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Free Multivariate w*-Semicrossed Products:
Reflexivity and the Bicommutant Property

Dedicated to the memory of Donald E. Sarason

Robert T. Bickerton and Evgenios T. A. Kakariadis

Abstract. 'We study w*-semicrossed products over actions of the free semigroup and the free abelian
semigroup on (possibly non-selfadjoint) w*-closed algebras. We show that they are reflexive when
the dynamics are implemented by uniformly bounded families of invertible row operators. Combin-
ing with results of Helmer, we derive that w*-semicrossed products of factors (on a separable Hilbert
space) are reflexive. Furthermore, we show that w*-semicrossed products of automorphic actions
on maximal abelian selfadjoint algebras are reflexive. In all cases we prove that the w*-semicrossed
products have the bicommutant property if and only if the ambient algebra of the dynamics does
also.

1 Introduction

Reflexivity and the bicommutant property are closely related to invariant subspaces
problems. A w*-closed algebra A is reflexive if it coincides with the algebra that leaves
invariant the invariant subspaces of A. It is said to have the bicommutant property if
it coincides with its bicommutant A”. Von Neumann algebras are reflexive and have
the bicommutant property; however, this seems to be too crude to be the prototype.
Results are considerably harder to get for nonselfadjoint algebras. For example A(>)
is always reflexive but it may differ from (A(®))", e.g., when A # A”. Arveson [4]
also introduced a function f3 to measure reflexivity. An algebra A is hyper-reflexive if
p is equivalent to the distance function from A. A remarkable result of Bercovici [7]
asserts that every wot-closed algebra whose commutant contains two isometries with
orthogonal ranges is hyper-reflexive.

The reflexivity term is attributed to Halmos and was first used by Radjavi-Rosen-
thal [43]. It is considered as Noncommutative Spectral Synthesis in conjunction with
synthesis problems in commutative Harmonic Analysis, and it offers a systematic way
of reconstructing an algebra from a set of invariant subspaces; see the excellent expo-
sition of Arveson [5]. The first result regarding reflexivity concerns the Hardy algebra
of the disc and it was proved by Sarason [45]. It inspired a great amount of subsequent
research, e.g., Radjavi-Rosenthal [44], including the seminal work of Arveson [3] on
CSL algebras. Further examples include the important class of nest algebras [13], the
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H? Hardy algebras examined by Peligrad [39], and algebras of commuting isometries
or tensor products with the Hardy algebras studied by Ptak [42]. Algebras related to
the free semigroup F¢ were examined in a number of papers by Arias and Popescu
[2,41], Davidson, Katsoulis, and Pitts [16,18], Kennedy [32], and Fuller and Kennedy
[19]. In far more generality, free semigroupoid algebras were also tackled by Kribs-
Power [33]. Representations of the Heisenberg semigroup were recently studied by
Anoussis, Katavolos, and Todorov [1].

Algebras related to dynamical systems (sometimes appearing as “analytic crossed
products” in older papers) were considered by McAsey, Muhly, and Saito [37], Katavo-
los and Power [31], and Kastis and Power [30]. One-variable systems were further ex-
amined by the second author [24]. His work was extended by Helmer [22] to the much
broader context of Hardy algebras of W*-correspondences in the sense of Muhly-Solel
[38], and by Peligrad [40] to flows on von Neumann algebras. Essential properties of
the algebras of [24] were explored by Hasegawa [21].

The term “analytic crossed products” has now been replaced by “semicrossed prod-
ucts” In the last fifty years there has been a systematic approach, especially for their
norm-closed variants. The list of references is substantially too long to be included
here and the reader may refer to [15]. We follow the work of the second author with
Peters [28] and with Davidson and Fuller [14], and we interpret a semicrossed product
as an algebra densely spanned by generalized analytic polynomials subject to a set of
covariance relations. From the study in [14] it appears that semicrossed products over
4 and Z? are the most tractable as the semigroups are finitely generated. Therefore,
it is natural to examine their w*-closed variants, i.e., the w*-semicrossed products in
the sense of [24]. These algebras arise through a Fock construction, and in this paper
we study the reflexivity and the bicommutant property for this specific representation.

Additional motivation comes from the recent results of Helmer [22]. An applica-
tion of his results shows reflexivity of semicrossed products of Type II or III factors
over ¢, With some modifications the arguments of [22] apply for Type II or III fac-
tors over Z4. Here we wish to conclude this programme by considering endomor-
phisms of B(3(). Thus we focus on actions of F¢ or Z¢ such that each generator is
implemented by a Cuntz family. However we do not restrict just on B(J). There
exists a plethora of dynamics implemented by Cuntz families appearing previously in
the works of Laca [35], Courtney, Muhly, and Schmidt [10], and the second author
with Peters [28]. They arise naturally and form generalizations of the Cuntz-Krieger
odometer (Examples 3.5).

We underline that our setting accommodates Z¢-actions where the generators a;
are implemented by unitaries but those may not lift to a unitary action of Z4, i.e., the
unitaries implementing the actions may not commute. For example, any two com-
muting automorphisms over B(JH) are implemented by two unitaries that satisfy a
Weyl’s relation and may not commute (see Example 3.10). By using results of Laca [35]
we are able to determine when an automorphism of B () commutes with specific
endomorphisms induced by two Cuntz isometries (see Examples 3.12 and 3.13). The
interested reader is directed to the PhD thesis of the first author (in progress) for a
more systematic study of automorphisms commuting with endomorphisms of B ()
that are induced by a cyclic free atomic representation.
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Our main results on reflexivity appear in Corollaries 5.3 and 5.12 and are summa-
rized in the following theorem. If n; is the multiplicity of the Cuntz family imple-
menting the i-th generator of the action, then we define the capacity of a system to

be
d d

N:=)"n;foran F9-system, and M := [Inifora 74 -system.

i=1 i=1

Theorem 1.1 (Corollaries 5.3 and 5.12) Let a be an action of F¢ or 79 on A such
that each generator of a is implemented by a Cuntz family. If the capacity of the system
is greater than 1, then the resulting w*-semicrossed products are (hereditarily) hyper-
reflexive. If the capacity of the system is 1 and A is reflexive then the resulting w*-
semicrossed products are reflexive.

In fact we manage to tackle actions implemented by invertible row operators that
satisfy a uniform bound hypothesis (Theorems 5.2 and 5.11). We call these uniformly
bounded spatial actions.

The strategy we follow for ¢ -systems is to realize the w*-semicrossed product as
a subspace of B(H)®Ly (Theorem 5.1). Here Ly denotes the free semigroup alge-
bra generated by the Fock representation for the capacity N of the system. Notice that
even when d = 1 we manage to pass to (a subspace of) the tensor product B(H)®L,, .
When N > 2, B(H)®Ly is hyper-reflexive and has property A; (1) by [7,17]. Hence,
by results of Kraus-Larson [29] and Davidson [12], it follows that B (H)®L y is hered-
itarily hyper-reflexive. When N = 1then the result follows from [24]. For the Z¢-cases
we decompose the w*-semicrossed product along the directions (Proposition 3.16)
and apply similar arguments for the last factor of such a decomposition.

The passage inside B(H)®L y relies on the strange phenomenon that every system
on B(H) given by a Cuntz family of multiplicity n; is equivalent to the trivial action
of F}* on B(H). This was first observed by the second author with Katsoulis [26] and
with Peters [28]. Surprisingly there is a strong connection with the fact that module
sums over the Cuntz algebra do not attain a unique basis. Gipson [20] attacks this
problem effectively by introducing the notion of the invariant basis number.

In combination with [22] we encounter systems over any factor and automorphic
systems over maximal abelian selfadjoint algebras (Corollaries 5.4, 5.10, 5.14, and 5.17).
It appears that the arguments of Helmer [22] treat a wider class of dynamical systems.
We include this information in Theorems 5.9 and 5.16. Alongside this, we translate
his reflexivity proof in our context.

We mention that our reflexivity results can be acquired without referring to hyper-
reflexivity, when A is reflexive. To this end we provide a straightforward proof of
that B(H)®L, is reflexive (Proposition 2.8). The line of reasoning resembles to [24,
33] and may find applications to other settings, e.g., algebras over weighted graphs of
Kribs, Levene, and Power [34].

By applying [12,29] we get that the hyper-reflexivity constant in Theorems 5.2 and
5.11is at most 7 - K* when N, M > 2 (where K is the uniform bound for the invert-
ible row operators). However, it can be decreased further to 3 - K*. This follows by
analyzing their commutant. In each case we identify the commutant with a twisted
w*-semicrossed product over the commutant (Theorems 4.1 and 4.4). In the norm
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context, such algebras were studied by the second author with Peters [27]. They form
the nonselfadjoint analogues of the twisted C*-crossed product introduced earlier by
Cuntz [11]. The method of twisting for w*-closed algebras was explored for automor-
phic Z, -actions in [24] and applies also for Z?-actions here. Twisting twice brings
us back to the w*-semicrossed product over the bicommutant. Therefore, we obtain
Corollaries 4.2 and 4.5, which can be summarized in the following statement.

Theorem 1.2 (Corollaries 4.2 and 4.5) Let « be an action of F¢ or Z¢ on a w*-
closed algebra A. Suppose that each generator of « is implemented by a Cuntz family.
Then A has the bicommutant property if and only if any (and thus all) of the resulting
w*-semicrossed products does so.

For our analysis we use a generalized Fejér Lemma; details are given in Section 2.
For directly showing the reflexivity of B(H)®L,; we use finite dimensional cyclic
modules. In Section 3 we define the algebras that play the role of the w*-semicrossed
products. However, the important feature in ¢ is the separation between left and
right lower triangular operators. Obviously this separation is redundant for Z¢. The
results about the commutant and reflexivity appear in Sections 4 and 5, respectively.

We underline that F¢ and Z¢ are tractable due to their simple structure. Another
interesting class of algebras is formed by systems over the Heisenberg semigroup [1].
We leave this class for a subsequent project.

2 Preliminaries

Ford € Z, u {oo}, we write [d] := {1,...,d}, so that [co] = Z,. We highlight that d
is always finite in Z4, but d € {1,2,..., 00} in F4. We will write f, for a symbol f and
aword p = piy - p1 € F¥ to denote §, = f,,, - f4,. To avoid any ambiguity as to what
f;, means we use the notation (f,)".

We use capital letters for operators acting on tensor product Hilbert spaces and
small letters for operators acting on their factors. This reduces considerably the usage
of parentheses (which we omit) when the operators act on elementary tensor vectors.

Sums over an infinite family of operators are taken in the strong operator topol-
ogy with respect to the net over finite subsets. For the algebras A; ¢ B(H;) and
Az € B(H,) we write A;®A, for the w*-closure of their algebraic tensor product in
B(H; @ H,).

2.1 Free Semigroup Operators

We endow F¢ with a (left) partial ordering given by
v <; pif there exists z € F¢ such that u = zv.

We want to keep track of whether we concatenate on the left or on the right, and we
also consider the right version

v <,  if there exists z € F? such that u = vz.

https://doi.org/10.4153/CJM-2017-031-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-031-0

Free Multivariate w*-Semicrossed Products 1205
For a word py = py - - gy we write ¢ := py - - - yy for the reversed word of y. We define
the left and right creation operators on £2(IF¢) by

Le,=e,, and r,e, =e,s.

Notice here that r, is the product Iy, Ty and it is the reverse notation of what was
used in [18]. We write

Lgo=alg"" {l, [ueF?} and Rg:=alg" {r,|peF).

Fejér’s Lemma (which applies) implies that there is no difference in considering the
w*-topology instead, i.e.,

Lo=alg {l,|ueF!} and Ry=alg" {r,|uecF}.
The Fourier co-efficients in the w*- and the wot-setting coincide.

Definition 2.1 For n € Z, U {oo} we say that a row operator u = [uy -1, -]
B(H ® £%(n), H) is invertible if there exists a column operator v = [vy-+-v,---]*
B(H,H ® €2(n)) such that

vu = Iyge(m) and Z u;v; = Igq.
ie[n]

€
€

In particular we have that v;u; = §; jIs¢ and that | ¥;cpu;v;| < 1 for any finite
F ¢ [n]. Indeed, if P is the projection on H := span{{®e; | i € F}, then

H Zl;uivihH = H Z[:]Mivz‘PFhH = | Peh| = ||

for all h € Hp. We will consider actions implemented by invertible row operators
subject to a uniform bound.

Definition 2.2 Let {u; }c[4] be a family of invertible row operators such that u; =
[tij;]jie[n;]- We say that {u; };c[4] is uniformly bounded if the operators

By = U, (Upps ® I[nym]) o (uy ® I[”ﬂm'""ﬂz])
and their inverses
vﬂl"‘/‘m = (Vﬂl ® I["ym"'”ﬂz]) e (Vl"mfl ® I[”ym]) : v.“m
are uniformly bounded with respect to g, - -- y; € F9.
Notice that if n; = 1forall i € [d], then @y, ..., = Uy, -~ thy, = ty. Infact i, ., is

the row operator of all possible products of the ,,, ;, . Let us exhibit this construction
with an example for finite multiplicities.

Example 2.3 Let the row operators u; and u, with n; = 2 and n, = 3. Then the
operator uy; is given by

— Upy Uzp U
Uy =ur- (U ®Iy,) = [ty ui2]- (421 22 23] [Uss t2s tns]

= [u1,1u2,1 Ur1Uz,2 Ui1Uo3 UrplUzy Ul aU2 M1,2u2,3]-
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Similar remarks hold for Z¢. Following the notation of [14] we write i for the ele-
ments in the canonical basis of Z¢ and

d
Q=(n1,...,nd)=2n,-i
i=1

for the elements in Z?. We use the same notation for elements in R,
The positive cone Z¢ induces a partial order in Z¢ given by

n < m if there exists z € Zf_ such that m = z + n.

Due to commutativity, there is no distinction between a left and a right version. We
define the creation operators in £2(Z%) by L€, = €+, and we write

H*(2%) =alg" {Ly | m ez},
Fejér’s Lemma (which applies) for H**(Z?) implies that there is no difference in con-
sidering the w*-topology instead of the weak operator topology.

2.2 Lower Triangular Operators

We fix a Hilbert space H and consider I ® £2(F¢). Then B(H ® £*(F?)) admits a
point-w*-continuous action induced by the unitaries
Ué®e, =e"txe, foralé®e,,
with s € [-7, ). For T € B(H ® €2(F?)) and m € Z, the m-th Fourier coefficient is
then given by
1 m ;
G (T) = — f U, TUZ e™ ds,
2m J-n

where the integral is considered in the w*-topology of B(H ® £*(F4)) for the Rie-
mann sums. An application of Fejér’s Lemma implies that the Cesaro sums

5 (1—|7’i|)Gk(T)

0n+1(T) :
Pt n+1l

converge to T in the w*-topology. For T € B(H ® €2(F?)), we write T, € B(H)
for the (u, v)-entry given by

(TH,VE, l’]> = (TE@ ey, ® ey> forall &, 5 € H.
Definition 2.4  Anoperator T € B(H ® ¢*(F?)) is a left lower triangular operator if

T,,» = 0 whenever v ¢; u. Inadual way T € B(H®€2(F?)) is a right lower triangular
operator if T, , = 0 whenever v £, u.

The next proposition shows that the Fourier co-efficients induce a graded structure
on lower triangular operators. For y, v € F4 we write

L,:=I3®l, and R,:=I3 ®r,.

From now on we write p,, for the projection of £2(F?) to e,

https://doi.org/10.4153/CJM-2017-031-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-031-0

Free Multivariate w*-Semicrossed Products 1207
Proposition 2.5 If T is a left lower triangular operator in B(3H ® €2(F4)), then

{Z|#|=m zwe]Fﬁ LH(Tyw,w ®pw) ifm>0,
0

Gn(T) = ifm<0.

In a dual way if T is a right lower triangular operator in B(H ® ¢*(F%)), then

St et Ru( T ® pr)  ifm >0,
Gm(T):{Oﬂ 7t Ru (T © Pu) ;mw

Proof We will consider just the left case. The right case is proved in a similar way.
Fix v,v' € F4 and &, 7 € H. Then we have that

1 m ) ,
(Gm(T)e®e,,n®ey) = Py f (T¢® ev,rl®ev,)et(*m*\v\+|v DEFR
mJ-n
= alvll)m‘*‘"‘ (TV,,VE) ’7)

forall T € B(H ® ¢2(F4)). Hence, (G (T)E® ey, ® e,r) = 0 when |V/| £ m + |vl.
Suppose that T is in addition a left lower triangular operator.

First, consider the case where m < 0. If |v'| = m + |v|, then |v'| < |v|, and thus
v ¢; v'. But then we get that (T, , &, ) = 0, since T is left lower triangular. Hence,
Gm(T) =0when m <0.

Secondly, for m > 0 we have that (T, ,&, ) = 0 whenever v £, v. Consequently,
we obtain

(Tyv&En)  ifv<yviand V|- |v|=m,
0 otherwise.

<Gm(T)£® €, Ne® evl) = {

On the other hand, we compute

Z Z (LM(TMWJV Qpw)®e,ne® ev’)

lul=m welF4
= Z (Spv,v’(Tpv,vfa 77)
|ul=m
H{Tw&n) ifv<gviand V]| - v = m,
0 otherwise,
and the proof is complete. ]

Similar conclusions hold for B(H ® £2(Z%)) by considering the unitaries
Ul®e, = eiTi Vil @e, forall{®e,

for s € [~m, 7], and the induced Fourier transform on T € B(H ® ¢2(Z%)) given by
1
(2m)
This follows by extending the arguments concerning the Fourier transform on
B(H ® €%) to the multi-dimensional case. Alternatively, one can see G,, as the

Gu(T) =

/[. y USTU;e"Az‘L1 misids  form e 7.
—7,7 - -

https://doi.org/10.4153/CJM-2017-031-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-031-0

1208 R. T. Bickerton and E. T. A. Kakariadis

composition of appropriate inflations of G,, along the directions of ¢2(Z4). For
T e B(H ® £*(Z4)) we write T, , € B(H) for the operator given by

(Twnlon) = (TE® enn ® e).

Definition 2.6 An operator T € B(H ® ¢2(Z%)) is a lower triangular operator if
Tim,n = 0 whenever n £ m.

By analogy, to F¢ we write L,, = I5¢ ® L,,, which is used for the graded structure
induced by the Fourier co-efficients. Now we write p,, for the projection of £2(Z%)
to ey.

Proposition 2.7  If T is a lower triangular operator in B(3 ® €2(Z%)), then

Gu(T) = {OZ wezt Ln(Toeww ® p) - if m € Z2,

otherwise.

Proof Let T be a lower triangular operator. Then for n,n’ € Z¢ and &, 1 € H, we
obtain

(Gu(T)E® enn® ew)

_ 1 —i YL, (mi+ni—n})s;
) (2m)4 ‘/[—ﬂ,ﬂ]d <T€ ®enn® e"—,> € ) ds

=Omen (Ti’,ﬂf’ ’7) .

Ifn' =m+nform¢ Zf, then there exists an i = 1,...,d such that n} < n;. In this
case n ¢ n’, hence T, = 0 and thus G,,(T) = 0. On the other hand, if m € Z%, then
a straightforward computation gives

> ALn(Tosw ® pu)E®@ €n, 1 ® ) = {Tinsnné ® emins 11 ® €r)

d
WeZi

= 6i')ﬂ+ﬁ <Tm+fl,"£’ ’1) >

and the proof is complete. ]
2.3 Reflexivity and the A,-property

The reader is referred to [9] for full details. In short, let A be a unital subalgebra of
B(H). It will be called reflexive if it coincides with

AlgLat(A) :={T e B(H) | (1- P)TP=0forall P e Lat(A)}.

Since A is unital, we get that the AlgLat(A) coincides with the reflexive cover of A in
the sense of Loginov and Shulman [36], i.e., with

Ref(A) = {T e B(H) | TE e A& forall £ e 3}

The algebra A is called hereditarily reflexive if every w*-closed subalgebra of A is re-
flexive. It is immediate that (hereditary) reflexivity is preserved under similarities.
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A w*-closed algebra A ¢ B(H) is said to have the A; property if every w*-contin-
uous linear functional on A is given by a rank one functional. It follows by [36] that
a w*-closed algebra A is hereditarily reflexive if and only if it is reflexive and has the
A property. In particular, A is said to have the A;(1) property if for every ¢ > 0 and
every w*-continuous linear functional ¢ on A, there are vectors h, g € H such that
¢(a) = (ah,g) and |h|| |g] < (1 + €) |¢]. The origins of the A;(1) property can be
traced to the work of Brown [8].

Davidson and Pitts [17] show that the wot-closure of the algebraic tensor product
of B(FH) with £ satisfies the A;(1) property, when d > 2. Their arguments depend
on the existence of two isometries with orthogonal ranges in the commutant; thus,
they also apply for the tensor product of B(H) with R;. It follows that the tensor
products with respect to the weak operator topology coincide with those taken in the
weak*-topology.

Arias and Popescu [2] first showed that the algebras B(H)®L,; and B(H)®R,
are reflexive. In fact, they satisfy much stronger properties as we will soon present.
Their results concern the wot-versions and d < oo. Let us give here a direct proof that
treats the d = oo case as well.

We require the following notation. For A € B; and w = w,,, --- w; € F%, we write

WA) = Ay, Ay

In [2, Example 8] and [18, Theorem 2.6] it has been observed that the eigenvectors of
L7 are of the form

vi=(1- A7 w(d)e, for A eBy.

weF?
Proposition 2.8 ([2]) The algebras B(H)®L 4 and B(FH)QR, are reflexive.

Proof We just show that B(H)®L, is reflexive. Since the gauge action of B(H ®
£2(F?)) restricts to a gauge action of B(H)®L 4, it suffices to show that every G,, (T)
is in B(H)®L,; whenever T is in Ref (B(H)®L,).

For &, 57 € 3 and v, u € F9, there is a sequence X, € B(H)®L, such that

(TH,VE,@ = (T€® ey, N ® ey) = lirr,n(X,,£® ey, N ® e,,) = liyrln([X,,]H,vf,q).

Taking v £; p gives that T is left lower triangular as every X, is so. Therefore, it
suffices to show that T, , = T}, o for all z € F%. Indeed, when this holds, we can write

G (T) = Z\M:m LH(TF’@ ®I) if m> 0,
m(T) .
0 if m <0,

and thus G, (T) € B(H)®L,. For convenience we use the notation
Ty = LpGm(T) = 3 Tywaw ® pu-
welF4
We treat the cases m = 0 and m > 1 separately.

o The case m = 0. Let z € F{ and assume that {z, ..., 2} € [d'] for some finite d’.
If d < oo, then take d’ = d. Let A € By € B, such that A; # 0 for every i € [d'], and
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consider the vector

g= > w(d)e,.

weld
As g is an eigenvector for £ we have that (L,(x ® I))*¢ ® g is in the closure of

{yt®g|ye B(H)}. Therefore, for & € H there exists a sequence (x, ) in B(J) such
that

(2.1) GO(T)*£®g:Iiqunx;£®g.
Hence, for 1 € I, we get
w(A) (& Tuwn) = (& Twwn) (& ew) = (Go(T) @ g n @ ew)
i (x7£© g1 ® e) = lim (& xun) (g )
= w(A)lim (&, x, 7).
Applying for w = @ and w = z, we have that T, , = Ty 5 as z(1) # 0. Since z was
arbitrary we have that Go(T) = Ty,» ® L.

o The case m > 1. We have to show that T}, = T, forall z € F4 and |u| = m. Notice
that every y of length m can be written as y = qi® for some i € [d] and w > 1. By
symmetry it suffices to treat the case where i = 1.

Hence, in what follows we fix a word p = g1 of length m = |g| + w with

w>1 and g=q)--qwithg #lorq=2.

We will use induction on |z|. To this end fix an r € (0,1). For w = w),,|---w; € F{, we
write
w(t)=wi---wy fort=1,...,|w|
For |z| = 1: First suppose that g # @. Let the vectors
viseg+ Y, r*ei  and LoV =eqe)+ . rkeq(t)lk fort=1,...,|q]
k=1 k=1
and fix & € (. As v is an eigenvector for £, we get that X* & ® 1,v is in the closure of
lq|
{x€® v+ Yy xE @l | x,x; € B(H), t = 1,...,|q|}
=1

forall X € B(H)®L,. Hence, there are sequences (x,, ) and (x;,, ) in B(H) such that
l4]
(2.2) Gm(T) é@1v =limx,E@v+ ) x/,E@1 v
" t=1

Furthermore, for [u’| = m we have that (1,/)*14v = 8, ,v“v. Now for all 7 € J( and
z € P4 we get that
<Gm(T)*f® Lv,n® ez) =r® <E, qumz,zq) (v,e.).

Every l,(;)v is supported on q(t)1¥ with |q(¢)1¥| > t > 1, and so (L,(;)v, ez) = 0 for
all t. By taking the inner product with # ® ey in equation (2.2) we get

r (& Ty gn) = li’r1n (& xum).
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On the other hand, the only vector of length 1in the support of 1) is achieved when
t = land k = 0, in which case it is g(1) # 1 by assumption. Therefore, by taking the
inner product with # ® e; in equation (2.2) we obtain

r & Toeran) = limr (& xan).

Therefore, <£, qu‘”l,l’7> =lim, r“ (& x,n) = (E, quw,gﬂ) which implies that Tye1,; =
Ty10,5 when q # @.

On the other hand, if g = @, then we repeat the above argument by substituting
1,(¢)v with zeroes to get again that Ty;,; = Te g. In every case, we have that Ty, =

T
2
Next we show that T, ; = T, . To this end, let the vectors
w=eg+ Z rfe,  and Lisyw = eu(s) + Z rkey(s)zk fors=1,...,m.
k=1 k=1

As above, for & € H{ there are sequences (y,,) and (ys,,) in B(H) such that
(2.3) Gm(T)*€®l”w:liquny25®w+2y;nf®ly(s)w,
s=1

since w is an eigenvector of £;. Notice here that (1,/)*L,w = &,/ ,w when |4'| = m.
Now for 77 € H and z € F¥, we get

(Gu(T) E@ 1w, ®e;) = (& Tuzon) (wsez).
For z = & we have that (ly(s)w, eg) = 0 for all s € [m], and therefore equation (2.3)
gives

(& Tuon) =lim (& yury).

For z = 2 we have that <1H(1)w, ez) = (Lw,e;) = 0. Moreover, we have that
<lﬂ(s)w, ez) = 0 when s > 2. Therefore, equation (2.3) gives

r(& Tpeaaea) = lirllilr(f,)’n’I)-

As a consequence, we have <§, TH2,2e2> = (E, Ty,gn), and thus T, , = T, . Applying
this for i € {3,...,d} yields T;; = T,z forall i € [d].
e Inductive hypothesis: Assume that Tyje;, . = Tg1e i when |z| < N. We will show that
the same is true for words of length N + L.

Consider first the word 1z with |z| = N. Suppose that g # @ so that q(1) # 1. We
apply the same arguments for the vectors r,v and r_l,¢,)v with t = 1,.. ., |q|. Since r,
commutes with everyl,, we get that

r(r) (L) v =r.(L,)"v and  r(r;)" (L) rdgyv = r (1) lgyv.

As every R,(R,)* commutes with every x ® I for x € B(H), we have that for a fixed
& € X, there are sequences (x,) and (x;,,) in B(FH) such that

|ql
R (R) Gu(T) E@r lyv =limx,E@r,v + Zx:,j@ rly v
n t=1
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Arguing as above for 7 ® e, and 11 ® ey, yields (f, quwlz)lzﬂ) = <§, quw“n). Conse-
quently, Tgie12,12 = Tgrez,z> which is Ty o by the inductive hypothesis.

On the other hand, if g = @, then we repeat the above arguments by substituting
the lq(t)v with zeroes. Therefore in any case we have that T1, 1, = T} o.

For 2z with || = N we take the vectors r,w and r.l,sw for s € [m]. Then for a
fixed & € X, there are sequences (y,,) and (ys,,) in B(H) such that

R(R)"Gu(T)é@r W= li'rinny@J W+ Zy:’nf @ rl,w.
s=1

Taking the inner product with 7 ® e, and # ® e, gives that (f, Ty22,22’7) = <f, Tyz,zn).
As 7 and & are arbitrary, we then derive that T,5; 5, = Tyz,z, which is T, & by the in-

ductive hypothesis. Substituting i € {3, ..., d} in place of 2 gives the same conclusion,
thus Tyiz,iz = Ty,z forall i € [d] and |z| = N. Induction then shows that T}, . = T,
forall z € F9. ]

Remark 2.9  Reflexivity of B(3)®H (Z%) can be proved along the same lines of
reasoning by using the co-invariant subspaces [x¢ ® g; | x € B(F)] for the vectors
gi= r*ex; withre (0,1)andi=1,...,d.
keZy

In fact, one can show that T is in B(FH)®H> (Z?) if and only if T is lower triangular
and G, = Ly (xu ® I) for some x,, € B(H) whenever m € Z4. The same holds for
the tensor product of B(FH) with H*(Z4) in the weak operator topology, inducing
just one type of spatial tensor product.

2.4 Hyper-reflexivity

Arveson [4] introduced a measurement for reflexivity. For A ¢ B(3(), let the function
B:B(H) - R be given by

B(T,A)=sup{ |(1- P)TP| | PeLat(A)}.

A w*-closed algebra A ¢ B(H) is called hyper-reflexive with distance constant at most
C if it satisfies

dist(T,A) < CB(T,A) forall T € B(H).
Therefore, hyper-reflexive algebras are reflexive. Notice that S(T,A) < dist(T, A)
always holds.

It follows that hyper-reflexivity can also be a hereditary property. Kraus-Larson
[29] and Davidson [12] have shown that if A has the A;(1) property and is hyper-
reflexive with distance constant at most C, then every w*-closed subspace of A is
hyper-reflexive with distance constant at most 2C + 1.

There is an alternative characterization of hyper-reflexivity through A, : A is hyper-
reflexive' if and only if for every ¢ € A, there are rank one functionals ¢, € A, such
that ¢ = ¥, ¢, and ¥, [dn] < oo; see e.g., [5, Theorem 7.4]. The hyper-reflexivity
constant is at most K when we achieve ., |¢,]| < K- | ¢| for ¢ =3, ¢, € A, asin

1 Reflexivity is equivalent to A, just being the closed linear span of its rank one functionals, e.g.,
[5, Theorem 7.1].
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the representation above. From this characterization it is readily verified that (hered-
itary) hyper-reflexivity is preserved under similarities. Therefore, if a similarity is

given by an invertible u, then the hyper-reflexivity constant can change as much as
Jull® - ™).

A remarkable result of Bercovici [7] asserts that a wot-closed algebra is hyper-
reflexive with distance constant at most 3 when its commutant contains two isometries
with orthogonal ranges. Consequently, every w*-closed subalgebra of B(H)®L, is
hyper-reflexive with distance constant at most 3 when d > 2, as its commutant con-
tains I4c®R,.

3 Dynamical Systems

We give the basic definitions of the w*-semicrossed products we will consider. Hence-
forth, we fix a w*-closed subalgebra A of B(J(). Since we are working towards reflex-
ivity and the bicommutant property we will assume that A is unital. We write End(A)
for the unital w*-continuous completely bounded endomorphisms of A, i.e., every
o € End(A) satisfies

lal,y = sup{ | @ idy| | 1 € 2.} < co.
3.1 Dynamical Systems Over ¢

A (unital) w*-dynamical system denoted by (A, {«; }ic[4]) consists of d (unital) «; €
End(A) such that

sup{ ||oc,,|| |ue ]Ff} < 00,
Given a w*-dynamical system (A, {«; }ic[4]), we define two representations 77 and 77
of A acting on X = 3 ® £2(F?) by
n(a)é®e,=a,(a)f®e, and 7(a)i®e,=az(a)i®e,.
We need this distinction, as the &; induce both a homomorphism and an anti-homo-

morphism of F? in End(A). Note that 7(a) and 77(a) are indeed in B(X) as the a,,
are uniformly bounded.

Definition 3.1 Let (A, {;}ic[4]) be a w*-dynamical system. We define the w*-se-
microssed products

AXo Ly :=35pan” {L,7(a) | a e A, peFl},

Ax Ry = spanw*{R,,n(a) laed,uecFi}.

The pairs (7, {L;}%,) and (7, {R; }%_,) satisfy the covariance relations
7(a)L; = Lima;(a) and n(a)R; = Rina;(a)
forall a € A and i € [d]. Indeed, for every w € F¢, we have that
m(a)Lif®e, = a;;(a)® eiy = agai(a)®e;, = Lima;(a) ® ey,

and similarly for the right version. Consequently, AX,L,; and AX,R; are (unital)
algebras.
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The unitaries U, € B(X) for s € [-m, ] induce a gauge action on Ax, L, since
Ui(a)U; =7(a) and U,L,U; = e'¥kL,.
Therefore, Fejér’s Lemma implies that T € Ax, L, if and only if G,,,(T) € AX L4 for

all m € Z. The same is true for AX,R,.

Proposition 3.2 Let (A, {«;}c4]) be a unital w*-dynamical system. Then an oper-
ator T € B(XK) is in AX, L4 if and only if it is left lower triangular and

Gu(T)= > L,7i(ay) fora,cA
|p|=m
for all m € Z,. Similarly an operator T € B(XK) is in AX, Ry if and only if it is right
lower triangular and
Gw(T)= > Run(a,) fora,cA
|ul=m
forallmeZ,.

Proof We will just show the left case. First notice that if T = L,7(a) with |z| = m
then ., cpa Tzv,w®pw = 7(a). Moreover T is a left lower triangular operator; indeed,
ifv £; p, then

(Lzﬁ(a)i ®ey,nNe® e[l) = 87.1/,/4 (az(a)é n) = 0.

Hence, G (T) = Ljyj-m Lu7(a,) where a, = a and a, = 0 for y # z. Conversely,
suppose that T satisfies these conditions. Then for every finite subset F,, of words of
length m, since the L, (L, )* are pairwise orthogonal projections, we can verify that

| ¥ L) =] 3 Lu(L)*Gu(D)] < [Gu(D] -
ueFpm HeFm

Therefore, the net (X ,cp,, Lu7(ay)) F, finite} 15 bounded, and thus the sum is the
w*-limit of elements in A%, £ 5. Hence, every G,,(T) is in AX £ 7 and Fejér’s Lemma
completes the proof. ]

We turn our attention to dynamical systems (A, {;};c[s]) where each a;
End(A) is induced by an invertible row operator u;, i.e.,

(31) (X,'(a) = z Ui,j; avi,j; forall a € A,
ji€[ni]
where v; is the inverse of u;.
Definition 3.3 We say that {oci}ie[d] is a uniformly bounded spatial action on a

w*-closed algebra A of B(H) if every «; is implemented by an invertible row operator
u; and {u; } je[4] is uniformly bounded.

Proposition 3.4 If {«;}ie[q4] is a uniformly bounded spatial action on a w*-closed
algebra A of B(H), then (A, {«;}iec[a]) is a unital w*-dynamical system.
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Proof Let i = iy, --- 1 be a word in F¥. Referring to Definition 2.2 we verify that
au(a) = ay, - ay(a)

= Z Z Upsjim " W, i@V pnji " Viims jm
jmelpm]  jielm]
= Uty WV o
for all a € A. Therefore, |a, | < %] - [V,] so that «, € End(A). As {u;}ie[a]
and {v;},e[q] are uniformly bounded by K we derive that |, | < K? for all 4, hence
{au}yepa is uniformly bounded. [ |

The prototypical examples of uniformly bounded actions are systems implemented
by Cuntz families.

Examples 3.5 Every (unital) endomorphism of B (%) is implemented by a count-
able Cuntz family when J{ is separable. A proof can be found in [6, Proposition 2.1].
However the Cuntz family is not uniquely defined as shown by Laca [35].

Examples of endomorphisms of maximal abelian selfadjoint algebras implemented
by a Cuntz family have been considered by the second author and Peters [28]. In
particular, let ¢: X — X be an onto map on a measure space (X, m) such that: (i)
¢ and ¢! preserve the null sets; and (ii) there are d Borel cross-sections v, ..., ¥4
of ¢ with y;(X) ny;(X) = @ such that U y;(X) is almost equal to X. Then it is
shown in [28, Proposition 2.2] that the endomorphism a: L*°(X) - L*(X) induced
by ¢ is realized through a Cuntz family. Such cases arise in the context of d-to-1local
homeomorphisms for which an appropriate decomposition of X into disjoint sets can
be obtained [28, Lemma 3.1]. As long as the boundaries of the components are null
sets, the requirements of [28, Proposition 2.2] are satisfied. The prototypical example
is the Cuntz-Krieger odometer, where

X=TI{L,....,d} and m=[]m’
k k
for the averaging measure m’, and the backward shift ¢ [28, Example 3.3].

The results of [28] follow the inspiring work of [10] on endomorphisms « of the
Hardy algebra induced by a Blaschke product b. In particular, it is shown in [10, Corol-
lary 3.5] that there is a Cuntz family implementing « if and only if there is a specific
orthonormal basis {vy,...,v;} for H*(T) © b - H*(T). An important part of the
theory in [10] is the existence of a master isometry Cp, and the reformulation of the
problem in terms of W*-correspondences when combined with [35]. These elements
pass on to the context of [28] where further necessary and sufficient conditions are
given for a Cuntz family to implement an endomorphism of L* (X).

Uniformly bounded actions extend to the entire B(J(), and we will use the same
notation for their extensions. By applying u; ;, and v; ;, on each side of equation (3.1)
we also get

(3.2) ai(X)uij, =uijx and v ja;(x) = xv;

for every x € B(H). The following proposition will be essential for our analysis of the
bicommutant.
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Proposition 3.6  Let a be an endomorphism of B(H) induced by an invertible row
operator u = [u;]c[n] for some n € Z, U{oo}. Then for any x, y € B(H), we have that

a(x)y =ya(x) ifandonlyif x-vjyur=v;yui-x forall j, ke [n],

where v = [V;] e[ is the inverse of u.

Proof Suppose first that a(x)y = ya(x). Then it follows that
xvjyur = vja(x)yur = viya(X)ug = vjyurx

for all j, k € [n]. Conversely, if xv;yuy = v;yuix forall j, k € [n], then equation (3.2)
yields

via(x)yur = xvjyur = vjyurx = v;ya(x)ug.

Therefore, we obtain

a(x)y = Z Z uj(vioa(x)yur)vi = Z Z uj(viya(x)ug)vi = ya(x),

je[n] ke[n] je[n] ke[n]

and the proof is complete. ]

Remark 3.7 If a € End(A) is induced by an invertible row operator u, then «
extends to an endomorphism of A”. Indeed by Proposition 3.6 we have that v; yuy €
A’ forall y e A’, since A’ € a(A)". Hence, if z € A", then zv;yuy = vjyuyz for all
y € A’. Applying Proposition 3.6 again yields a(z) € A".

Therefore, given a w*-dynamical system (A, {a;};c[47) where each «; is imple-
mented by an invertible row operator u;, we automatically have the induced systems
(B(FH), {ai}ieay) and (A", {a;}c[4])- Hence, the w*-semicrossed products

AX o L g, A% g Ry B(H) %o Lg, B(H) %Ry, A" X0 L g, A% Ry
are all well defined.

There are also two more algebras linked to our analysis. Suppose that {a; } je[4] are
endomorphisms of B(H) and each «; is induced by an invertible row operator u;.
Then we can form the free semigroup FY for N = n; +- -+ n,4. Since we want to keep
track of the generators, we write

FY =((i,j) lie[d].je[ni]) = #ie(a)F¥"
We fix the operators
Vij=uij®l; and W;;=u;;®r;forall(i,j)e ([d], [n,-])
and the representation p: B(H) - B(H ® £2(F?)) with p(x) =x ® I.
Definition 3.8 With the aforementioned notation, we define the spaces

A%, Lq=span { Vi p(y) | (is j) € ([d], [n:]), y € A},
A%, R = span” { Wi jp(y) | (i, j) € ([d], [n:]), y € A"}
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Notice here that for a word w = (g, ju, )+ (41, ju, ) € FY, we have

Vi = L,ukp(uﬂk)]“uk ) : "me(”m,j,q) = Lyk---ﬂlp(”W)-

The generators satisfy a set of covariance relations which we will use to show that the
above spaces are algebras.

Proposition 3.9  Let (A, {a;}ic[a)) be a w*-dynamical system such that each «; is
implemented by an invertible row operator u;. Then

A%uLa =30 (Vup(y) [weFY,y e '),
A% Ry =3l (Wap(y) |w e FY, y e A,
where FY = ((i,j) | i € [d], j € [n:])-
Proof We prove the left version. The right version follows by similar arguments. It

suffices to show that p(y)L;p(u;, ;) isin A", L4 forall y € A"and (i, j) € ([d], [ni]).
Suppose that v; = [v; j, ]j,e[n,] is the inverse of u;. Then we can write

Y= Z Z Ui kVi,kYUiivVi,l = Z Z UikYik,1Vi,l>

ke[n;] le[n;] ke[n;] le[n;]
where y; k1 = Vi ryu;. Proposition 3.6 yields that y; ; is in A’, since y € A’ ¢
a;(A)’. Therefore, we have that

yui,j = Z Z Uik Yik,1Vi,lUi,j = Z Uik Yik,j>
ke[n;] le[n;] ke[n;]

which gives that

p(P)Lip(uij) = Lip(»)p(uij) = Y Lip(uixyiki) = D, Vikp(Vikj)-
ke[n;] ke[n;]

Recall that | 3 ycp i kvi k| < 1for every finite subset F of [n;], hence

| iy = | 3 wisviwyuis] < Iyl

keF keF
Thus, the net (X er Ui kik,j){Ffinite} is bounded, and the sum above converges in
the w*-topology. Hence, the element p(y)L;p(u;,;) is in A%, L. [ |

3.2 Dynamical Systems Over Z?

Similarly we define a (unital) w*-dynamical system (A, &, Z¢) to consist of a semi-
group action a:Z¢ — End(A) such that

sup { |l |Q€Zf} < o0,

Since the action is generated by d commuting endomorphisms «;, it suffices to have
sup{[af'| | n € Z,} < oo for all i € [d]. Consequently, commuting spatial actions «;
that are uniformly bounded in the sense of Definition 3.3 induce unital w*-dynamical
systems.

Examples are given by actions implemented by a unitarizable semigroup homo-
morphism of Z¢ in B(J(). However, our setting accommodates cases where each &;
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can be implemented by an invertible element separately. This gives us the opportunity
to tackle more commuting actions. We illustrate this with an example.

Example 3.10 Every pair of unitaries U, V that satisfy Weyl’s relation UV = AVU
for A € T obviously implements two commuting actions &3 = ady and a, = ady
on B(H). In fact, it is not difficult to show that every action a: Z2 — Aut(B(H)) is
indeed of this form: «; and &, will be implemented by unitaries that commute modulo
a A € T. This follows in the same way as in [23, Theorem 9.3.3].

Remark 3.11 Results of Laca [35] give a general criterion for commuting normal
*-endomorphisms of B(H). Suppose that a,f € End(B(H)) commute and are
given by

a(x)= ) sixs; and B(x)= ). tjxt;

ie[n] je[m]
for the Cuntz families {s; } je[,] and {t;} je[]. Therefore,

Y Y sitixtisi= ) ) tisixs;t].
ie[n] je[m] ]

je[m] ie[n

Notice that on each side we sum up orthogonal representations of B(J), and thus
we can take the limits, so that

Y. sitjxtis) = > tjsixsit;.
(i-j)e[n]x[m] (i.j)e[n]x[m]

We may see the families {s;t;} (i, j)e[n]x[m] a0d {jSi }(i,j)x[n]x[m] @S representations
of the Cuntz algebra O,.,,. Applying [35, Proposition 2.2] gives a unitary operator
W = [W(k,1,(i,j)] it My (C) such that

bisi= D, W(k),(ij)Skt-
(k1)< [m]

This criterion can be used to research the class of endomorphisms & that commute

with a fixed 8. We show how this can be done in the next two examples.
Example 3.12  For this example, fix 3 = £*(Z, ) and let the Cuntz family

Sien =2, and  Sye, = €441
Let U € B(H) be a unitary and fix the induced actions

a(x) =UxU* and pP(x)=SxS; + $2xS;.
We will show that « and § commute if and only if
(3.3) U = Adiag{u®™ | neZ,} ford,ueT,
where ¢(n) is the sequence of the binary weights of #; i.e.,
¢(n) = # of I's appearing in the binary expansion of n.

First, suppose that « commutes with . By Remark 3.11, there exists a unitary

W = [g 2] e M,(C)
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such that
USl = aSlU + szU and USZ = CSlU + dSZ U.

In the sequel we write

Uey = Zlﬁk)en forallk € Z,.

n

Since S;eq = ey, we have

ZAE,O)en =Ueg = USieg = aSiUeq + bS,Ueq = Y, al ey, + b1 Oy, 1.

n n

We thus obtain
(3.4) A0 =ar® and A9 = ad @20 = bA© forall n > 1.

Therefore, if )t((]o) = 0, then Uey = 0, which is a contradiction to U being a unitary.
Hence, a = 1 from the first equation and thus b = ¢ = 0 and |d| = 1, since W is a
unitary. Thus, we obtain

USi=8U and US,=dS,U.
Consequently, we get
U=US$S +US,S; =S US| +dS,US;.

In addition, applying b = 0 in equality (3.4) gives that

A9 =2l =0,

A =ar(® =,

AP =62 =0,

A9 =ar” =0,

and inductively we have that A =0 forall n > 1. Hence, Uey = )L(()o) eo. In particular,

we get that |/\(()0) | = 1, and therefore
0
[

0 *
when decomposing H = (eo) @ (eo)*. Now we apply for e; to obtain
Ue, = dS,US ey = dS,Uey = A\ dey
from which we get
Afl) = /\go)d and AV =0forn#1.

As Al(l) has modulus 1, we then get that

A0 0 o
U=l o A% ol
0 0 *
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Now applying for e, we get

Ue, = $1US  e; = $Ue; = /\(()O)dez,

and therefore

A0 o 0 0
0
vl o A4 o of
o o A% o
0 0 0 *

Hence, we have verified equation (3.3) for n = 0, 1,2 with
A=A" and u=d.
Now suppose that Ue,, = A/ﬂ’(”)en holds for every n < 2k with k # 0; then
Uey = $1US; ex = S1Uey = )Ly¢(k)ezk

as ¢(2k) = ¢(k). On the other hand, if Ue, = Au?(e, holds for every n < 2k +1,
then

Uesker = pS2US5 exier = uSaUei = Au? ey,
since
¢k +1) = p(2k) +1=¢(k) + L
By using strong induction we have that U satisfies equation (3.3).

Conversely, suppose that U is as in equation (3.3). We will show that the induced
actions & and 8 commute. First, we consider x = e; ® e}, the rank one operator
sending e; to e;. A direct computation shows that

d¢CN=92k) o, (o o if n =2k,
ap(x)en = 2i+1 2:2; <ek e]) o
d¢( i+1)-¢( +)€21‘+1 <€k,€j) ifn=2k+1.

On the other hand, we have that

d*D=9®ey, (e, e;)  ifn =2k,
d*D=¢® ey (e, ej)  ifn=2k+1.

ﬁ“(x)en = {
Since
$(2k) — ¢(2i) = ¢(k) - ¢ (i),

$(2k +1) - $(2i +1) = G(2k) +1- $(2i) 1= $(k) - §(i),

we obtain that a8(x) = fa(x). Since a, 8 are sot-continuous (being implemented by
operators), passing to sot-limits yields that « and § commute.

Example 3.13  For this example we let H = ¢2(Z) and the Cuntz family
Sien =2, and  Sye, = ezp41.
Let U € B(H) be a unitary and write £*(Z) = H, @ H, for
Hy=(e,|n>0) and H,=(e,|n<-1).
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We claim that the actions induced by U and {S;, S, } commute if and only if U attains
one of the forms

_ |0
(3.5) U=Apy, & puly, or U_|:/1w 0 ],

where A, y € T and w € B(Hj, H,) is the unitary with we,, = e_,,_;.
If the actions commute, then by Remark 3.11 there exists a unitary

W= [g 2] e M,(C)

such that
USl = tZSlU + szU and USZ = CSlU + dSZ U.

Then we write
Uey = Z/\ﬁlk)en forall k € Z.

n

Since S;eq = ey, we obtain

Zlﬁo)en = er = U8160 = (aSl + sz)U@o

= Z a/\,(,lO)EZH + bA’(,lO)EZ,H_l.

Consequently,

A= ar® and A

2k+1

=boAl? forallk e Z.

Ifa=1,then b =0as|a]* + |b* = 1. Now, if a # 1, then )u(()o) = 0,and thus A{”) = 0
for all n > 0. If, in addition, a # 0, then also b # 1, and so AE?) = 0, which implies that

A" = 0 for all n < 0. This contradicts that U is a unitary. Therefore, if a # 1, then it
must be that a = 0 in which case we get that |b| = 1. However, a symmetrical argument
shows that if a = 0 and b # 1, then Uey = 0, which is a contradiction. Therefore, if
a # 1then a = 0 and b = 1. Consequently, we have the following cases:

(i)a=1,b=0 or (i)a=0,b=1.

e Case (i). When a =1and b = 0 then ¢ = 0 and d € T and therefore
U51 = S]U and USZ = dSzU

which we can rewrite as
U= S] US; + dSzUS;
Applying for e_;, we obtain

Zlﬁ_l)en = Ue,l = d82 US;E,I = Zd/\ﬁ_l)e%“.
n n
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Hence, we get that

A =0 A0 =aaY
A —aal <o AGY =0
A =0 A6V =an ()
A - - 280 =0

It follows that d = 1; otherwise, Ue_; = 0, which is a contradiction. Therefore, we
derive that

U =S,US} +S,US:.

Hence we have that Uey = Aeg for A = )L(()O), and so Ue, = Ae, when n > 0 as in
Example 3.12. On the other hand Ue_; = pe_; for y = AEII), and so Ue,, = e, when
n < 0 by similar computations. Thus, it follows that

U=AMpy, ®uly, forA,ueT.

e Case (ii). When a = 0 and b = 1; then ¢ € T and d = 0, in which case we have
US] = SzU and USZ = CSlU

or equivalently
U=S8US +cSUS;.
By applying on e_;, we get

ATV =l A6V =260 ==,
A=Al =2, A5V =V =o,
ALY =AY o, A0 =28 = =0
A =2l ==,

If ¢ # 1, then we would get that Ue_; = 0, which is a contradiction. Therefore, we
obtain that ¢ = 1, and thus

(3.6) U =S,US; +5US;.
In this case, we have that

Uep=Ae_; and Ue_; = pep

10 uw*
U= [Aw 0 ]
for £2(7) = H, ® H, and the unitary w € B(Hy, H,) with we, = e_,_1, i.e,,
{Aenl ifn >0,

for A, u € T. We claim that

Ue, = .
pe_n  ifn<-L
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Indeed, this holds for n = 0, 1. Let n > 0 and suppose it holds for every 0 < k < n. If
n = 2k, then by the inductive hypothesis and equation (3.6), we get

Ue, = SUST exx = SaUer = ASze_—1 = Ade_pp_1 = Ae_p_1,
whereas if n = 2k + 1, we get

Ue, = S1US; exx1 = S1Uex = AS1e_g_1 = Ae_zk2 = Ae_p1.

A similar computation holds for #n < —1. Strong induction then completes the proof
of the claim.

Conversely if a unitary U satisfies equation (3.5), then ady either fixes or inter-
changes §; and S,. In either case, we get

USiU*yUSTU* + US,U yUS; U™ = §1yS] + S2pS;
for all y € B(H). Applying for y = UxU" yields that the actions induced by U and

{81, S, } commute.

Now we return to the definition of the semicrossed product for actions of Z¢. On
H ® £2(Z49) we define the representation 7: A — B(H ® £2(Z4)) and the creation
operators L: Z¢ — B(H ® €2(Z%)) by

n(a)f®e,=an(a)f®e, and Li{®e,=E{® e,
Notice here that due to commutativity of Z¢ we make no distinction between right
and left versions.
Definition 3.14 Let (A, ,Z%) be a unital w*-dynamical system. We define the
w*-semicrossed product
AR, 2L = sPanw*{Lﬂﬂ(a) laeA,ne Zf}.

Again we can directly verify the covariance relations by applying on the elementary

tensors. In analogy to Proposition 3.2, we have the following proposition. For its proof

we can again invoke a Fejér-type argument for the appropriate Fourier co-efficients
induced by {U, } with s € [, ]“.

Proposition 3.15 Let (A, a, Z49) be a unital w*-dynamical system. Then an operator
T e B(H @ €2(Z%)) is in AX,Z% if and only if it is lower triangular and
Gu(T)=Lyun(am) forameA

forall m e 7.

Moreover, we can proceed to a decomposition into subsequent one-dimensional
w*-semicrossed products.

Proposition 3.16  Let (A, a, Z%9) be a unital w*-dynamical system. Then AX,Z2 is
unitarily equivalent to

(o (AR Z) R0 Z4) ) Ra e

where @; = a; @7V idfori=2,...,d.
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Proof We show how this decomposition works when d = 2; the general case follows
by iterating. Fix a; and a; commuting endomorphisms of A. Then AX,, Z, acts on
H ® £2 by

n(a)®e, = ao)(a)f®e, and Li{®e, =@ ey
Now we define the w*-dynamical system (AXy,Z,, @, Z, ) by setting
ay(m(a)) =maz(a) and @(Ly) = L.

To see that &, defines a w*-continuous completely bounded endomorphism on
AXq, 7, first note that Ax,,Z, is a w*-closed subalgebra of A®B(¢?). Since aj is
w*-continuous and completely bounded for X € A®B(£*), we can obtain a, ®id(X),
as the limit of

oy ® idn(Pﬂ-C®€2(n)X|1}(®el(n)) ceA® Mn(C)

Hence, a, ® id defines a w*-completely bounded endomorphism of A®B (%) and @,
is its restriction to the A%, Z, . The unitary U givenby U{®e(,, ) = {® e, ® e,y then
defines the required unitary equivalence between AX,Z% and (AXy,Z, )%, Z,. W

4 The Bicommutant Property

4.1 Semicrossed Products Over F¢

The duality between the left and the right w*-semicrossed products is reflected in the
bicommutant property.

Theorem 4.1  Let (A, {«;}ic[4]) be a w*-dynamical system of a uniformly bounded
spatial action implemented by {u; } jc4). Then we have that

(A% Lg) = A%,Ry and (A'x, L) = A% Ry

and that
(A?afRd)' = ‘A,;L,Ld and (A’?u.’Rd)’ = ‘A";aLd.

Proof Direct computations show that A"x, R, is in the commutant of AL ;. For
the reverse inclusion, let T be in the commutant of Ax, L. As the Fourier transform
respects the commutant, it suffices to show that G,,,(T) is in A’x, R, for all m € Z,,,
and it is zero for all m < 0.

For y, v € F and by using the commutant property, we get that

(T.u,vg’ ’7) = (TLV€® ez, ® e”)
= (LVTE® eg, | ® e,,) = (T&’@e@,q@l:eﬁ.

However, we have that (1,)"e, = 0 whenever v £, u. Therefore, T is right lower
triangular and thus

Ziu=m RuT(uy ifm20,
0 if m<0,

Gwm(T) :{
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for Ty = Zyert Twgw ® pw = Ry, Gm(T). Moreover, we have that

Z Twﬁ,wf@) ewﬁ = Gm(T)LW£® (47,]
lul=m

= Lme(T)£® €y = Z Tﬁ,®£® Cwi>
|ul=m

which shows that T(,) = p( T &) for all 4 of length m. Furthermore, we have that

Y Tigat®ez=Gu(T)T(a)®@ ey
|ul=m

=7(a)Gu(T)E@ ey = Y. au(a)Tagé® ez,
|ul=m

and therefore Ty za = a,(a) Ty for all a € A. Let v; be the inverse of u;. For
Y= tm-pyand j; € [n,,], we set
Vitsjiseesim = Vurj = Vitmojm Lt
Then y, j,....j, is in A’, since
A Vurji " Vs jm TF,Q = Vi Vit jm S T O (a)Tﬁ,G
= Vm,jl"'vym,jm‘xy(“)TF,@
= Vi Vi jm TF,Q a

for all a € A. Now we can write

RyTiwy = Z Z Rup (s, jun = i, )P Vi)
fme[”um] jle[”ﬂl]
= > Y Wain o Wit Dijisojn)-

jmelnu,]  jrelng]

If F is a finite set of [, ], then

= H D Wt ™ gt Visris ™ Vit Tﬁ,@”
j1€F

H Z;:mejm"'wﬂl,hp(yy,jl ..... im)
1€

<|u

1Vis.so* Vitwsin | | T

l‘m’]’mH"'“yz,jz Z u.“l’jlv!‘l’jl
j1€F

< K| Tagl,

where K is the uniform bound for {#,}, and {v,},. Inductively, we have that the
sums in the above form of R, T(,) converge in the w*-topology, and therefore each
R, T,y is in A", R4. As in Proposition 2.5 an application of Fejér’s Lemma induces
that T is in A"x,R,.

Next we show that (A%, L;)" = A”"X,R,;. Again it is immediate that A”x, R is
in the commutant of A’x, £ ;. For the reverse inclusion, let T be in the commutant.
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Then T commutes with all L;p(u;,j,). Firstlet v £, y with v = v --- vy; then

(Ty,vuvk,jk ety €, 11> = <Tp(uvk,]-k oty ) E® ey, ® eﬂ>
= (Tva(qu,jk Uy )E®eg, n ® e,,)
= (LvP(”v;(,jk oty ) TE® eg, @ e”)
= (p(uvk,jk oty ) TE® e, (Ly) N ® eﬂ) =0.

Therefore, by summing over the j;, we obtain

Tyyv= Z Z Tyt Uy Vo= Vvioje = 0

jke[”vk] j1€[flv1]

so that T is right lower triangular. We thus check the nonnegative Fourier coefficients.
For m = 0 we have that Ty commutes with p(A"), and therefore every T,,,,, is in A".

Moreover, for w € Ff with w = wy - - - wy, we have that

TW’W”Wka "'uWhﬁE@ ew = GO(T)LWP(uWkajk) : “p(uW])jl)£® €y
= LWp(uWk’jk) : ..p(uwl;jl)GO(T)£® (%)
= Uwp,ji " Uwi,ji T®,®€® .

Consequently, we obtain

“W(TQ),Q) = Oy, "'“wl(TQ),Q))

= Z Z uWk,jk'“uwl,le@,@VWujl"'VWk,]'k
jke[nwk] le[nwl]
= TW,W Z Z Uik =" Uwi,ji Vwiji - Ve = TW,W'

jkE[}'lwk] jle[nwl]

Thus, we have that Go(T) = 7(Ty,). Now let m > 0 and use that G,,,(T) commutes
with Lip(u;,j,) to deduce that

TowyLip(uiyj,) = RyGm(T)Lip(uij,) = RyLip(ui,j,)Gm(T).
However, for ¢ ® e, € K we have that
(Ry)*Lip(u,-,j,.)Gm(T)f@) ey = Uj,j; Tvﬁ,v£® (r”)*e,-v,, = L,»p(ui,j,.)T(ﬂ)g ® ey,

which yields that T(y) commutes with every L;p(u;,j, ). Furthermore, for y € A" we
get that

Twp(y) = (Ry)"Gm(T)p(y) = (Ry)"p(y)Gm(T)
=p(N R Gm(T) = p(») Ty
Therefore, T,y is a diagonal operator in (A"%<,Ly)’, and thus T(,y = 7(Tg,5) by
what we have shown for the zero Fourier coefficients. This shows that G,,(T) is in
A")gRqforallme Z,.
The other equalities follow in a similar way and are left to the reader. ]

Recall that A is inverse closed if A™! ¢ A. It is well known that every commutant
is automatically inverse closed.
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Corollary 4.2 Let (A, {a;}ic[4]) be a w*-dynamical system of a uniformly bounded
spatial action. Then the following are equivalent:

(i) A has the bicommutant property;

(ii) AxqL4 has the bicommutant property;
(iii) AXqRg has the bicommutant property;
(iv) A®L, has the bicommutant property;
(v)  A®R, has the bicommutant property.

If any of the items above hold, then all algebras are inverse closed.

Proof We just comment that the equivalence between items (i) and (ii) follows by
using (Ax,L,4)" = A”"%, L, from Theorem 4.1 and applying the compression to the
(2, @)-entry. [ |

Corollary 4.3 (i) Let {a;}ic[a] be a uniformly bounded spatial action on B(3().
Then the w*-semicrossed products B(H)x, L, and B(H)x,R, are inverse
closed.

(i) Let (A, {ai}ic[a)) be an automorphic system over a maximal abelian selfadjoint
algebra (m.a.s.a.) A. Then the w*-semicrossed products Ax oL 4 and AX R4 are
inverse closed.

Proof Notice thatin both cases A = B’ for a suitable B and that Bx,, £ and Bx, R,
are well defined. The proof then follows by writing Ax,L,; = (Bx,R;)’ and the
symmetrical AX,R; = (Bx,L4)". [ |

4.2 Semicrossed Products Over Z¢

Recall the decomposition in Proposition 3.16. By applying Theorem 4.1 recursively we
obtain the following theorem.

Theorem 4.4  Let (A, a,Z%) be a unital w*-dynamical system. Suppose that each a;
is implemented by a uniformly bounded row operator u;. Then

(ARGZEY = (o (AR B0 ) ) ¥a e
where T; = u; @D I fori=2,...,d.

Consequently, we obtain the following corollaries. Their proofs follow as in the
free semigroup case and are omitted.

Corollary 4.5 Let (A, a,Z%) be a unital w*-dynamical system. Suppose that each
a; is implemented by a uniformly bounded row operator u;. Then the following are
equivalent:

(i) A has the bicommutant property;

(i) AX,ZY has the bicommutant property;

(iii) A®H>(Z?) has the bicommutant property.

If any of the items above hold, then all algebras are inverse closed.
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Corollary 4.6 (i) Let (B(H), a, Z%) be a w*-dynamical system such that each a;
is implemented by a uniformly bounded row operator u;. Then the w*-semicrossed
product B(H)x,Z% is inverse closed.

(i) Let (A,a,Z%) be an automorphic system over a maximal abelian selfadjoint al-
gebra (m.a.s.a) A. Then the w*-semicrossed product Ax, 7% is inverse closed.

5 Reflexivity

5.1 Semicrossed Products Over F?

Let (B(H), {ai}ic[q)) be a unital w*-dynamical system of a uniformly bounded spa-
tial action such that each «; is implemented by u; = [1;,j, ] ,¢[,]- We aim to show that
B(H)xy L, is similar to B(H)®Ly for N = ¥, n;. Recall that we write

{(iji) | jie[niield]}

for the generators of FY; i.e., we see FY as the free product #;c[41F"'. To this end we
define the operator

U:H e 2(FY) — H o 2(F9)
by Ué® ey = E® ey and
Uée® C(urjr)(pjr) = Wpnsji " u.“k)jkg ® €ppepy -
For words of length k we define the spaces
Kie 2= SPan{ & @ e jo)--u iy | € € I (is ji) € ([d) [, ]) }-

The ranges of X under U are orthogonal and thus

|Uls, |l = sup (PR CPR-0 (9 ) R CP-D (D] I sup 2l
Hl= #l=

which is bounded (by the uniform bound for {u; }c[41). As U = &, Ulx,, we derive
that U is bounded. In particular, the operator U is invertible with

UhHe(F) — He 2(FY)
givenby U ¢ ® ey = £ ® ey and

-1 _
U &®eup = Z Z Viic " Vinin§ ® €(ueji)(umaji)>

jielng] jrelng]

where v; is the inverse of u;. Notice that if K is the uniform bound for {7}, and
{Viu} > then max{ | U[, U! ||} =K.

Theorem 5.1  Let (B(JH),{ai}ic[a)) be a w*-dynamical system of a uniformly
bounded spatial action. Suppose that every a; is given by an invertible row operator
ui = (Wi, ]j,e[n,) and set N = Y147 i Then the w*-semicrossed product B(H) %L g
is similar to B(H)®Ly .
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Proof We will show that the constructed U vyields the required similarity. To this
end, we apply for x € B(H) to obtain
a(x)UE® Clursji) (i) = Cpr Ky (x)ullhjl T Ui §® Cugin
= Upy g Uy i XE @ €y
=Up(x)¢® €(uaji)(u1aj1)>

where we used that &, (x)uy,,j, = 4y, j,x. On the other hand, we have that

LiUE® e(up,ji)~(uin) = Lithpjn = Yo ji & ® €
= Upg,jy Upg, ji {® Cippp>

whereas

U Z Li»jip(vi»ji)£®e(.”k)jk)"'(.”l)jl)

ji€[ni]
=U 2 Vi & ® e(ij) (umoji)-(unin)
ji€[ni]
= Z u,ul,jl"'uﬂk,jkui,jivi,]‘i£®eiﬂk"'ﬂl
jie[ni]

= Upnjt u.“k’jk€® Cipgemppr>
since 3 e[n,] i,j;Vi,j; = I. Hence, we obtain that
UilL,'U = Z Li,j,.p(v,»,j,.) forallie [d]
jie[ni]
Therefore, the generators of B(3)%,L4 are mapped into B(3H)®FY. We need to
show that the elements p(x) and U™'L; U also generate the elements
L,"j,. for all (l,]l) € ([d], [I’ll]) .

Since every u; j, is in B(J(), we have that

UT'LiUp(ui) = 3 Lijip(vij)p(uij,) = Lij,

ji€[ni]

and the proof is complete. ]

Theorem 5.2 Let (A, {a;i}ic[a]) be a w¥-dynamical system of a uniformly bounded

spatial action. Suppose that every a; is given by an invertible row operator u; =

[wi,j;]jie[n,) and set N = ey ni-

(i) IfN > 2, then every w*-closed subspace of AX, L4 or AX, Ry is hyper-reflexive.
If K is the uniform bound related to {u; }, then the hyper-reflexivity constant is at
most 3 - K*.

(ii) IfN =1and A is reflexive, then AX L4 = AX Ry = AX,Zy is reflexive.

Proof If every a; is given by an invertible row operator u;, then (A, {a;};c[4]) ex-
tends to (B(F(), {@;}ic[a)) so that

A% Lg € B(H) KoLy =~ B(H)BLy
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by Theorem 5.1. If N > 2, then every w*-closed subspace of B(H)®Ly is hyper-
reflexive with distance constant at most 3 by [7]. As hyper-reflexivity is preserved
under taking similarities, the proof of item (i) is complete. Item (ii) follows by [24,
Theorem 2.9]. n

Corollary 5.3  Let (A,{ai}ic[a]) be a w*-dynamical system so that every a; is given
by a Cuntz family [sij,]j,e(n,]- If N = Ziefa; i > 2, then every w*-closed subspace of
AX L g or Ax o Ry is hyper-reflexive with distance constant at most 3.

Corollary 5.4  Let (A, {a;}ic[4]) be a system of w*-continuous automorphisms on a
maximal abelian selfadjoint algebra A. Then AX L4 and AX R, are reflexive.

Remark 5.5 When A is reflexive, we can have an independent proof of reflexivity
of Ax, L4 that does not go through hyper-reflexivity. First, note that if an operator
T is in Ref (A% L), then T is left lower triangular and T}, € Ref(A) for every
,w € F¢. Indeed, for &, 17 € 3 and v, ' € F, there is a sequence F,, € A%, L, such
that

(Tv & n)=(T¢®e,, n®ey)
=lim(F,{®e,,n®ey) =lim{([F,], v 7).

Taking v £; v' gives that T is left lower triangular as all F,, are so. Taking v’ = yv yields
[Fnluv,y € A, and thus T, € Ref(A). Now if {&;}ic[q] is @ uniformly bounded
spatial action, then T € B(H)Xx,L,. Therefore, T is left lower triangular and for
m € Z, we have that G, (T) = Xjyjom Lu7(Tp,z) With Ty, € Ref(A) = A.

Remark 5.6  Even though reflexivity of A directly implies reflexivity of the w*-semi-
crossed products the converse does not hold.

For example, suppose that each «; is implemented by a single invertible ;. Then
we can extend (A, {a;};e[4]) to the system (Ref(A), {&;}ic[a1). If d > 2, then both
A%y L4 and Ref(A)%, L are reflexive and

A% oLy € Ref(A)XoLy.

This inclusion is proper when A is not reflexive, e.g., for A = {al + bEy | a,b € C} in
M, (C). In fact, by taking the compression to the (&, @)-entry, we see that Ax, L, =
Ref(A)x,Ly4 if and only if A = Ref (A).

The reflexivity results extend to systems over any factor. This can be achieved by
following the ingenious arguments of Helmer [22]. Even though these were originally
presented in [22] for Type II or III factors, they apply as long as two basic properties
are satisfied. We isolate these below.

Definition 5.7 An algebra A ¢ B(H) is injectively reducible if there is a nontrivial
reducing subspace M of A such that the representations a +— a|y and a — a|y. are
both injective.

Definition 5.8 A w*-dynamical system (A, {&;}ic[a]) is injectively reflexive if: (i)
A is reflexive; (ii) A is injectively reducible by some M; and (iii) 8, (A) is reflexive for
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all v € F¢ with

ﬁv(a) _ [QLM 0 ]

av(a)|M¢

It is immediate that dynamical systems over Type II or Type III factors are injec-
tively reflexive.

Theorem 5.9 ([22, Theorem 3.18]) If (A, {a;}ie[a]) is an injectively reflexive unital
w*-dynamical system, then AX L4 and Ax, R, are reflexive.

Proof The left version is [22, Theorem 3.18] after translating from the W*-corre-
spondences terminology. To exhibit this, we will show how the right case can be
shown in our context.

Fix T € Ref(AX,Ry4). If m < 0, then G,,(T) = 0 by Remark 5.5. If m > 0, then
T, € A by the same remark. Thus, it suffices to show that T3, = «,(T,,z) for
every v € 9, By assumption, let M be the subspace that injectively reduces A. We
henceforth fix a word v € F¢ and define the subspaces of X:

Ko:=span{é®e, |Ec M,weF?} and X, :=5pan{y®e,, |ne M, weF}.

Both Xy and X, are invariant subspaces of AX,R,. If p is the projection on K & K,
then we have that G,,,(T)p € Ref ((AX,R4)p). We will use the unitary

UpK — K:é®e, + 1@ ey — (E+7) ® ey
A straightforward computation shows that
U”(“)PU* = Z (“W(a)|M + ‘XVW(‘ZNM*) ® Pw
welF4

and that UR;pU” = R;. In particular, p is reducing for R;, and we get
UGm(T)pU* = Z Z Ry(Twﬁ,w|M + vaﬁ,vw|ML) ®pw-

|ul=m weF?

By taking compressions, we have that the (¢, @)-entry of the operator UG,,(T)pU*
is in the reflexive cover of the (y,@)-block of the algebra Ref(U(Ax,Rz)pU*).
However, the latter coincides with (the reflexive cover of, and hence with) 3, (A) de-
fined above. Hence, there is an a € A such that

TP,Q|M + Tvﬁ,v|Ml = a|M + OCV(CI)|M1.

Since the restrictions to M and M* are injective, we derive that T; 5 = a and T\, =
ay(a) = a,( Ty z), which completes the proof.

By combining Theorems 5.2 and 5.9, we get the next corollary.

Corollary 5.10  Let (A, {«;}ic[a]) be a unital w*-dynamical system on a factor A <
B(H) for a separable Hilbert space H. Then Ax L4 and Ax Ry are reflexive.

Proof We have that either A = B(J) or there is a nontrivial projection p € A’, and
so the system is injectively reflexive. ]
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5.2 Semicrossed Products Over Z¢

We now pass to the examination of Z¢. When every a; is given by an invertible row
operator u; = [uij,]j,e[n,]> We write M = T];c(q7 1: for the capacity of the system.
Note that M > 2 if and only if there is at least one i such that n; > 2.

Theorem 5.11  Let (A, &, Z%) be a unital w*-dynamical system. Suppose that every
a; is uniformly bounded spatial, given by an invertible row operator u; = [u; j, ]j,e[n,>
and set M = [1era) ni-

(i) If M > 2, then every w*-closed subspace of Ax,Z2 is hyper-reflexive. If K; is
the uniform bound associated with u; (and its inverse), then the hyper-reflexivity
constant is at most 3 - K* for K = min{K; | n; > 2}.

(i) IfM =1and A is reflexive, then AX,Z2 is reflexive.

Proof For item (i), suppose without loss of generality that n; > 2 with K; =
3min{K; | n; >2}. Then we can write AX,Z¢ ~ BXgz,Z, for an appropriate w*-
closed algebra B by Proposition 3.16. Hence we can apply Theorem 5.2 for the sys-
tem (B, @g,Z, ), as its capacity is greater than 2. For item (ii) we can write A% ,Z4
as successive w*-semicrossed products and apply recursively [24, Theorem 2.9], i.e.,
Theorem 5.2(ii). [ |

Corollary 5.12  Let (A, a, Z%) be a unital w*-dynamical system. Suppose that at least
one a; is implemented by a Cuntz family [s; ;, ] j,e[n,;] With n; > 2. Then every w*-closed
subspace of AX 472 is hyper-reflexive with distance constant 3.

Proof Suppose without loss of generality that agq is defined by a Cuntz family with
ng > 2. Then @ is also given by the Cuntz family {s; ®”~! I} of size nq. By Propo-
sition 3.16 we can write AX,Z¢ ~ Bxg,Z, for some w*-closed algebra B. Applying
then Corollary 5.3 completes the proof. ]
Corollary 5.13  If A is reflexive then AQH™ (Z2) is reflexive.

Corollary 5.14  Let (A, a, Z%) be a unital automorphic system over a maximal abe-
lian selfadjoint algebra A. Then A, 7% is reflexive.

We can apply the arguments of [22] to tackle other dynamical systems.

Definition 5.15 A w*-dynamical system (A, &, Z4) is injectively reflexive if: (i) A is
reflexive, (ii) A is injectively reducible by M, and (iii) 8, (A) is reflexive for all n € Z4

with
a|M 0
ﬁﬂ(a) = [ 0 ‘xn(a)|Mi:|.

Consequently, every (A, a;, Z, ) is injectively reflexive for the same M. Again it
follows that systems over Type II or Type III factors are injectively reflexive.
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Theorem 5.16  Let (A, a, Z%) be a unital w*-dynamical system. If the system is in-
jectively reflexive, then AX,Z2 is reflexive.

Proof The proof follows in a similar way as in Theorem 5.9. In short, if T is in
Ref(AX,Z4), then T is lower triangular and T,.,o € A for every m € Z4. Thus, we
just need to show that Tyipn,n = on(Tim,o) for every n € Z%. For a fixed n, let the
spaces

Ky:=span{{®e, | e M,we 2},
Ky = 5pan{n ® exsy | 7 € MY, w € 1},

and let the unitary U: Ko ® K, — H ® £*(Z4) be given by

U(£®eﬂ+r/®eﬂ+ﬂ):(f+q)®eﬂ‘

If p is the projection on Ky ® K,,, then

Un(a)pU* = > (ay(a)|m + tpew(a)|me) ® pw and ULjpU* = L;.

weZd
On the other hand, we have that

UGn(T)pU* =L Z (Toswwlm + Tormew,new|prs) ® pw.

d
weZi

Taking compressions and using reflexivity of 8, (A) implies that there exists an a € A
such that

Tﬂ,Q|M + Tﬂ+ﬂ’£|ML = a|M + (Xﬁ(a)|M1,

and therefore Tyin,n = @n(a) = an(Tim0)- [ |

Corollary 5.17 Let (A, a,Z%) be a unital w*-dynamical system on a factor A ¢
B(H) for a separable Hilbert space H. Then Ax,Z2 is reflexive.

Remark 5.18 The w*-semicrossed products A%,Z¢ do not fit into the theory of
W*-correspondences. This was observed in [14,25] for the norm-analogues, but the
arguments apply here mutatis mutandis. That s, if A = C, then A%, Z is the commu-
tative algebra H** (Z?). Therefore, the results of this section are disjoint from those
of [22] when d > 2.
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