version. Consequently, A×αLd and A×αRd are (unital)
algebras.
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_e unitaries Us ∈ B(K) for s ∈ [−π, π] induce a gauge action on A×αLd , since

Usπ(a)U∗
s = π(a) and UsLµU∗

s = e i∣µ∣sLµ .

_erefore, Fejér’s Lemma implies that T ∈ A×αLd if and only if Gm(T) ∈ A×αLd for
all m ∈ Z. _e same is true for A×αRd .

Proposition 3.2 Let (A, {α i}i∈[d]) be a unital w*-dynamical system. _en an oper-
ator T ∈ B(K) is in A×αLd if and only if it is le� lower triangular and

Gm(T) = ∑
∣µ∣=m

Lµπ(aµ) for aµ ∈ A

for all m ∈ Z+. Similarly an operator T ∈ B(K) is in A×αRd if and only if it is right
lower triangular and

Gm(T) = ∑
∣µ∣=m

Rµπ(aµ) for aµ ∈ A

for all m ∈ Z+.

Proof We will just show the le� case. First notice that if T = Lzπ(a) with ∣z∣ = m
then∑w∈Fd

+
Tzw ,w⊗pw = π(a). Moreover T is a le� lower triangular operator; indeed,

if ν /≤l µ, then

⟨Lzπ(a)ξ ⊗ eν , η ⊗ eµ⟩ = δzν ,µ ⟨αν(a)ξ, η⟩ = 0.

Hence, Gm(T) = ∑∣µ∣=m Lµπ(aµ) where az = a and aµ = 0 for µ /= z. Conversely,
suppose that T satisûes these conditions. _en for every ûnite subset Fm of words of
length m, since the Lµ(Lµ)

∗ are pairwise orthogonal projections, we can verify that

∥ ∑
µ∈Fm

Lµπ(aµ)∥ = ∥ ∑
µ∈Fm

Lµ(Lµ)
∗Gm(T)∥ ≤ ∥Gm(T)∥ .

_erefore, the net (∑µ∈Fm Lµπ(aµ)){Fm ∶finite} is bounded, and thus the sum is the
w*-limit of elements inA×αLd . Hence, everyGm(T) is inA×αLd and Fejér’s Lemma
completes the proof.

We turn our attention to dynamical systems (A, {α i}i∈[d]) where each α i ∈

End(A) is induced by an invertible row operator u i , i.e.,

(3.1) α i(a) = ∑
j i∈[n i]

u i , j i av i , j i for all a ∈ A,

where v i is the inverse of u i .

Deûnition 3.3 We say that {α i}i∈[d] is a uniformly bounded spatial action on a
w*-closed algebraA ofB(H) if every α i is implemented by an invertible row operator
u i and {u i}i∈[d] is uniformly bounded.

Proposition 3.4 If {α i}i∈[d] is a uniformly bounded spatial action on a w*-closed
algebraA of B(H), then (A, {α i}i∈[d]) is a unital w*-dynamical system.
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Proof Let µ = µm ⋅ ⋅ ⋅ µ1 be a word in Fd+. Referring to Deûnition 2.2 we verify that

αµ(a) = αµm ⋅ ⋅ ⋅ αµ1(a)

= ∑
jm∈[µm]

⋅ ⋅ ⋅ ∑
j1∈[µ1]

uµm , jm ⋅ ⋅ ⋅uµ1 , j1avµ1 , j1 ⋅ ⋅ ⋅ vµm , jm

= ûµm ⋅⋅⋅µ1av̂µ1 ⋅⋅⋅µm

for all a ∈ A. _erefore, ∥αµ∥cb ≤ ∥ûµ∥ ⋅ ∥v̂µ∥ so that αµ ∈ End(A). As {u i}i∈[d]
and {v i}i∈[d] are uniformly bounded by K we derive that ∥αµ∥ ≤ K2 for all µ, hence
{αµ}µ∈Fd

+
is uniformly bounded.

_e prototypical examples of uniformly bounded actions are systems implemented
by Cuntz families.

Examples 3.5 Every (unital) endomorphism ofB(H) is implemented by a count-
able Cuntz family when H is separable. A proof can be found in [6, Proposition 2.1].
However the Cuntz family is not uniquely deûned as shown by Laca [35].
Examples of endomorphisms ofmaximal abelian selfadjoint algebras implemented

by a Cuntz family have been considered by the second author and Peters [28]. In
particular, let φ∶X → X be an onto map on a measure space (X ,m) such that: (i)
φ and φ−1 preserve the null sets; and (ii) there are d Borel cross-sections ψ1 , . . . ,ψd
of φ with ψ i(X) ∩ ψ j(X) = ∅ such that ∪di=1ψ i(X) is almost equal to X. _en it is
shown in [28, Proposition 2.2] that the endomorphism α∶ L∞(X)→ L∞(X) induced
by φ is realized through a Cuntz family. Such cases arise in the context of d-to-1 local
homeomorphisms forwhich an appropriate decomposition of X into disjoint sets can
be obtained [28, Lemma 3.1]. As long as the boundaries of the components are null
sets, the requirements of [28, Proposition 2.2] are satisûed. _e prototypical example
is the Cuntz–Krieger odometer, where

X =∏
k
{1, . . . , d} and m =∏

k
m′

for the averaging measure m′, and the backward shi� φ [28, Example 3.3].
_e results of [28] follow the inspiring work of [10] on endomorphisms α of the

Hardy algebra induced by a Blaschkeproduct b. In particular, it is shown in [10, Corol-
lary 3.5] that there is a Cuntz family implementing α if and only if there is a speciûc
orthonormal basis {v1 , . . . , vd} for H2(T) ⊖ b ⋅ H2(T). An important part of the
theory in [10] is the existence of a master isometry Cb , and the reformulation of the
problem in terms ofW*-correspondences when combined with [35]. _ese elements
pass on to the context of [28] where further necessary and suõcient conditions are
given for a Cuntz family to implement an endomorphism of L∞(X).

Uniformly bounded actions extend to the entire B(H), and we will use the same
notation for their extensions. By applying u i , j i and v i , j i on each side of equation (3.1)
we also get

(3.2) α i(x)u i , j i = u i , j i x and v i , j iα i(x) = xv i , j i

for every x ∈ B(H). _e following propositionwill be essential for our analysis of the
bicommutant.
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Proposition 3.6 Let α be an endomorphism of B(H) induced by an invertible row
operator u = [u i]i∈[n] for some n ∈ Z+ ∪{∞}. _en for any x , y ∈ B(H), we have that

α(x)y = yα(x) if and only if x ⋅ v j yuk = v j yuk ⋅ x for all j, k ∈ [n],

where v = [v i]i∈[n] is the inverse of u.

Proof Suppose ûrst that α(x)y = yα(x). _en it follows that

xv j yuk = v jα(x)yuk = v j yα(x)uk = v j yukx

for all j, k ∈ [n]. Conversely, if xv j yuk = v j yukx for all j, k ∈ [n], then equation (3.2)
yields

v jα(x)yuk = xv j yuk = v j yukx = v j yα(x)uk .

_erefore, we obtain

α(x)y = ∑
j∈[n]

∑
k∈[n]

u j(v jα(x)yuk)vk = ∑
j∈[n]

∑
k∈[n]

u j(v j yα(x)uk)vk = yα(x),

and the proof is complete.

Remark 3.7 If α ∈ End(A) is induced by an invertible row operator u, then α
extends to an endomorphism ofA′′. Indeed by Proposition 3.6 we have that v j yuk ∈

A′ for all y ∈ A′, since A′ ⊆ α(A)′. Hence, if z ∈ A′′, then zv j yuk = v j yukz for all
y ∈ A′. Applying Proposition 3.6 again yields α(z) ∈ A′′.

_erefore, given a w*-dynamical system (A, {α i}i∈[d]) where each α i is imple-
mented by an invertible row operator u i , we automatically have the induced systems
(B(H), {α i}i∈[d]) and (A′′ , {α i}i∈[d]). Hence, the w*-semicrossed products

A×αLd ,A×αRd ,B(H)×αLd ,B(H)×αRd ,A′′
×αLd ,A′′

×αRd

are all well deûned.

_ere are also twomore algebras linked to our analysis. Suppose that {α i}i∈[d] are
endomorphisms of B(H) and each α i is induced by an invertible row operator u i .
_en we can form the free semigroup FN

+ for N = n1 + ⋅ ⋅ ⋅ + nd . Since we want to keep
track of the generators, we write

FN
+ = ⟨(i , j) ∣ i ∈ [d], j ∈ [n i]⟩ = ∗i∈[d]Fn i

+ .

We ûx the operators

Vi , j = u i , j ⊗ li and Wi , j = u i , j ⊗ ri for all (i , j) ∈ ([d], [n i])

and the representation ρ∶B(H)→ B(H ⊗ ℓ2(Fd+)) with ρ(x) = x ⊗ I.

Deûnition 3.8 With the aforementioned notation, we deûne the spaces

A′
×uLd ∶= spanw*

{Vi , jρ(y) ∣ (i , j) ∈ ([d], [n i]), y ∈ A′} ,

A′
×uRd ∶= spanw*

{Wi , jρ(y) ∣ (i , j) ∈ ([d], [n i]), y ∈ A′} .
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Notice here that for a word w = (µk , jµk) ⋅ ⋅ ⋅ (µ1 , jµ1) ∈ FN
+ , we have

Vw = Lµk ρ(uµk , jµk ) ⋅ ⋅ ⋅ Lµ1ρ(uµ1 , jµ1 ) = Lµk ⋅⋅⋅µ1ρ(uw).

_e generators satisfy a set of covariance relations which we will use to show that the
above spaces are algebras.

Proposition 3.9 Let (A, {α i}i∈[d]) be a w*-dynamical system such that each α i is
implemented by an invertible row operator u i . _en

A′
×uLd = alg

w*
{Vwρ(y) ∣ w ∈ FN

+ , y ∈ A
′
},

A′
×uRd = alg

w*
{Wwρ(y) ∣ w ∈ FN

+ , y ∈ A
′
},

where FN
+ = ⟨(i , j) ∣ i ∈ [d], j ∈ [n i]⟩.

Proof We prove the le� version. _e right version follows by similar arguments. It
suõces to show that ρ(y)L iρ(u i , j) is inA′×uLd for all y ∈ A′ and (i , j) ∈ ([d], [n i]).
Suppose that v i = [v i , j i ] j i∈[n i] is the inverse of u i . _en we can write

y = ∑
k∈[n i]

∑
l∈[n i]

u i ,kv i ,k yu i , lv i , l = ∑
k∈[n i]

∑
l∈[n i]

u i ,k y i ,k , lv i , l ,

where y i ,k , l ∶= v i ,k yu i , l . Proposition 3.6 yields that y i ,k , l is in A′, since y ∈ A′ ⊆

α i(A)′. _erefore, we have that

yu i , j = ∑
k∈[n i]

∑
l∈[n i]

u i ,k y i ,k , lv i , lu i , j = ∑
k∈[n i]

u i ,k y i ,k , j ,

which gives that

ρ(y)L iρ(u i , j) = L iρ(y)ρ(u i , j) = ∑
k∈[n i]

L iρ(u i ,k y i ,k , j) = ∑
k∈[n i]

Vi ,kρ(y i ,k , j).

Recall that ∥∑k∈F u i ,kv i ,k∥ ≤ 1 for every ûnite subset F of [n i], hence

∥ ∑
k∈F

u i ,k y i ,k , j∥ = ∥ ∑
k∈F

u i ,kv i ,k yu i , j∥ ≤ ∥y∥∥u i , j∥.

_us, the net (∑k∈F u i ,k y i ,k , j){F∶finite} is bounded, and the sum above converges in
the w*-topology. Hence, the element ρ(y)L iρ(u i , j) is in A′×uLd .

3.2 Dynamical Systems Over Zd+

Similarly we deûne a (unital) w*-dynamical system (A, α,Zd+) to consist of a semi-
group action α∶Zd+ → End(A) such that

sup{∥αn∥ ∣ n ∈ Zd+} <∞.

Since the action is generated by d commuting endomorphisms αi, it suõces to have
sup{∥αn

i ∥ ∣ n ∈ Z+} <∞ for all i ∈ [d]. Consequently, commuting spatial actions αi
that are uniformly bounded in the sense of Deûnition 3.3 induce unitalw*-dynamical
systems.
Examples are given by actions implemented by a unitarizable semigroup homo-

morphism of Zd+ in B(H). However, our setting accommodates cases where each αi
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can be implemented by an invertible element separately. _is gives us the opportunity
to tacklemore commuting actions. We illustrate this with an example.

Example 3.10 Every pair of unitaries U ,V that satisfy Weyl’s relation UV = λVU
for λ ∈ T obviously implements two commuting actions α1 = adU and α2 = adV
on B(H). In fact, it is not diõcult to show that every action α∶Z2

+ → Aut(B(H)) is
indeed of this form: α1 and α2 will be implemented byunitaries that commutemodulo
a λ ∈ T. _is follows in the same way as in [23,_eorem 9.3.3].

Remark 3.11 Results of Laca [35] give a general criterion for commuting normal
∗-endomorphisms of B(H). Suppose that α, β ∈ End(B(H)) commute and are
given by

α(x) = ∑
i∈[n]

s ixs∗i and β(x) = ∑
j∈[m]

t jxt∗j

for the Cuntz families {s i}i∈[n] and {t j} j∈[m]. _erefore,

∑
i∈[n]

∑
j∈[m]

s i t jxt∗j s
∗
i = ∑

j∈[m]

∑
i∈[n]

t js ixs∗i t
∗
j .

Notice that on each side we sum up orthogonal representations of B(H), and thus
we can take the limits, so that

∑
(i , j)∈[n]×[m]

s i t jxt∗j s
∗
i = ∑

(i , j)∈[n]×[m]

t js ixs∗i t
∗
j .

We may see the families {s i t j}(i , j)∈[n]×[m] and {t js i}(i , j)×[n]×[m] as representations
of the Cuntz algebra On⋅m . Applying [35, Proposition 2.2] gives a unitary operator
W = [w(k , l),(i , j)] in Mnm(C) such that

t js i = ∑
(k , l)∈[n]×[m]

w(k , l),(i , j)sk t l .

_is criterion can be used to research the class of endomorphisms α that commute
with a ûxed β. We show how this can be done in the next two examples.

Example 3.12 For this example, ûxH = ℓ2(Z+) and let the Cuntz family

S1en = e2n and S2en = e2n+1 .

Let U ∈ B(H) be a unitary and ûx the induced actions

α(x) = UxU∗ and β(x) = S1xS∗1 + S2xS∗2 .

We will show that α and β commute if and only if

(3.3) U = λ diag{µϕ(n)
∣ n ∈ Z+} for λ, µ ∈ T,

where ϕ(n) is the sequence of the binary weights of n; i.e.,

ϕ(n) = # of 1’s appearing in the binary expansion of n.

First, suppose that α commutes with β. By Remark 3.11, there exists a unitary

W = [
a c
b d] ∈M2(C)
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such that
US1 = aS1U + bS2U and US2 = cS1U + dS2U .

In the sequel we write

Uek =∑
n

λ(k)n en for all k ∈ Z+ .

Since S1e0 = e0, we have

∑
n

λ(0)n en = Ue0 = US1e0 = aS1Ue0 + bS2Ue0 =∑
n
aλ(0)n e2n + bλ(0)n e2n+1 .

We thus obtain

(3.4) λ(0)0 = aλ(0)0 and λ(0)2n = aλ(0)n , λ(0)2n+1 = bλ
(0)
n for all n ≥ 1.

_erefore, if λ(0)0 = 0, then Ue0 = 0, which is a contradiction to U being a unitary.
Hence, a = 1 from the ûrst equation and thus b = c = 0 and ∣d∣ = 1, since W is a
unitary. _us, we obtain

US1 = S1U and US2 = dS2U .

Consequently, we get

U = US1S∗1 +US2S∗2 = S1US∗1 + dS2US∗2 .

In addition, applying b = 0 in equality (3.4) gives that

λ(0)1 = bλ(0)0 = 0,

λ(0)2 = aλ(0)1 = 0,

λ(0)3 = bλ(0)2 = 0,

λ(0)4 = aλ(0)2 = 0,
⋮

and inductively we have that λ(0)n = 0 for all n ≥ 1. Hence,Ue0 = λ(0)0 e0. In particular,
we get that ∣λ(0)0 ∣ = 1, and therefore

U = [
λ(0)0 0
0 ∗

]

when decomposing H = ⟨e0⟩⊕ ⟨e0⟩
⊥. Now we apply for e1 to obtain

Ue1 = dS2US∗2 e1 = dS2Ue0 = λ(0)0 de1

from which we get

λ(1)1 = λ(0)0 d and λ(1)n = 0 for n /= 1.

As λ(1)1 has modulus 1, we then get that

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ(0)0 0 0
0 λ(0)0 d 0
0 0 ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Now applying for e2, we get

Ue2 = S1US∗1 e2 = S1Ue1 = λ(0)0 de2 ,

and therefore

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ(0)0 0 0 0
0 λ(0)0 d 0 0
0 0 λ(0)0 d 0
0 0 0 ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Hence, we have veriûed equation (3.3) for n = 0, 1, 2 with

λ = λ(0)0 and µ = d .

Now suppose that Uen = λµϕ(n)en holds for every n < 2k with k /= 0; then

Ue2k = S1US∗1 e2k = S1Uek = λµϕ(k)e2k

as ϕ(2k) = ϕ(k). On the other hand, if Uen = λµϕ(n)en holds for every n < 2k + 1,
then

Ue2k+1 = µS2US∗2 e2k+1 = µS2Uek = λµϕ(k)+1e2k+1 ,

since
ϕ(2k + 1) = ϕ(2k) + 1 = ϕ(k) + 1.

By using strong induction we have that U satisûes equation (3.3).
Conversely, suppose that U is as in equation (3.3). We will show that the induced

actions α and β commute. First, we consider x = e i ⊗ e∗j , the rank one operator
sending e j to e i . A direct computation shows that

αβ(x)en =
⎧⎪⎪
⎨
⎪⎪⎩

dϕ(2i)−ϕ(2k)e2i ⟨ek , e j⟩ if n = 2k,
dϕ(2i+1)−ϕ(2k+1)e2i+1 ⟨ek , e j⟩ if n = 2k + 1.

On the other hand, we have that

βα(x)en =
⎧⎪⎪
⎨
⎪⎪⎩

dϕ(i)−ϕ(k)e2i ⟨ek , e j⟩ if n = 2k,
dϕ(i)−ϕ(k)e2i+1 ⟨ek , e j⟩ if n = 2k + 1.

Since

ϕ(2k) − ϕ(2i) = ϕ(k) − ϕ(i),
ϕ(2k + 1) − ϕ(2i + 1) = ϕ(2k) + 1 − ϕ(2i) − 1 = ϕ(k) − ϕ(i),

we obtain that αβ(x) = βα(x). Since α, β are sot-continuous (being implemented by
operators), passing to sot-limits yields that α and β commute.

Example 3.13 For this example we let H = ℓ2(Z) and the Cuntz family

S1en = e2n and S2en = e2n+1 .

Let U ∈ B(H) be a unitary and write ℓ2(Z) = H1 ⊕H2 for

H1 = ⟨en ∣ n ≥ 0⟩ and H2 = ⟨en ∣ n ≤ −1⟩ .
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We claim that the actions induced byU and {S1 , S2} commute if and only ifU attains
one of the forms

(3.5) U = λIH1 ⊕ µIH2 or U = [
0 µw∗

λw 0 ] ,

where λ, µ ∈ T and w ∈ B(H1 ,H2) is the unitary with wen = e−n−1.
If the actions commute, then by Remark 3.11 there exists a unitary

W = [
a c
b d] ∈M2(C)

such that

US1 = aS1U + bS2U and US2 = cS1U + dS2U .

_en we write

Uek =∑
n

λ(k)n en for all k ∈ Z.

Since S1e0 = e0, we obtain

∑
n

λ(0)n en = Ue0 = US1e0 = (aS1 + bS2)Ue0

=∑
n
aλ(0)n e2n + bλ(0)n e2n+1 .

Consequently,

λ(0)2k = aλ(0)k and λ(0)2k+1 = bλ
(0)
k for all k ∈ Z.

If a = 1, then b = 0 as ∣a∣2 + ∣b∣2 = 1. Now, if a /= 1, then λ(0)0 = 0, and thus λ(0)n = 0
for all n ≥ 0. If, in addition, a /= 0, then also b /= 1, and so λ(0)−1 = 0, which implies that
λ(0)n = 0 for all n ≤ 0. _is contradicts that U is a unitary. _erefore, if a /= 1, then it
must be that a = 0 inwhich casewe get that ∣b∣ = 1. However, a symmetrical argument
shows that if a = 0 and b /= 1, then Ue0 = 0, which is a contradiction. _erefore, if
a /= 1 then a = 0 and b = 1. Consequently, we have the following cases:

(i) a = 1, b = 0 or (ii) a = 0, b = 1.

● Case (i). When a = 1 and b = 0 then c = 0 and d ∈ T and therefore

US1 = S1U and US2 = dS2U

which we can rewrite as

U = S1US∗1 + dS2US∗2 .

Applying for e−1, we obtain

∑
n

λ(−1)
n en = Ue−1 = dS2US∗2 e−1 =∑

n
dλ(−1)

n e2n+1 .
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Hence, we get that

λ(−1)
0 = 0 λ(−1)

−1 = dλ(−1)
−1

λ(−1)
1 = dλ(−1)

0 = 0 λ(−1)
−2 = 0

λ(−1)
2 = 0 λ(−1)

−3 = dλ(−1)
−1

λ(−1)
3 = dλ(−1)

1 = 0 λ(−1)
−4 = 0

⋮ ⋮

It follows that d = 1; otherwise, Ue−1 = 0, which is a contradiction. _erefore, we
derive that

U = S1US∗1 + S2US∗2 .

Hence we have that Ue0 = λe0 for λ = λ(0)0 , and so Uen = λen when n ≥ 0 as in
Example 3.12. On the other hand Ue−1 = µe−1 for µ = λ(−1)

−1 , and so Uen = µen when
n < 0 by similar computations. _us, it follows that

U = λIH1 ⊕ µIH2 for λ, µ ∈ T.

● Case (ii). When a = 0 and b = 1; then c ∈ T and d = 0, in which case we have

US1 = S2U and US2 = cS1U

or equivalently
U = S2US∗1 + cS1US∗2 .

By applying on e−1, we get

λ(−1)
0 = cλ(−1)

0 , λ(−1)
−1 = λ(−1)

−3 = ⋅ ⋅ ⋅ = 0,

λ(−1)
1 = λ(−1)

3 = ⋅ ⋅ ⋅ = 0, λ(−1)
−2 = cλ(−1)

−1 = 0,

λ(−1)
2 = cλ(−1)

1 = 0, λ(−1)
−4 = λ(−1)

−6 = ⋅ ⋅ ⋅ = 0.

λ(−1)
4 = λ(−1)

6 = ⋅ ⋅ ⋅ = 0,

If c /= 1, then we would get that Ue−1 = 0, which is a contradiction. _erefore, we
obtain that c = 1, and thus

(3.6) U = S2US∗1 + S1US∗2 .

In this case, we have that

Ue0 = λe−1 and Ue−1 = µe0

for λ, µ ∈ T. We claim that

U = [
0 µw∗

λw 0 ]

for ℓ2(Z) = H1 ⊕H2 and the unitary w ∈ B(H1 ,H2) with wen = e−n−1, i.e.,

Uen =
⎧⎪⎪
⎨
⎪⎪⎩

λe−n−1 if n ≥ 0,
µe−n−1 if n ≤ −1.
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Indeed, this holds for n = 0,−1. Let n ≥ 0 and suppose it holds for every 0 ≤ k < n. If
n = 2k, then by the inductive hypothesis and equation (3.6), we get

Uen = S2US∗1 e2k = S2Uek = λS2e−k−1 = λe−2k−1 = λe−n−1 ,

whereas if n = 2k + 1, we get

Uen = S1US∗2 e2k+1 = S1Uek = λS1e−k−1 = λe−2k−2 = λe−n−1 .

A similar computation holds for n ≤ −1. Strong induction then completes the proof
of the claim.
Conversely if a unitary U satisûes equation (3.5), then adU either ûxes or inter-

changes S1 and S2. In either case, we get

US1U∗yUS∗1 U
∗
+US2U∗yUS∗2U

∗
= S1 yS∗1 + S2 yS∗2

for all y ∈ B(H). Applying for y = UxU∗ yields that the actions induced by U and
{S1 , S2} commute.

Now we return to the deûnition of the semicrossed product for actions of Zd+. On
H ⊗ ℓ2(Zd+) we deûne the representation π∶A → B(H ⊗ ℓ2(Zd+)) and the creation
operators L∶Zd+ → B(H ⊗ ℓ2(Zd+)) by

π(a)ξ ⊗ en = αn(a)ξ ⊗ en and Liξ ⊗ en = ξ ⊗ ei+n .

Notice here that due to commutativity of Zd+ we make no distinction between right
and le� versions.

Deûnition 3.14 Let (A, α,Zd+) be a unital w*-dynamical system. We deûne the
w*-semicrossed product

A×αZd+ ∶= spanw*
{Lnπ(a) ∣ a ∈ A, n ∈ Zd+} .

Againwe can directly verify the covariance relations by applying on the elementary
tensors. In analogy toProposition 3.2,wehave the following proposition. For its proof
we can again invoke a Fejér-type argument for the appropriate Fourier co-eõcients
induced by {Us} with s ∈ [−π, π]d .

Proposition 3.15 Let (A, α,Zd+) be a unital w*-dynamical system. _en an operator
T ∈ B(H ⊗ ℓ2(Zd+)) is in A×αZd+ if and only if it is lower triangular and

Gm(T) = Lmπ(am) for am ∈ A

for all m ∈ Zd+.

Moreover, we can proceed to a decomposition into subsequent one-dimensional
w*-semicrossed products.

Proposition 3.16 Let (A, α,Zd+) be a unital w*-dynamical system. _en A×αZd+ is
unitarily equivalent to

( ⋅ ⋅ ⋅ ((A×α1Z+)×α̂2Z+) ⋅ ⋅ ⋅ )×α̂dZ+ ,

where α̂i = αi ⊗(i−1) id for i = 2, . . . , d.
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Proof We show how this decompositionworkswhen d = 2; the general case follows
by iterating. Fix α1 and α2 commuting endomorphisms of A. _en A×α1Z+ acts on
H ⊗ ℓ2 by

π(a)ξ ⊗ en = α(n ,0)(a)ξ ⊗ en and L1ξ ⊗ en = ξ ⊗ en+1 .

Now we deûne the w*-dynamical system (A×α1Z+ , α̂2 ,Z+) by setting

α̂2(π(a)) = πα2(a) and α̂2(L1) = L1 .

To see that α̂2 deûnes a w*-continuous completely bounded endomorphism on
A×α1Z+ ûrst note that A×α1Z+ is a w*-closed subalgebra of A⊗B(ℓ2). Since α2 is
w*-continuous and completely bounded for X ∈ A⊗B(ℓ2),we can obtain α2⊗id(X),
as the limit of

α2 ⊗ idn(PH⊗ℓ2(n)X∣H⊗ℓ2(n)) ∈ A⊗Mn(C).

Hence, α2⊗ id deûnes aw*-completely bounded endomorphismofA⊗B(ℓ2) and α̂2
is its restriction to theA×α1Z+. _e unitaryU given byU ξ⊗e(n ,m) = ξ⊗en⊗em then
deûnes the required unitary equivalence between A×αZ2

+ and (A×α1Z+)×α̂2Z+.

4 The Bicommutant Property

4.1 Semicrossed Products Over Fd+

_e duality between the le� and the right w*-semicrossed products is re�ected in the
bicommutant property.

_eorem 4.1 Let (A, {α i}i∈[d]) be a w*-dynamical system of a uniformly bounded
spatial action implemented by {u i}i∈[d]. _en we have that

(A×αLd)
′
= A′

×uRd and (A′
×uLd)

′
= A′′

×αRd

and that
(A×αRd)

′
= A′

×uLd and (A′
×uRd)

′
= A′′

×αLd .

Proof Direct computations show that A′×uRd is in the commutant ofA×αLd . For
the reverse inclusion, let T be in the commutant ofA×αLd . As the Fourier transform
respects the commutant, it suõces to show that Gm(T) is in A′×uRd for all m ∈ Z+,
and it is zero for all m < 0.
For µ, ν ∈ Fd+ and by using the commutant property, we get that

⟨Tµ ,ν ξ, η⟩ = ⟨TLν ξ ⊗ e∅ , η ⊗ eµ⟩

= ⟨LνT ξ ⊗ e∅ , η ⊗ eµ⟩ = ⟨T ξ ⊗ e∅ , η ⊗ l∗ν eµ⟩ .

However, we have that (lν)∗eµ = 0 whenever ν /≤r µ. _erefore, T is right lower
triangular and thus

Gm(T) =

⎧⎪⎪
⎨
⎪⎪⎩

∑∣µ∣=m RµT(µ) if m ≥ 0,
0 if m < 0,
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for T(µ) = ∑w∈Fd
+
Twµ ,w ⊗ pw = R∗µGm(T). Moreover, we have that

∑
∣µ∣=m

Twµ ,w ξ ⊗ ewµ = Gm(T)Lw ξ ⊗ e∅

= LwGm(T)ξ ⊗ e∅ = ∑
∣µ∣=m

Tµ ,∅ξ ⊗ ewµ ,

which shows that T(µ) = ρ(Tµ ,∅) for all µ of length m. Furthermore, we have that

∑
∣µ∣=m

Tµ ,∅aξ ⊗ eµ = Gm(T)π(a)ξ ⊗ e∅

= π(a)Gm(T)ξ ⊗ e∅ = ∑
∣µ∣=m

αµ(a)Tµ ,∅ξ ⊗ eµ ,

and therefore Tµ ,∅a = αµ(a)Tµ ,∅ for all a ∈ A. Let v i be the inverse of u i . For
µ = µm ⋅ ⋅ ⋅ µ1 and j i ∈ [nµ i ], we set

yµ , j1 , . . . , jm ∶= vµ1 , j1 ⋅ ⋅ ⋅ vµm , jmTµ ,∅ .

_en yµ , j1 , . . . , jm is in A′, since

a ⋅ vµ1 , j1 ⋅ ⋅ ⋅ vµm , jmTµ ,∅ = vµ1 , j1 ⋅ ⋅ ⋅ vµm , jmαµm ⋅ ⋅ ⋅ αµ1(a)Tµ ,∅

= vµ1 , j1 ⋅ ⋅ ⋅ vµm , jmαµ(a)Tµ ,∅

= vµ1 , j1 ⋅ ⋅ ⋅ vµm , jmTµ ,∅ ⋅ a

for all a ∈ A. Now we can write

RµT(µ) = ∑
jm∈[nµm ]

⋅ ⋅ ⋅ ∑
j1∈[nµ1 ]

Rµρ(uµm , jm ⋅ ⋅ ⋅uµ1 , j1)ρ(yµ , j1 , . . . , jm)

= ∑
jm∈[nµm ]

⋅ ⋅ ⋅ ∑
j1∈[nµ1 ]

Wµm , jm ⋅ ⋅ ⋅Wµ1 , j1ρ(yµ , j1 , . . . , jm).

If F is a ûnite set of [nµm ], then

∥ ∑
j1∈F

Wµm , jm ⋅ ⋅ ⋅Wµ1 , j1ρ(yµ , j1 , . . . , jm)∥

= ∥ ∑
j1∈F

uµm , jm ⋅ ⋅ ⋅uµ1 , j1vµ1 , j1 ⋅ ⋅ ⋅ vµm , jmTµ ,∅∥

≤ ∥uµm , jm∥⋅⋅⋅uµ2 , j2
∥ ∑

j1∈F
uµ1 , j1vµ1 , j1∥∥vµ2 , j2 ⋅ ⋅ ⋅ vµm , jm∥∥Tµ ,∅∥

≤ K2
∥Tµ ,∅∥,

where K is the uniform bound for {ûµ}µ and {v̂µ}µ . Inductively, we have that the
sums in the above form of RµT(µ) converge in the w*-topology, and therefore each
RµT(µ) is in A′×uRd . As in Proposition 2.5 an application of Fejér’s Lemma induces
that T is in A′×uRd .

Next we show that (A′×uLd)
′ = A′′×αRd . Again it is immediate that A′′×αRd is

in the commutant of A′×uLd . For the reverse inclusion, let T be in the commutant.
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_en T commutes with all L iρ(u i , j i ). First let ν /≤r µ with ν = νk ⋅ ⋅ ⋅ ν1; then

⟨Tµ ,νuνk , jk ⋅ ⋅ ⋅uν1 , j1 ξ, η⟩ = ⟨Tρ(uνk , jk ⋅ ⋅ ⋅uν1 , j1)ξ ⊗ eν , η ⊗ eµ⟩

= ⟨TLνρ(uνk , jk ⋅ ⋅ ⋅uν1 , j1)ξ ⊗ e∅ , η ⊗ eµ⟩

= ⟨Lνρ(uνk , jk ⋅ ⋅ ⋅uν1 , j1)T ξ ⊗ e∅ , η ⊗ eµ⟩

= ⟨ρ(uνk , jk ⋅ ⋅ ⋅uν1 , j1)T ξ ⊗ e∅ , (Lν)
∗η ⊗ eµ⟩ = 0.

_erefore, by summing over the j i , we obtain

Tµ ,ν = ∑
jk∈[nνk ]

⋅ ⋅ ⋅ ∑
j1∈[nν1 ]

Tµ ,νuνk , jk ⋅ ⋅ ⋅uν1 , j1vν1 , j1 ⋅ ⋅ ⋅ vνk , jk = 0

so that T is right lower triangular. We thus check the nonnegative Fourier coeõcients.
For m = 0 we have that T(0) commuteswith ρ(A′), and therefore every Tw ,w is inA′′.
Moreover, for w ∈ Fd+ with w = wk ⋅ ⋅ ⋅w1, we have that

Tw ,wuwk , jk ⋅ ⋅ ⋅uw1 , j1 ξ ⊗ ew = G0(T)Lwρ(uwk , jk) ⋅ ⋅ ⋅ ρ(uw1 , j1)ξ ⊗ e∅
= Lwρ(uwk , jk) ⋅ ⋅ ⋅ ρ(uw1 , j1)G0(T)ξ ⊗ e∅
= uwk , jk ⋅ ⋅ ⋅uw1 , j1T∅,∅ξ ⊗ ew .

Consequently, we obtain

αw(T∅,∅) = αwk ⋅ ⋅ ⋅ αw1(T∅,∅)

= ∑
jk∈[nwk ]

⋅ ⋅ ⋅ ∑
j1∈[nw1 ]

uwk , jk ⋅ ⋅ ⋅uw1 , j1T∅,∅vw1 , j1 ⋅ ⋅ ⋅ vwk , jk

= Tw ,w ∑
jk∈[nwk ]

⋅ ⋅ ⋅ ∑
j1∈[nw1 ]

uwk , jk ⋅ ⋅ ⋅uw1 , j1vw1 , j1 ⋅ ⋅ ⋅ vwk , jk = Tw ,w .

_us, we have that G0(T) = π(T∅,∅). Now let m > 0 and use that Gm(T) commutes
with L iρ(u i , j i ) to deduce that

T(µ)L iρ(u i , j i ) = R∗µGm(T)L iρ(u i , j i ) = R∗µL iρ(u i , j i )Gm(T).

However, for ξ ⊗ eν ∈K we have that

(Rµ)
∗L iρ(u i , j i )Gm(T)ξ ⊗ eν = u i , j iTνµ ,ν ξ ⊗ (rµ)∗e iνµ = L iρ(u i , j i )T(µ)ξ ⊗ eν ,

which yields that T(µ) commutes with every L iρ(u i , j i ). Furthermore, for y ∈ A′ we
get that

T(µ)ρ(y) = (Rµ)
∗Gm(T)ρ(y) = (Rµ)

∗ρ(y)Gm(T)

= ρ(y)(Rµ)
∗Gm(T) = ρ(y)T(µ) .

_erefore, T(µ) is a diagonal operator in (A′×αLd)
′, and thus T(µ) = π(Tµ ,∅) by

what we have shown for the zero Fourier coeõcients. _is shows that Gm(T) is in
A′′×αRd for all m ∈ Z+.

_e other equalities follow in a similar way and are le� to the reader.

Recall that A is inverse closed if A−1 ⊆ A. It is well known that every commutant
is automatically inverse closed.
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Corollary 4.2 Let (A, {α i}i∈[d]) be a w*-dynamical system of a uniformly bounded
spatial action. _en the following are equivalent:
(i) A has the bicommutant property;
(ii) A×αLd has the bicommutant property;
(iii) A×αRd has the bicommutant property;
(iv) A⊗Ld has the bicommutant property;
(v) A⊗Rd has the bicommutant property.
If any of the items above hold, then all algebras are inverse closed.

Proof We just comment that the equivalence between items (i) and (ii) follows by
using (A×αLd)

′′ = A′′×αLd from _eorem 4.1 and applying the compression to the
(∅,∅)-entry.

Corollary 4.3 (i) Let {α i}i∈[d] be a uniformly bounded spatial action on B(H).
_en the w*-semicrossed products B(H)×αLd and B(H)×αRd are inverse
closed.

(ii) Let (A, {α i}i∈[d]) be an automorphic system over a maximal abelian selfadjoint
algebra (m.a.s.a.) A. _en the w*-semicrossed products A×αLd and A×αRd are
inverse closed.

Proof Notice that in both casesA = B′ for a suitableB and thatB×uLd andB×uRd
are well deûned. _e proof then follows by writing A×αLd = (B×uRd)

′ and the
symmetrical A×αRd = (B×uLd)

′.

4.2 Semicrossed Products Over Zd+

Recall the decomposition in Proposition 3.16. By applying_eorem4.1 recursively we
obtain the following theorem.

_eorem 4.4 Let (A, α,Zd+) be a unital w*-dynamical system. Suppose that each αi
is implemented by a uniformly bounded row operator ui. _en

(A×αZd+)
′
≃ ( ⋅ ⋅ ⋅ ((A′

×u1Z+)×û2Z+) ⋅ ⋅ ⋅ )×ûdZ+

where ûi = ui ⊗
(i−1) Iℓ2 for i = 2, . . . , d.

Consequently, we obtain the following corollaries. _eir proofs follow as in the
free semigroup case and are omitted.

Corollary 4.5 Let (A, α,Zd+) be a unital w*-dynamical system. Suppose that each
αi is implemented by a uniformly bounded row operator ui. _en the following are
equivalent:
(i) A has the bicommutant property;
(ii) A×αZd+ has the bicommutant property;
(iii) A⊗H∞(Zd+) has the bicommutant property.
If any of the items above hold, then all algebras are inverse closed.
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Corollary 4.6 (i) Let (B(H), α,Zd+) be a w*-dynamical system such that each αi
is implemented by a uniformly bounded row operator ui. _en thew*-semicrossed
product B(H)×αZd+ is inverse closed.

(ii) Let (A, α,Zd+) be an automorphic system over a maximal abelian selfadjoint al-
gebra (m.a.s.a) A. _en the w*-semicrossed product A×αZd+ is inverse closed.

5 Reflexivity

5.1 Semicrossed Products Over Fd+

Let (B(H), {α i}i∈[d]) be a unitalw*-dynamical system of a uniformly bounded spa-
tial action such that each α i is implemented by u i = [u i , j i ] j i∈[n i] .We aim to show that
B(H)×αLd is similar to B(H)⊗LN for N = ∑i n i . Recall that we write

{(i , j i) ∣ j i ∈ [n i], i ∈ [d]}

for the generators of FN
+ ; i.e., we see FN

+ as the free product ∗i∈[d]Fn i
+ . To this end we

deûne the operator

U ∶H ⊗ ℓ2(FN
+ )Ð→H ⊗ ℓ2(Fd+)

by U ξ ⊗ e∅ = ξ ⊗ e∅ and

U ξ ⊗ e(µk , jk)⋅⋅⋅(µ1 , j1) = uµ1 , j1 ⋅ ⋅ ⋅uµk , jk ξ ⊗ eµk ⋅⋅⋅µ1 .

For words of length k we deûne the spaces

Kk ∶= span{ ξ ⊗ e(µk , jk)⋅⋅⋅(µ1 , j1) ∣ ξ ∈H, (µ i , j i) ∈ ([d], [nµ i ])} .

_e ranges ofKk under U are orthogonal and thus

∥U ∣Kk∥ = sup
∣µ∣=k

∥uµ1 ⋅ (uµ2 ⊗ I[nµ1 ]
) ⋅ ⋅ ⋅ (uµk ⊗ I[nµ1 ⋅⋅⋅nµk−1 ]

)∥ = sup
∣µ∣=k

∥ûµ∥,

which is bounded (by the uniform bound for {u i}i∈[d]). As U = ⊕kU ∣Kk , we derive
that U is bounded. In particular, the operator U is invertible with

U−1
∶H ⊗ ℓ2(Fd+)Ð→H ⊗ ℓ2(FN

+ )

given by U−1ξ ⊗ e∅ = ξ ⊗ e∅ and

U−1ξ ⊗ eµk ⋅⋅⋅µ1 = ∑
j1∈[nµ1 ]

⋅ ⋅ ⋅ ∑
jk∈[nµk ]

vµk , jk ⋅ ⋅ ⋅ vµ1 , j1 ξ ⊗ e(µk , jk)⋅⋅⋅(µ1 , j1) ,

where v i is the inverse of u i . Notice that if K is the uniform bound for {ûµ}µ and
{v̂µ}µ , then max{∥U∥ , ∥U−1∥} = K.

_eorem 5.1 Let (B(H), {α i}i∈[d]) be a w*-dynamical system of a uniformly
bounded spatial action. Suppose that every α i is given by an invertible row operator
u i = [u i , j i ] j i∈[n i] and set N = ∑i∈[d] n i . _en the w*-semicrossed productB(H)×αLd
is similar to B(H)⊗LN .
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Proof We will show that the constructed U yields the required similarity. To this
end, we apply for x ∈ B(H) to obtain

π(x)U ξ ⊗ e(µk , jk)⋅⋅⋅(µ1 , j1) = αµ1 ⋅ ⋅ ⋅ αµk(x)uµ1 , j1 ⋅ ⋅ ⋅uµk , jk ξ ⊗ eµk ⋅⋅⋅µ1

= uµ1 , j1 ⋅ ⋅ ⋅uµk , jk xξ ⊗ eµk ⋅⋅⋅µ1

= Uρ(x)ξ ⊗ e(µk , jk)⋅⋅⋅(µ1 , j1) ,

where we used that αµ i (x)uµ i , j i = uµ i , j i x. On the other hand, we have that

L iU ξ ⊗ e(µk , jk)⋅⋅⋅(µ1 , j1) = L iuµ1 , j1 ⋅ ⋅ ⋅uµk , jk ξ ⊗ eµk ⋅⋅⋅µ1

= uµ1 , j1 ⋅ ⋅ ⋅uµk , jk ξ ⊗ e i µk ⋅⋅⋅µ1 ,

whereas

U ∑
j i∈[n i]

L i , j i ρ(v i , j i )ξ ⊗ e(µk , jk)⋅⋅⋅(µ1 , j1)

= U ∑
j i∈[n i]

v i , j i ξ ⊗ e(i , j i)(µk , jk)⋅⋅⋅(µ1 , j1)

= ∑
j i∈[n i]

uµ1 , j1 ⋅ ⋅ ⋅uµk , jku i , j iv i , j i ξ ⊗ e i µk ⋅⋅⋅µ1

= uµ1 , j1 ⋅ ⋅ ⋅uµk , jk ξ ⊗ e i µk ⋅⋅⋅µ1 ,

since∑ j i∈[n i]
u i , j iv i , j i = I. Hence, we obtain that

U−1L iU = ∑
j i∈[n i]

L i , j i ρ(v i , j i ) for all i ∈ [d].

_erefore, the generators of B(H)×αLd are mapped into B(H)⊗FN
+ . We need to

show that the elements ρ(x) and U−1L iU also generate the elements

L i , j i for all (i , j i) ∈ ([d], [n i]) .

Since every u i , j i is in B(H), we have that

U−1L iUρ(u i , j i ) = ∑
j i∈[n i]

L i , j i ρ(v i , j i )ρ(u i , j i ) = L i , j i

and the proof is complete.

_eorem 5.2 Let (A, {α i}i∈[d]) be a w*-dynamical system of a uniformly bounded
spatial action. Suppose that every α i is given by an invertible row operator u i =

[u i , j i ] j i∈[n i] and set N = ∑i∈[d] n i .
(i) If N ≥ 2, then every w*-closed subspace of A×αLd or A×αRd is hyper-re�exive.

If K is the uniform bound related to {u i}, then the hyper-re�exivity constant is at
most 3 ⋅ K4.

(ii) If N = 1 andA is re�exive, then A×αLd = A×αRd = A×αZ+ is re�exive.

Proof If every α i is given by an invertible row operator u i , then (A, {α i}i∈[d]) ex-
tends to (B(H), {α i}i∈[d]) so that

A×αLd ⊆ B(H)×αLd ≃ B(H)⊗LN
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by _eorem 5.1. If N ≥ 2, then every w*-closed subspace of B(H)⊗LN is hyper-
re�exive with distance constant at most 3 by [7]. As hyper-re�exivity is preserved
under taking similarities, the proof of item (i) is complete. Item (ii) follows by [24,
_eorem 2.9].

Corollary 5.3 Let (A, {α i}i∈[d]) be a w*-dynamical system so that every α i is given
by a Cuntz family [s i , j i ] j i∈[n i]. If N = ∑i∈[d] n i ≥ 2, then every w*-closed subspace of
A×αLd or A×αRd is hyper-re�exive with distance constant at most 3.

Corollary 5.4 Let (A, {α i}i∈[d]) be a system of w*-continuous automorphisms on a
maximal abelian selfadjoint algebraA. _en A×αLd andA×αRd are re�exive.

Remark 5.5 When A is re�exive, we can have an independent proof of re�exivity
of A×αLd that does not go through hyper-re�exivity. First, note that if an operator
T is in Ref(A×αLd), then T is le� lower triangular and Tµw ,w ∈ Ref(A) for every
µ,w ∈ Fd+. Indeed, for ξ, η ∈ H and ν, ν′ ∈ Fd+, there is a sequence Fn ∈ A×αLd such
that

⟨Tν′ ,ν ξ, η⟩ = ⟨T ξ ⊗ eν , η ⊗ eν′⟩
= lim

n
⟨Fn ξ ⊗ eν , η ⊗ eν′⟩ = lim

n
⟨[Fn]ν′ ,ν ξ, η⟩ .

Taking ν /<l ν′ gives that T is le� lower triangular as all Fn are so. Taking ν′ = µν yields
[Fn]µν ,ν ∈ A, and thus Tµν ,ν ∈ Ref(A). Now if {α i}i∈[d] is a uniformly bounded
spatial action, then T ∈ B(H)×αLd . _erefore, T is le� lower triangular and for
m ∈ Z+ we have that Gm(T) = ∑∣µ∣=m Lµπ(Tµ ,∅) with Tµ ,∅ ∈ Ref(A) = A.

Remark 5.6 Even though re�exivity ofA directly implies re�exivity of thew*-semi-
crossed products the converse does not hold.
For example, suppose that each α i is implemented by a single invertible u i . _en

we can extend (A, {α i}i∈[d]) to the system (Ref(A), {α i}i∈[d]). If d ≥ 2, then both
A×αLd and Ref(A)×αLd are re�exive and

A×αLd ⊆ Ref(A)×αLd .

_is inclusion is proper whenA is not re�exive, e.g., forA = {aI + bE21 ∣ a, b ∈ C} in
M2(C). In fact, by taking the compression to the (∅,∅)-entry, we see thatA×αLd =
Ref(A)×αLd if and only ifA = Ref(A).

_e re�exivity results extend to systems over any factor. _is can be achieved by
following the ingenious arguments ofHelmer [22]. Even though thesewere originally
presented in [22] for Type II or III factors, they apply as long as two basic properties
are satisûed. We isolate these below.

Deûnition 5.7 An algebra A ⊆ B(H) is injectively reducible if there is a nontrivial
reducing subspace M of A such that the representations a ↦ a∣M and a ↦ a∣M⊥ are
both injective.

Deûnition 5.8 A w*-dynamical system (A, {α i}i∈[d]) is injectively re�exive if: (i)
A is re�exive; (ii)A is injectively reducible by someM; and (iii) βν(A) is re�exive for
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all ν ∈ Fd+ with

βν(a) = [
a∣M 0
0 αν(a)∣M⊥

] .

It is immediate that dynamical systems over Type II or Type III factors are injec-
tively re�exive.

_eorem 5.9 ([22,_eorem 3.18]) If (A, {α i}i∈[d]) is an injectively re�exive unital
w*-dynamical system, then A×αLd andA×αRd are re�exive.

Proof _e le� version is [22, _eorem 3.18] a�er translating from the W*-corre-
spondences terminology. To exhibit this, we will show how the right case can be
shown in our context.
Fix T ∈ Ref(A×αRd). If m < 0, then Gm(T) = 0 by Remark 5.5. If m ≥ 0, then

Tµ ,∅ ∈ A by the same remark. _us, it suõces to show that Tνµ ,ν = αν(Tµ ,∅) for
every ν ∈ Fd+. By assumption, let M be the subspace that injectively reduces A. We
henceforth ûx a word ν ∈ Fd+ and deûne the subspaces ofK:

K0 ∶= span{ξ ⊗ ew ∣ ξ ∈ M ,w ∈ Fd+} and Kν ∶= span{η ⊗ eνw ∣ η ∈ M⊥ ,w ∈ Fd+}.

BothK0 andKν are invariant subspaces ofA×αRd . If p is the projection onK0⊕Kν ,
then we have that Gm(T)p ∈ Ref((A×αRd)p). We will use the unitary

U ∶ pKÐ→K∶ ξ ⊗ ew + η ⊗ eνw z→ (ξ + η)⊗ ew .

A straightforward computation shows that

Uπ(a)pU∗
= ∑

w∈Fd
+

(αw(a)∣M + ανw(a)∣M⊥) ⊗ pw

and that UR i pU∗ = R i . In particular, p is reducing for R i , and we get

UGm(T)pU∗
= ∑

∣µ∣=m
∑
w∈Fd

+

Rµ(Twµ ,w ∣M + Tνwµ ,νw ∣M⊥)⊗ pw .

By taking compressions, we have that the (µ,∅)-entry of the operator UGm(T)pU∗

is in the re�exive cover of the (µ,∅)-block of the algebra Ref(U(A×αRd)pU∗).
However, the latter coincides with (the re�exive cover of, and hence with) βν(A) de-
ûned above. Hence, there is an a ∈ A such that

Tµ ,∅∣M + Tνµ ,ν ∣M⊥ = a∣M + αν(a)∣M⊥ .

Since the restrictions to M and M⊥ are injective, we derive that Tµ ,∅ = a and Tνµ ,ν =

αν(a) = αν(Tµ ,∅), which completes the proof.

By combining _eorems 5.2 and 5.9, we get the next corollary.

Corollary 5.10 Let (A, {α i}i∈[d]) be a unital w*-dynamical system on a factor A ⊆

B(H) for a separable Hilbert spaceH. _en A×αLd andA×αRd are re�exive.

Proof We have that either A = B(H) or there is a nontrivial projection p ∈ A′, and
so the system is injectively re�exive.
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5.2 Semicrossed Products Over Zd+

We now pass to the examination of Zd+. When every αi is given by an invertible row
operator ui = [u i , j i ] j i∈[n i], we write M = ∏i∈[d] n i for the capacity of the system.
Note that M ≥ 2 if and only if there is at least one i such that n i ≥ 2.

_eorem 5.11 Let (A, α,Zd+) be a unital w*-dynamical system. Suppose that every
αi is uniformly bounded spatial, given by an invertible row operator ui = [u i , j i ] j i∈[n i],
and set M =∏i∈[d] n i .

(i) If M ≥ 2, then every w*-closed subspace of A×αZd+ is hyper-re�exive. If K i is
the uniform bound associated with ui (and its inverse), then the hyper-re�exivity
constant is at most 3 ⋅ K4 for K = min{K i ∣ n i ≥ 2}.

(ii) IfM = 1 andA is re�exive, then A×αZd+ is re�exive.

Proof For item (i), suppose without loss of generality that nd ≥ 2 with Kd =

3min{K i ∣ n i ≥ 2}. _en we can write A×αZd+ ≃ B×α̂dZ+ for an appropriate w*-
closed algebra B by Proposition 3.16. Hence we can apply _eorem 5.2 for the sys-
tem (B, α̂d ,Z+), as its capacity is greater than 2. For item (ii) we can write A×αZd+
as successive w*-semicrossed products and apply recursively [24, _eorem 2.9], i.e.,
_eorem 5.2(ii).

Corollary 5.12 Let (A, α,Zd+) be a unitalw*-dynamical system. Suppose that at least
one αi is implemented by a Cuntz family [s i , j i ] j i∈[n i] with n i ≥ 2. _en every w*-closed
subspace ofA×αZd+ is hyper-re�exive with distance constant 3.

Proof Suppose without loss of generality that αd is deûned by a Cuntz family with
nd ≥ 2. _en α̂d is also given by the Cuntz family {s j ⊗

d−1 I} of size nd. By Propo-
sition 3.16 we can write A×αZd+ ≃ B×α̂dZ+ for some w*-closed algebra B. Applying
then Corollary 5.3 completes the proof.

Corollary 5.13 IfA is re�exive then A⊗H∞(Zd+) is re�exive.

Corollary 5.14 Let (A, α,Zd+) be a unital automorphic system over amaximal abe-
lian selfadjoint algebraA. _en A×αZd+ is re�exive.

We can apply the arguments of [22] to tackle other dynamical systems.

Deûnition 5.15 Aw*-dynamical system (A, α,Zd+) is injectively re�exive if: (i)A is
re�exive, (ii)A is injectively reducible by M, and (iii) βn(A) is re�exive for all n ∈ Zd+
with

βn(a) = [
a∣M 0
0 αn(a)∣M⊥

] .

Consequently, every (A, αi ,Z+) is injectively re�exive for the same M. Again it
follows that systems over Type II or Type III factors are injectively re�exive.
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_eorem 5.16 Let (A, α,Zd+) be a unital w*-dynamical system. If the system is in-
jectively re�exive, then A×αZd+ is re�exive.

Proof _e proof follows in a similar way as in _eorem 5.9. In short, if T is in
Ref(A×αZd+), then T is lower triangular and Tm ,0 ∈ A for every m ∈ Zd+. _us, we
just need to show that Tm+n ,n = αn(Tm ,0) for every n ∈ Zd+. For a ûxed n, let the
spaces

K0 ∶= span{ξ ⊗ ew ∣ ξ ∈ M ,w ∈ Zd+},

Kn ∶= span{η ⊗ en+w ∣ η ∈ M⊥ ,w ∈ Zd+},

and let the unitary U ∶K0 ⊕ Kn →H ⊗ ℓ2(Zd+) be given by

U(ξ ⊗ ew + η ⊗ en+w) = (ξ + η)⊗ ew .

If p is the projection on K0 ⊕ Kn , then

Uπ(a)pU∗
= ∑

w∈Zd
+

(αw(a)∣M + αn+w(a)∣M⊥)⊗ pw and ULipU∗
= Li .

On the other hand, we have that

UGm(T)pU∗
= Lm ∑

w∈Zd
+

(Tm+w ,w ∣M + Tn+m+w ,n+w ∣M⊥)⊗ pw .

Taking compressions and using re�exivity of βn(A) implies that there exists an a ∈ A
such that

Tm ,0∣M + Tn+m ,n ∣M⊥ = a∣M + αn(a)∣M⊥ ,

and therefore Tm+n ,n = αn(a) = αn(Tm ,0).

Corollary 5.17 Let (A, α,Zd+) be a unital w*-dynamical system on a factor A ⊆

B(H) for a separable Hilbert spaceH. _en A×αZd+ is re�exive.

Remark 5.18 _e w*-semicrossed products A×αZd+ do not ût into the theory of
W*-correspondences. _is was observed in [14, 25] for the norm-analogues, but the
arguments apply heremutatismutandis. _at is, ifA = C, thenA×αZd+ is the commu-
tative algebra H∞(Zd+). _erefore, the results of this section are disjoint from those
of [22] when d ≥ 2.
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