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1. A New Form of the Equations of Motion.

Consider a non-holonomic dynamical system specified by the N
coordinates q\ and kinetic energy denned by1

T = \amnq™q\

where amn are functions of ql and the dot denotes differentiation with
respect to the time t.

Suppose the non-integrable differential equations defining the
non-holonomic constraints are2

(1) < D W i ^ = 0 or <J>(a,iS' = O,

where Oja) are the contravariant components of the M mutually
orthogonal unit vectors defining the constraints. Thus3

( 2 ) O(a)l-<&?„, = 8 , * .

The dynamical system is subject to a generalised force Xt and a
reaction Yt due to the constraints, such that the work done dW in an
arbitrary displacement dql is

while for any constrained displacement,

Yidqi = 0.
Comparing with (1), we see that

(3) Yi=e^<t>Mi,

0(o) being as yet arbitrary.
The equations of motion are

(4) ±SS-** = Xt
dt dql dqi

1 The summation convention is used, the Roman indices having the range 1 to N.
- Greek indices have the range 1 to M and have been enclosed in a bracket to

indicate that they possess no tensorial property,
s 3a0 = 0 if a 4= /3 ; 8aj3 = 1 if a = /?.
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The acceleration vector /,- is defined by

(5) ft = ±?*-W.
dt dql Sqi

From (3), (4), and (5) the equations of motion are

(6) /< = *i + 0(.)«W

Multiplying by (frfa and using (2) we obtain

Bw = (ft - Xt) %y

Substituting in (6) we obtain the equations of motion

/, = *, + ( / , - * , ) «£><!>,.„
which can be put in the form

(./ ,-*,) (8*-<E£,<i>(a)i)=0,

where Si is the Kronecker delta.

Introducing the mixed tensor

(?) <% = 8}-<t>{a)<!>Mi,

we obtain the equations of motion in the form

(8)

From (7) we easily see that <9|0(o)3 = 0, showing that the matrix
formed from the elements Gi is of rank N — M. Thus in the equa-
tions of motion (8) there are really only JV — M independent equations,
the other M equations necessary to complete the set of equations
being the M equations of constraint (1).

2. Hodograph.

The generalisation of the hodograph to holonomic dynamical
systems has been given by J. L. Synge, Trans. Boy. Soc, Canada, 25
(1931), 121. The purpose of this paper is to extend the results where
possible to non-holonomic dynamical systems.

For geometrical interpretation consider the manifold of con-
figurations with the kinematical line-element

ds2 = 2Tdt2 = anmdqmdqn.

From (5) we easily obtain
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Denoting the unit vector field parallel to the lines of force and
to the acceleration by A* and -rf respectively, and the intensities by X
and / respectively, we have that the components of the force system
and the acceleration are XXi and frf respectively.

Suppose <£(o) and </>(a) are the angles between the constraint vector
<J>ja) and the unit vectors A* and r)1 respectively. Thus

(9) cos cf>M = A* cD(o)i; cos >pia) = yf <D(aH.

From (7), (8) and (9) we easily derive the result

(10) / 2 [1 — c o s <pia) c o s >pia)] = X2 [1 — c o s <j>M c o s <f>M].

This is a much more complicated equation than the simple
relation f=X which is satisfied by holonomic systems. This is
already an indication that the corresponding relations for the hodo-
graph of non-holonomic systems will be rather complicated.

Now paragraph 3 of Synge, I.e., defining the hodograph and 4
proving the invariance of the hodograph with respect to the base
point follow also in this case as they are independent of the dynamical
equations of motion. On that account they will not be reproduced
here.

From (16) of Synge and from (10) above, the arc element of the
hodograph is modified to

do = fdt = X /l-QOBfoooiiw dt.
V 1 — COS (/((„) COS </f(a)

At once we are confronted with the difficulty that cos ipM

depending on TJ* involves a knowledge of the actual dynamical path of
the system and thus leads to different arc elements for the hodograph
corresponding to the various paths.

In addition there is no simple relation connecting the vectors
A' and rf. Thus the equations derived'by Synge in the remainder of
his paper cannot be modified in any simple manner for the non-
holonomic systems, if we desire to obtain the corresponding relations
involving the force intensity and vector. Of course all the results of
Synge still hold good for non-holonomic systems if we substitute A* and
/ for if and X respectively.

There is one exceptional case of interest, when the constraint
vectors all satisfy an equation of the form

(11) tyaKi + ®MJ,i

where k is an arbitrary constant and A; an arbitrary vector and
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^(aij,L- a i e cova r i an t der iva t ives . A pa r t i cu la r case for k=0 is

Kil l ing 's equa t ion 1

(12) <*><.»,*+ « W * = 0.

The equa t ions of mo t ion can be p u t in t he form2

where

Z ' = Z ' - <D(i) O(a)i Z* = G) Xi.

Using the equations (11) and (3), the equations of motion take
the simple form

f = X\
which is exactly similar to the equations of motion of holonomic
systems. Thus in this case the complete theory of Synge can be
immediately taken over with the only difference that instead of the
force intensity X we now have the magnitude of the vector X1.

Equation (11) has an interesting kinematical interpretation.
Differentiating (1) intrinsically with respect to t, we obtain

« W + *<.)<,:>?'?'= °-
When the vectors <5ja) satisfy (11), this obviously reduces to

*W=o.
Thus if the constraint vectors satisfy (11), then the acceleration
vector (as well as the velocity vector) lies in the vector space
perpendicular to the vector space determined by the constraint
vectors at each point.

We notice now from (9) that cos </f(a) = 0 and thus the previous
difficulty about the arc element does not arise now.

Note. This problem can be attacked from a different point of
view. The usual meaning of parallel displacement of a vector by
means of the Christoffel S3rmbols has been employed in defining the
hodograph. Equation (13) suggests that affine parallel displacement
with respect to Fj4 could be used instead in the definition of the
hodograph with advantage, where

< { 0 j , t + a>laH.;.}.

1 L. P. Eisenhart, Riemannian Geometry (Princeton, 1926), 233.
2 J. L. Synge, Tensorial methods in dynamics, Univ. Toronto Studies App. Maths.

Series 2 (1936).
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This means that if xl = x1 (u) defines a curve, then the vector A1'
obtained by parallel displacement along this curve is a solution of
the equation

du } du

With this type of parallel displacement, we find that the hodograph
is no longer invariant with respect to the base point and thus the
analogy with the hodograph of elementary dynamics is lost. I t can
be shown that requiring the invariance of the hodograph with respect
to the base point implies that the constraint vectors satisfy Killing's
equation (12), which then reduces the Tjk parallel displacement to the
usual parallel displacement.
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