Circadian rhythms, nutrition and implications for longevity in urban environments

O. Froy
Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel

Presently, about 12% of the population is 65 years or older and by the year 2030 that figure is expected to reach 21%. In order to promote the well-being of the elderly and to reduce the costs associated with health care demands, increased longevity should be accompanied by ageing attenuation. Energy restriction, which limits the amount of energy consumed to 60–70% of the daily intake, and intermittent fasting, which allows the food to be available ad libitum every other day, extend the life span of mammals and prevent or delay the onset of major age-related diseases, such as cancer, diabetes and cataracts. Recently, we have shown that well-being can be achieved by resetting of the circadian clock and induction of robust catabolic circadian rhythms via timed feeding. In addition, the clock mechanism regulates metabolism and major metabolic proteins are key factors in the core clock mechanism.

Therefore, it is necessary to increase our understanding of circadian regulation over metabolism and longevity and to design new therapies based on this regulation. This review will explore the present data in the field of circadian rhythms, ageing and metabolism.

Circadian rhythms

Mammals have developed an endogenous circadian clock located in the brain suprachiasmatic nuclei (SCN) of the anterior hypothalamus that responds to the environmental light–dark cycle (Fig. 1). Light is absorbed through the retina and this information is transmitted to the SCN, which in turn relays the information via neuronal connections or circulating humoral factors to peripheral clocks, such as the liver, heart and lungs, regulating cellular and physiological functions\(^1\)–\(^3\). The clock mechanism in both SCN neurons and peripheral tissues consists of CLOCK and BMAL1 (brain-muscle-Arnt-like 1) proteins that heterodimerise and bind to E-box sequences to mediate transcription of tissue-specific genes, including Periods (Per1, Per2, Per3) and Cryptochromes (Cry1, Cry2). PER and CRY constitute part of the negative feedback loop, which inhibits CLOCK:BMAL1-mediated transcription\(^1\)–\(^4\).

Chronodisruption and ageing

Disruption of the coordination between the endogenous clock and the environment leads to symptoms of fatigue, disorientation and insomnia. Night-shift workers have disrupted circadian rhythms and they exhibit metabolic disorders, hormone imbalance\(^5\), psychological and sleep disorders\(^6\), and increased incidence of cancer and malignant growth\(^5\). Longevity in hamsters is decreased with disruption of rhythmicity and is increased in older animals given fetal SCN implants that restore high-amplitude rhythms\(^7\). Even chronic reversal of the external light–dark cycle at weekly intervals results in a significant decrease in the survival time of cardiomyopathic hamsters\(^8\).

It has been shown that circadian rhythms change with normal ageing, including a shift in the phase and decrease in amplitude\(^9\)–\(^10\). Deficiency of the CLOCK protein significantly affects longevity, as the average
lifespan of Clock−/− mice was reduced by 15% compared with wild-type mice, while maximum life span was reduced by more than 20%. CLOCK deficiency also resulted in the development of cataracts and dermatitis, two age-specific pathologies11,12, at a much higher rate than in wild-type mice13. In addition, Bmal1−/− knockout mice have reduced life span and they display various symptoms of premature ageing, including cataracts and organ shrinkage14. Per1,2−/− mice are morphologically indistinguishable from wild-type animals at birth, but as early as 12–14 months of age they start to develop features of premature ageing, such as a faster decline in fertility, loss of soft tissues and kyphosis15,16.

It has been reported that old mice are approximately 20 times less sensitive to the synchronising effect of light compared with young animals17. When the SCN becomes less sensitive, the endogenous period (τ) becomes extremely important. A positive link between τ close to 24 h and survival has been previously suggested7,18. According to this suggestion, τ longer or shorter than 24 h necessitates a daily synchronisation to external time cues (i.e. light–dark cycles) with a physiological cost proportional to the deviation. This cost might affect survival. We have recently shown that a long-lived transgenic mouse has a τ of 24 h at a young and old age compared with its short-lived genetic background whose τ is 23.5 h at young age and 25 h at old age19.

Circadian rhythms in metabolism

Obesity has become a serious and growing public health problem20. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on the imbalance between energy expenditure and energy intake. However, studies in the last decade link energy regulation to the circadian clock at the behavioural, physiological and molecular levels21–24, emphasising the inter-relations between leptin and the circadian clock24,27,31–34. Moreover, lesions of rat central clock in the SCN abolishes diurnal variations in whole body glucose homeostasis35, altering not only rhythms in glucose utilisation rates but also endogenous hepatic glucose production. Indeed, the SCN projects to the pre-autonomic paraventricular nucleus neurons to control hepatic glucose production36. Similarly, glucose uptake and the concentration of the primary cellular metabolic currency ATP in the brain and peripheral tissues have been found to fluctuate around the circadian cycle32,36,37. In addition, many hormones involved in metabolism, such as insulin31, glucagon38, adiponectin39, corticosterone40, leptin and ghrelin41,42, have been shown to exhibit circadian oscillation.

However, the most compelling connection between the circadian clock and metabolism is achieved by genetic knockout or mutated clock genes. Homozygous Clock mutant mice have a greatly attenuated diurnal feeding rhythm, are hyperphagic and obese, and develop a metabolic syndrome of hyperleptinaemia, hyperlipidaemias, hepatic steatosis and hyperglycaemia22. Combination of this mutation with the leptin knockout (ob/ob) resulted in significantly heavier mice than the ob/ob phenotype43, emphasising the inter-relations between leptin and the circadian clock24,27,46. In addition, Bmal1−/− knockout mice, similarly to Clock mutant mice, exhibit suppressed diurnal variations in glucose and TAG as well as abolished gluconeogenesis45.

Moreover, several key metabolic factors have been shown to participate in the core clock mechanism. REV-ERBα, the negative regulator of Bmal146, is induced during normal adipogenesis47. The positive regulators of Bmal1 expression, retinoid-related orphan receptor α and PPARα, regulate lipid metabolism48,49. In turn, CLOCK:BMAL1 heterodimer regulates the
expression of Rev-erba, Ppara and Rora (retinoid-related orphan receptor α), PPARγ co-activator-1α, a PPARγ transcriptional co-activator that regulates energy metabolism, stimulates the expression of the clock genes, Bmal1 and Rev-erba, through co-activation of the retinoid-related orphan receptors; mice lacking PPARγ co-activator-1α show abnormal diurnal rhythms of activity, body temperature and metabolic rate(52). AMP-activated activator-1 and TAG found during RF are in agreement with activity period. The average low levels of cholesterol Muslims abstain from eating and drinking during the regimen resembles the month of Ramadan, as several studies have shown that a high-fat diet leads to disrupted clock gene expression in the hypothalamus, liver and adipose tissue as well as altered cycling of hormones in mice, rats and human subjects(58,98–102). In addition, a high-fat diet induced a phase delay in clock and clock-controlled genes(56,102).

Effect of restricted feeding on circadian rhythms

Limiting the time and duration of food availability with no energy reduction is termed restricted feeding (RF)(3,29,62,63). Animals which receive food ad libitum every day at the same time for only a few hours, adjust to the feeding period and consume their daily food intake during that limited time(64–66). Restricting food to a particular time of day has profound effects on the behaviour and physiology of animals. Two to four hours before the meal, the animals display food anticipatory behaviour, which is demonstrated by an increase in locomotor activity, body temperature, corticosterone secretion, gastrointestinal motility and activity of digestive enzymes(62,64,67,68), all are known output systems of the circadian clock. RF is dominant over the SCN and clock mutant mice and animals with lesioned SCN, regardless of the lighting conditions(62,69–73). In most incidents, RF affects circadian oscillators in peripheral tissues, with no effect on the central pacemaker in the SCN(5,29,63,71,72,74,75). Thus, RF uncouples the SCN from the periphery(76). We have shown that long-term daytime RF can increase the amplitude of clock gene expression, increase expression of catabolic factors and reduce the levels of disease markers leading to better health(77) (Fig. 1). RF diet regimen resembles the month of Ramadan, as Muslims abstain from eating and drinking during the activity period. The average low levels of cholesterol and TAG found during RF are in agreement with those found during Ramadan(78,79). Aksungar et al.(80) demonstrated that Ramadan fasting has some positive effects on the inflammatory state and on risk factors for CVD, such as C reactive protein and homocysteine.

Effect of energy restriction on circadian rhythms

Calorie restriction (CR) refers to a dietary regimen low in energy without malnutrition. CR restricts the amount of energy to 60–75% of ad libitum-fed animals(81). It has been documented that CR significantly extends the life span of rodents by up to 50%(82,83). In addition to the increase in life span, CR also delays the occurrence of age-related diseases, such as cancer, diabetes and cataracts(83–86). Theories on how CR modulates ageing and longevity abound, but the exact mechanism is still unknown(83). The reduction of energy intake, and, as a result, in oxidative stress, is considered the critical beneficial factor in the CR diet regimen(83). It has been argued that in mice, the oxidative stress theory can account for age-related diseases, such as cancer, but not for longevity per se(87).

As opposed to RF, CR entrains the clock in the SCN(88,51), indicating that energy reduction could affect the central oscillator. CR during the daytime affects the temporal organisation of the SCN clockwork and circadian outputs in mice under light–dark cycle. In addition, CR affects photic responses of the circadian system, indicating that energy metabolism modulates gating of photic inputs in mammals(92). These findings suggest that synchronisation of peripheral oscillators during CR could be achieved directly due to the temporal eating, as has been reported for RF(71,74,75), or by synchronising the SCN(88–90), which entrains the peripheral tissues(93,94) (Fig. 1).

Effect of intermittent fasting on circadian rhythms

Intermittent fasting (IF) allows food to be available ad libitum every other day. Similarly to energetically restricted animals, IF-fed animals exhibit increased life span as well as improved cardio- and neuro-protection and increased resistance to cancer(95). One suggested mechanism for its beneficial effects is the stimulation of cellular stress pathways induced by the IF diet regimen(95,96). IF alters circadian rhythms depending on the time of food introduction (Fig. 1). When food was introduced during the light period, mice exhibited almost arrhythmicity in clock gene expression in the liver. Unlike daytime feeding, night-time feeding yielded rhythms similar to those generated during ad libitum feeding(97).

Effect of high-fat diet on circadian rhythms

Several studies have shown that a high-fat diet leads to disruptions in locomotor activity in total darkness and to elevated food intake during the rest phase under light–dark conditions(89). These changes were also manifested by disrupted clock gene expression in the hypothalamus, liver and adipose tissue as well as altered cycling of hormones in mice, rats and human subjects(58,98–102). In addition, a high-fat diet induced a phase delay in clock and clock-controlled genes(56,102).
(Fig. 1). Combining high-fat diet with RF led to a leaner phenotype although the energy intake was the same as mice fed a low-fat diet \(^{103}\). Altogether, these studies demonstrate the importance of timing of feeding over its content.

Effect of breakfast on circadian metabolism

Breakfast has previously been demonstrated to be of major importance for the 24-h regulation of glucose \(^{104}\). Indeed, skipping breakfast has been shown to be associated with weight gain and other adverse health outcomes, including insulin resistance and increased risk for developing type 2 diabetes. In contrast, consumption of a high-energy breakfast and a low-energy dinner resulted in a significant reduction of all-day postprandial glycaemia and body weight \(^{105-107}\). The importance of breakfast has recently been demonstrated in type 2 diabetic patient who skipped breakfast and had increased postprandial hyperglycaemia after both lunch and dinner in association with impaired insulin response \(^{108}\).

Conclusions

Disruptions in clock genes and/or circadian rhythms promote ageing and shorten life span, whereas appropriate resetting of circadian rhythms leads to well-being and increased longevity. Life span extension has been a goal of research for several decades. CR, IF and RF reset circadian rhythms and promote better health (Fig. 1). In addition, breakfast consumption has been shown to affect all-day metabolism. Therefore, it is necessary to increase our understanding of circadian regulation over metabolism and longevity and to design new therapies based on this regulation.

Financial Support

None.

Conflicts of Interest

None.

Authorship

The author had sole responsibility for all aspects of preparation of this paper.

References

Circadian rhythms, longevity and timed feeding

adiponectin signaling pathway in muscle and adipose tissue. *Obesity (Silver Spring)* **18**, 230–238.

