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This paper treats factorization and congruence in the arithmetics of Cayley's algebra
C. Results, proved by Rankin [10], on the number of factorizations of a given element in
the nonmaximal arithmetics Ho and Jo are reviewed. Further, new results on congruence
are established and are used to find the number of factorizations of a prescribed element
in the remaining arithmetics, including the maximal arithmetics /„,. When computer
factorizing a given element, the congruence results can be used as a heuristic device to
prune the search tree.

Let / be any arithmetic of Cayley's algebra C. If, for any two elements £, £ of an
arithmetic J of C, there exists an element TJ of J such that

£ = §»/ (i)
£ is said to be divisible by § on the left in J and § is said to divide £ on the left in /.
Similarly we define £ to be divisible by rj on the right in J if there exists an £ of J such that
(1) holds. In both cases £ is said to have the factorization §r/ in / and §, rj are called
factors of £ in J. We write

C = | IJ in/ .

For example, an element p of norm 1 in / , henceforth called a unit of J, divides any
element £ of 7 on the left and on the right in J. Also, clearly, a rational integer m divides
an element £ of J on the right in J if and only if m divides £ on the left in J.

An element £of J is said to be a Cayley prime for J if, for all factorizations ^JJ of £ in
J, either NZ; = 1 or Nr] = 1. For example, suppose that £ has norm a rational prime p,
say. Then it follows, since N£ = N£ Ny =p, that either § or rj has norm 1. In this case, £
is a Cayley prime.

If, for given quaternions a, /3, y,

it follows, by the associative law of multiplication for quaternions, that for any quaternion

Thus if /J divides a on the left in a quaternion arithmetic H' of C, it follows that for any
unit 8 belonging to H', fid divides a- on the left in H'.

If £, | , T] are Cayley numbers and £ = %r\ the relation

in general only holds when 6 is a nonzero real number.
Suppose that, for N^ = N^' and Nri = Nr)',

are two different factorizations in arithmetic J of an element £ of J. Then, from [9], it
follows that no explicit relation, corresponding to a principal isotopism of C can exist
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between (£, TJ) and (§ ' , ry') other than

§=-§', TJ = -IJ '

unless £ of £" is a quaternion for some unit u of C or £ is of some other special form.
We shall see that the factors of a given element of Jw can be characterized up to a

factor of ±1 by considering congruence modulo 2 in Jw.
For any rational integer m > 0 and Cay ley integers £, r] of Jw, we define £ to be

congruent to t] modulo m in /„, if S, - r] is divisible by m in Jw. We then write

| = r\ (modulo m in /„,)

or, when no confusion can arise,

^ = rj (modm).

It is clear that for this definition congruence is well defined in the sense that it is an
equivalence relation.

If
§ = fi (modm), V = Vi (modm)

then
l»7 = li»7i (modm).

We only consider modulus m for m a rational integer.
We first prove

THEOREM 1. For any elements r) and r\' of Jw such that

r\ = r]' (modulo 2 in Jw)

Nr\ and Nr\' are either both even or both odd rational integers.

We have r/ = r\' + 2£ where £ is an element of /„,. Therefore,

But n't, is an element of/„,. Hence R{2t]'t) must be an integer. The result follows.
Also we have

THEOREM 2. Any element £ of maximal arithmetic Jw is congruent modulo 2 in Jw to an
element x of an arithmetic J, containing Jo, of C if and only if £ is itself an element of J.

We have
£ = r (modulo 2 in /„,).

Thus
£ = r + 2ar

where a is an element of /„,. Thus 2a is contained in 70. Hence £ belongs to / if and only
if T belongs to /.

We now prove the more difficult

THEOREM 3. Any element | of odd norm of a maximal arithmetic Jw of Cay ley's
algebra C is congruent modulo 2 in Jw to an element, unique apart from sign, of norm 1 of
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Let § be any given element of odd norm in /„,. Then, from the definition of /„,, it
follows, since £ has odd norm, that, with the notation of [3],

where a0 is an element of 70, §(vv) equals §u, §*, %w,„ or £*,„ and u is a basic unit assigned
to an associative triad containing w, and v is a basic unit assigned to a triad not containing w.

Suppose that 6t = 0. Then £ = a0 and
7

tfo = 2 «A (mod 2)

where each a, is 0 or 1. Since Na0 is odd, the numer r of coefficients for which as = 1
( 0 < J < 7 ) must be odd.

If r = 1 the result follows.
If r - 3 we have

<*o = 4,+ 42 + 43 (mod 2).
It is easy to prove that there exists a basic unit /, of C for which \{it + iSi + iS2 + iS}) is
contained in Jw. But for any such set («!, u2, M3, M4)

4

2 > / = 0 (mod 2).
/=i

Thus in this case
ao = i, (mod 2).

If r = 5 we have, since

2 i, = 0 (mod 2),
/=o

o-0 congruent modulo 2 in /„, to the sum of three different basic units of C. The case r = 5
has thus been reduced to the case r = 3.

Similarly the result follows if r = 7.
If Si = 1, we have

I = a0 + §(„)•
From above we see that if Na0 is odd, ar0 is congruent modulo 2 in /„, to a basic unit

i,, say, of /0- Now write

1=1

where ŵ  (1 <s ^ 8) are the eight basic units of /„.
Then we have i, = w,t for some l\ (1 < /, < 4) for if not § is congruent modulo 2 in Jw to an
element of even norm of Jw which cannot be true. Thus

§ = h{ ~ wh + w,2 + wh + w,A) (mod 2)

and the result follows.
Now suppose that Na0 is even. Then

where each as =0 or 1. Since Mv0 is even the number r of coefficients as = 1 must be
even.
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If r = 0 or 8 the result follows at once.
If r = 2 or 6 we have

§ = «„ + h2 +S(»o (mod 2)
where as before

4

§(«,) = 2 E W/
/ = 1

and the w's form a set D, say, of four basic units of C. Precisely one of 4, and 42 cannot
occur in D, for § must be congruent modulo 2 in 7*, to an element of odd norm. If neither
iSl nor iJ2 occurs in D the result follows as before. We now suppose that both 4, and iS2

occur in the set D. In this case it is easy to prove that there exist two elements wSl, wS2 of
D for which

^ • J • i 2(4, + '.J-, + ws, + w'j,)
is a contained in / „ . zv Sl *2 Sl l2 /

We deduce that
iSl + 42 = M ,̂ + wJ2 (mod 2).

Hence
H = 2 ( ~ W*, - W*2 + %3 + ^ 4 ) ( m O < 1 2 ) •

Finally we suppose that r = 4. Then

§ = i*i + i*2 + 3̂ + 44 + 2(^1 + >v2 + w3 + w4) (mod 2).

Clearly the sets (iSl, iSl, 43,44)
 a nd (wu W2, W3, wd must have an even number of elements

in common for otherwise § is congruent modulo 2 in /„, to an element of even norm. If the
sets have no element in common or four elements in common the results is immediate. If
they have precisely two elements in common the argument reduces to the previous case.

Thus for any element £ contained in /„,

§ = p (modulo 2 in Jw)

where p is an element of norm 1 of /„,. If also

i,=p' (modulo 2 in Jw)

where Np' = 1 it follows that p = ±p'. Theorem 3 has thus been proved.
As an example we consider the element

Since the characteristic unit [3] *(§) = 1 and

where a0 = 1 4- ij and £(iv) = |,*, we can take w = iu i2 or i3. In Jh we have

j8 = l - / 1 + i4 + j 6 s 0 (mod2)

since x{\fi) = i3. Thus in Jh

% = -i4 - i6 + \{U + '5 + k + h) (mod 2)
s 2(-»4 + ' 5 - i e + i?) (mod 2)

while in Jh we have

l = 2(+«4 + «5-»6-«7) (mod 2).

Next we deduce from Theorem 3
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THEOREM 4. Any element t] of even norm of a maximal arithmetic Jw of Cay ley's
algebra C is congruent modulo 2 in Jw to the sum of two elements of Jw of norm 1 or to
zero.

This follows since any such element rf can be written as t]t + r]2 where t]i and r\2 are
linear combinations of disjoint defining sets of units for Jw and are such that Afy, and Afy2

are odd.
Theorems 3 and 4 are used to characterize and count the number of distinct factors in

maximal arithmetic /„, of a given element £ of Jw. However, we must first relate the
7 7

number of representations of odd rational integer mn as S z2, where £ zsis is an
s=0 s=0

element of Jw, to the number of representations of rational integers m and n of this form.
7

We define rh(m) to be the number of different representations of mas E x2 where
7 *=°
E xsis is contained in fixed arithmetic Jh of C for h an integer between 0 and 7 or one of

.5=0

the seven basic units of C other than 1. Further we write ro(m) = r(m). Clearly,

rs{m) = rt{m) and ris(m) = rit{m)

for s and / between 1 and 7. For example, r(l) = 16, and rs{\) = 48 and r, = 240 for
1<5<7 .

We state without proof some results on the number of distinct representations of a
rational integer as the norm of an element of any fixed arithmetic of C containing the
eight basic units of C.

THEOREM 5.
(i) For an odd rational integer

rh(m)r(\) = r(m)rh(l).

(ii) For m, n odd rational integers such that (m, n) = 1

rh{m)rh{n) = rh{mn)rh{\).

(iii) For p a rational prime and integer t > 0

and
rh(l)rh(p'+l) = rh(p)rh{p') - rh

(iv) For integer t>0

where in each case h may take any one of the values 0 , 1 , . . . , 7, /,, i2,. . . , i7.

The results for r{m) are given in Rankin's paper [10]. Then it follows that, for m
odd,

r(4m) = ^r(4)r(m) = 71r(m).

Hence the number of representations of Am as a sum of eight squares of integers, four of
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which are odd, is 70r(m). Thus, from Theorem 5(i), it follows that

ris(m) — \5r(m)
and

rs{m) = 3r(m) for 1 < s < 7.

An independent proof of Theorem 5 can be given by means of the methods indicated by
Rankin.

We now prove

THEOREM 6. Any element t, of maximal arithmetic Jw of C for which Nt, = mn where
m, n are positive rational integers such that (m,n) = l has precisely 240 different
factorizations %r\ in Jw for which N% = m and Nrj = n.

If N^i = m= Nt;2 and §] =£ ±§ 2 then the absolute value of R(%i, §2) is less than m.
For if

7

§, = '2,x,sis 0 = 1,2)
5=0

we have

Mil ± i2) = £ (*i, ± xis? < 2 £ (xl ± xl) = 4m.
s=0 s=0

Further, suppose that £ is dividisible on the left by £, and £2 in Jw where
A îi = Af§2 = m. Write

£ = §iTj, and C = §2»?2-
Then

C»?2 = (§2»?2)'72 = §2«-
Similarly,

»/i§ = nii-
Thus

n2f.i2 = £
Hence,

But (/n, n) = 1. Therefore,
/?( | , i 2 ) = 0 or

Suppose further that
§, = §2 (mod 2 in /„,).

Then
| , i 2 s l (mod 2 in 7W). (2)

Thus, by Theorem 2, | i § 2 is contained in /„. Hence

R(lh) = o- . (3)

Now N(|1^2) = '"2 and m is odd. Therefore, fi§2 has one or five odd rational
integral components. It is easy to show that any set of five basic units of C contains a basic
defining set of units for Jw. Thus the sum of any five such basic units is congruent modulo
2 in /„, to one of the five units. Hence

§,§2 = i, (mod 2) (4)
for some t,(\<t< 1).
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But (2) and (4) cannot both hold. Hence

f , * § 2 (mod 2). (5)

From (5), Theorem 3 and the fact that

rw{l) = 240,

it follows that any £ of odd norm mn where (m, n) = 1 has at most 240 factorizations %t)
in /„, such that Nt- = m, Nrj = n.

Now suppose that there exists a £ in /„, of norm mn with less than 240 such
factorizations. For all such £ for which N£ = mn the number of factorizations of this form
is given by rw(m)rw(n).

We deduce that
rw{m)rw{n) < 240 ]£ 1 = 240rw(mn).

Nt,=mn

But this contradicts Theorem 5(ii) with h = w. This completes the proof of Theorem 6.
Next we prove

THEOREM 7. Any element £ of maximal arithmetic Jw of C for which Nt, = pl+1 where
p is an odd rational prime and / > 0 has precisely

(i) 240(1 +p3) distinct factorizations %r\ in Jw for which N% = p and Nr\=p' if p
divides £ in Jw or

(ii) 240 such factorizations if p does not divide £ in Jw.

Proof, (i) Suppose that p divides £ in /„,. Then £ =p£ ' where £' is contained in /„,.
Let £ be any element of Jw of norm p and suppose that r) = |£ ' . Then r) is contained in
Jw. Also

£? = £(!£') =/>£' = £•
Thus £ has as many distinct factorizations ^r] with N% = p and Nrj = p' as there are
distinct elements of norm p in Jw. The result follows from (iii) of Theorem 5.

(ii) Suppose now that p does not divide £ in Jw. Let £ have distinct factorizations
l-i^i and ^2^2 in 7W for which

Wii = W§2 = P and Nr)l = Nr}1 = p'.

Suppose that

§, = §2 (mod2in/>v).
Then

£,§2 = 1 (mod 2 in 7J .

Thus, by Theorem 2, | , | 2 is an element of Jo.
Now, we have

/?{§,(!,£)+ (&i)f2} = K(S)2/?(§,f2).
But,

§i(f2£)=Pti'?2 and (£§,)f2 = />*?•£>•

Therefore, /? divides 2/?(£)/?(§,f2). Since odd prime p does not divide £ in /„, it does not
divide 2/?(£). Therefore, p divides /?(£1|2). But /?(§,f2) is an integer and /V(£,f2) =p2.
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Now ^ # ± £ 2 - Therefore ^i^2^P- Hence R(%i%2)
 = 0 and £if2 has one or five odd

rational integral components. Thus, as in the proof of Theorem 6, £if2 is congruent
modulo 2 in /„, to a basic unit of /0 other than ±1. Therefore each element of § of norm p
which divides £ on the left in /„, is congruent modulo 2 to a distinct element of norm 1 of
/„,. Hence there exist at most 240 distinct factorizations £r/ in this case. For all £ of norm
pl+x in /„, the number of factorizations of this form is given by

Suppose that there exists a £ in /„, of norm p'+l which is not divisible by p in Jw with less
than 240 factorizations of the type described. Then

rw(p)rw(p')< 240 £ 1 + 240(1 + p3) £ 1
' ' 1 |

+ 240(1+P
3K(p ' - 1 )

= rw{p)rw{p').

Hence no such £ exists. The result has thus been proved by contradiction. This completes
the proof of Theorem 7.

Let £ be any element of an arithmetic Jh for some h (h = 0 , 1 , . . . , 7, iu i2,. .. , i7) of
C. Suppose that N£ = mn =£ 0. We use a notation suggested by that of Rankin [10] and
define

Qft(£;m,n) = Q,(£)

to be the set of all factorizations £JJ of £ in Jh for which N% = m and Ni] = n. Also we
define

5A(£;m)«) = 5,(£)
to be the number of such factorizations.

Thus we have proved, for w a basic unit of C other than 1, the following result.

THEOREM 6. For m, n odd positive rational integers such that (m,n) = l,

Also we have proved

THEOREM 7. For p an odd rational prime and I > 0
(i) if p divides £ in Jw

Sw{t\p,pl) = 240(1 +p3), or

(ii) if p does not divide £ in Jw

Sw(Z;p,p') = 240.

From Theorems 6 and 7 we deduce the following results.

THEOREM 8. For m, n odd positive rational integers such that (m,n) =

50(£;m,n) = 16.
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THEOREM 9. For p an odd rational prime and / > 0
(i) if p divides £ in Jo

Sott;p,p') = 16(l+p3), or

(ii) if p does not divide £ in Jo

Sotf;p,p') = 16.

THEOREM 10. For m, n odd positive rational integers such that (m, n) = 1 and any t
r<7)

S,(t;m,n) = 48.

THEOREM 11. For p an odd rational prime, / > 0, and any f (1 < f < 7)
(i) if p divides £ in J,

(ii) if p does not divide £ in J,

The methods used to establish Theorems 6 and 7 were first used by Rankin [10] to
establish Theorems 8 and 9 above. We have used the idea of congruence modulo 2 in Jw,
while Rankin used the fact that the eight basic units of C are linearly independent and
generate Jo over the rational integers.

We have already see that /() occurs as a subset of Jw for any basic unit w of C other
than 1 and that 7, (1 < / < 7) occus as a subset of Jw for three basic unis w of C for which
w =t 1. Further, the elements of /„, which belong to Js (0 < s ^ 7) are characterized as the
elements of Jw congruent modulo 2 in Jw to an element of Js of norm 1. Thus Theorems 8
and 10 follow from Theorems 5 and 6, while from Theorems 5 and 7 we deduce Theorem
9 and 11.
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