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Leading-term cycles of Harish-Chandra modules and

partial orders on components of the Springer fiber

Peter E. Trapa

Abstract

We use the geometry of characteristic cycles of Harish-Chandra modules for a real semi-
simple Lie group GR to prove an upper triangularity relationship between two bases of
each special representation of a classical Weyl group. One basis consists of Goldie rank
polynomials attached to primitive ideals in the enveloping algebra of the complexified
Lie algebra g; the other consists of polynomials that measure the Euler characteristic
of the restriction of an equivariant line bundle on the flag variety for g to an irreducible
component of the Springer fiber. While these two bases are defined only using the structure
of the complex Lie algebra g, the relationship between them is closely tied to the real
group GR. More precisely, the order leading to the upper triangularity result is a suborder
of closure order for the orbits of the complexification of a maximal compact subgroup of
GR on the flag variety for g.

1. Introduction

The main result of this paper concerns a relationship between two natural bases of each special
representation of a Weyl group. One basis arises in the study of primitive ideals in enveloping
algebras, the other in the complex geometry of the Springer fiber. The relationship we uncover
originates in the geometry of characteristic cycles of Harish-Chandra modules. As we detail below,
it allows one to transport interesting information between the category of Harish-Chandra modules
and the category of highest weight modules.

Before turning to applications, we formulate our main result in more detail. Let g denote a
complex semisimple Lie algebra, let B denote its variety of Borel subalgebras, and fix a base point
b1 = h1⊕n1. (It would be more customary to call the base point simply b, but later b will denote an
arbitrary Borel subalgebra.) Let W denote the Weyl group of h1 in g, and write ρ ∈ h∗1 for the half-
sum of the roots of h1 in b1. Let N ∗ denote the nilpotent cone in g∗, and fix a complex nilpotent
coadjoint orbit O. Consider the set Primρ(g,O) of two-sided ideals in the universal enveloping
algebra U(g) such that: (i) I is the annihilator of a simple U(g) module X (i.e. I is primitive);
(ii) I contains the augmentation ideal in the center of U(g) (i.e. I has infinitesimal character ρ); and
(iii) with respect to the degree filtration, the associated graded ideal gr I in the symmetric algebra
S(g) cuts out the closure O of O (i.e. the associated variety of I is O). This set is nonempty if and
only if O is special [BV82, BV83]. To each primitive ideal I in U(g) (and hence to each element of
Primρ(g,O)), Joseph attaches a harmonic homogeneous polynomial pI ∈ S(h∗1), the so-called Goldie
rank polynomial [Jos80a, Jos80b]; see § 2.2. Set

Sp(O) := spanC{pI | I ∈ Primρ(g,O)}. (1.1)
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Joseph proves that the elements pI are independent, and that the above span of this basis is an
irreducible representation of W ; it is called the special representation of W parametrized by O.

Now we introduce another basis of Sp(O). Let T ∗B denote the cotangent bundle to B, and write
µ : T ∗B → N ∗ for the moment map. Concretely we may write T ∗B = {(b, ξ) | ξ ∈ (g/b)∗} and then
µ maps a point (b, ξ) to ξ (or more precisely to the image of ξ in g∗ under the canonical inclusion
of (g/b)∗ in g∗). For ξ ∈ N ∗, let µ−1(ξ) denote the corresponding fiber, the so-called Springer fiber.
Spaltenstein [Spa77] established that µ−1(ξ) is equidimensional, and in particular that its irreducible
components all have the same dimension. Write Irr(µ−1(ξ)) for the set of irreducible components.
Now fix λ ∈ h∗1 dominant and integral for the roots of h1 in b1, and let Cλ denote the corresponding
one-dimensional representation of B1. Consider the Borel–Weil line bundle Lλ := G ×B1 Cλ and,
for any subset Z ⊂ Irr(µ−1(ξ)), define qZ(λ) to be the Euler characteristic of Lλ restricted to
Z. The assignment λ �→ qZ(λ) extends to a homogeneous polynomial qZ ∈ S(h1), sometimes called
the Joseph polynomial after its introduction in a different context in [Jos84]; see also [Jos89] and the
references therein, especially [Ros91]. The polynomials qZ are not independent for trivial reasons.
The component group AG(ξ) of the centralizer of ξ in G clearly acts on Irr(µ−1(ξ)). (Here G may
be taken to be any complex connected Lie group with Lie algebra g; the action is insensitive to
isogeny.) If Z and Z ′ are actually irreducible components in the same AG(ξ) orbit, then qZ = qZ′.
In fact these are the only dependence relations, however, and the polynomials qC as C ranges over
AG(ξ)\ Irr(µ−1(ξ)) are independent. Moreover, if we set O = G · ξ and assume that this orbit is
special, we have

Sp(O) = spanC{qC | C ∈ AG(ξ)\ Irr(µ−1(ξ))}
with notation as in (1.1). Our main problem of interest, first posed by Joseph, is to relate the basis
of the qC to the basis of the pI .

Initially it was conjectured that (up to scaling) the two bases actually coincided [Jos84], and
Melnikov proved that this is indeed the case for sl(n,C) (see [Mel93]). Earlier Tanisaki provided
examples (outside of Type A of course) where they did not coincide [Tan88]. He suggested the next
possible alternative, namely that there is an upper triangular relation between the two. McGovern
proved this in all classical cases [McG00]. Our main result is a proof of this result under a technical
(conjecturally superfluous) hypothesis which we subsequently verify in many cases (including all
classical types).

Theorem 1.2. Suppose O is a special nilpotent orbit in g∗ which satisfies Hypothesis (�).
(This condition is described explicitly below. It holds if g is classical and is conjectured to always
hold; see § 5.) Fix ξ ∈ O. Then there is a bijection from

AG(ξ)\ Irr(µ−1(ξ)) −→ Primρ(g,O)

and a total order on these sets so that the matrix relating the p- and q-bases is upper triangular.
More precisely, use the total order to enumerate AG(ξ)\ Irr(µ−1(ξ)) as C1, . . . , Cd and let Ij denote
the image of Cj under the above bijection. Then there are positive numbers mij such that

qIi =
∑

j�i

mijpCj .

The main technique of the current paper interprets the bijection, the total order, and the
coefficients using characteristic cycles of Harish-Chandra modules for real groups. (The more
precise Theorem 3.13 makes this clear.) Once Hypothesis (�) is absorbed, the proofs rely only on a
simple conceptual result of Chang [Cha93] which, roughly speaking, says that computing leading-
term cycles of Harish-Chandra modules is equivalent to relating the p- and q-bases. Since there
are (easy) triangularity results available for characteristic cycles, one obtains the current theorem.
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As we remarked above, McGovern has established the conclusion of Theorem 1.2 for all classi-
cal cases (without assuming Hypothesis (�)). However, our proof of Theorem 1.2 is very different
from McGovern’s: the total order he provides (which is essentially combinatorial) bears no obvious
relation to ours (which is essentially geometric).

To discuss Hypothesis (�) we need some notation. Suppose GR is a real linear reductive Lie
group with Lie algebra gR. Let KR denote its maximal compact subgroup, and write K as the
corresponding complexification. Let g denote complexification of gR, and let g = k ⊕ p denote
the complexified Cartan decomposition. K acts on B with a finite number of orbits. Given such an
orbit, let T ∗

QB ⊂ T ∗B denote the conormal bundle to Q; concretely, it is easy to see that

T ∗
QB = {(b, ξ) | b ∈ Q and ξ ∈ (g/b + k)∗}.

Thus, the moment map image µ(T ∗
QB) is a subvariety of the nilpotent cone elements in (g/k)∗,

which we denote as N ∗
p . (The notation reflects the fact that the Killing form identifies the nilpotent

cone in (g/k)∗ with the nilpotent cone in p.) Note that µ(T ∗
QB) is transparently invariant under

the action of K, and, since µ is proper and T ∗
QB is irreducible, µ(T ∗

QB) is irreducible as well.1

Since there are only a finite number of K orbits on N ∗
p , it follows that there exists such an orbit,

say µ(Q), such that µ(Q) is dense in µ(T ∗
QB). All such K orbits on N ∗

p arise in this way, and we
partition K\B accordingly by defining, for OK ∈ K\N ∗

p ,

µ−1(OK) = {Q ∈ K\B | µ(Q) = OK}.
Recall that if O is a complex nilpotent orbit in g∗, then O∩(g/k)∗ (if nonempty) is an equidimensional
union of K orbits [KR71], and of course all nilpotent K orbits on (g/k)∗ arise this way. We often
implicitly assume that O∩(g/k)∗ is nonempty and writeK\(O∩(g/k)∗) for theK orbits on O∩(g/k)∗.

We also need to recall some basic features of the geometry of the conormal bundle to an element
of µ−1(OK). Fix ξ ∈ OK , and define AK(ξ) to be the component group of the centralizer of ξ in K.
Because K is a subgroup of G, AK(ξ) maps to AG(ξ), and so the orbits of AG(ξ) on Irr(µ−1(ξ)) break
into potentially smaller AK(ξ) orbits. This certainly happens and presents some minor technical
complications detailed in Definition 3.19 below. Now fix Q ∈ µ−1(OK). According to Proposition 2.7
below, T ∗

QB ∩ µ−1(ξ) is dense in an AK(ξ) orbit, say Z(Q), on Irr(µ−1(ξ)) and all such orbits may
be written uniquely as Z(Q) for Q ∈ K\B.

Finally, we need to recall two representation-theoretic constructions. Given an irreducible Harish-
Chandra module X for GR, one may define an orbit supp◦(X) ∈ K\B by considering the support of
the appropriate localization ofX (Definition 3.1). By replacingX by an associated graded object and
passing to its support, one defines the associated variety of X; see § 3. It transpires that AV(X) is a
finite union of closures of K orbits on N ∗

p . It follows easily from the definitions (see Proposition 3.10)
that µ(T ∗

supp◦(X)B) is contained in AV(X). Hypothesis (�) is designed so that this inclusion is as
close to an equality as possible, given that AV(X) is generally reducible.

Hypothesis (�). Assume for the purposes of the introduction that the AK(ξ) orbits and AG(ξ)
orbits on Irr(µ−1(ξ)) coincide; see § 3.3 for the general case. A complex nilpotent orbit O for g∗

is said to satisfy Hypothesis (�) if is there is a real group GR with complexified Lie algebra g and
an orbit OK of K on (O ∩ (g/k)∗) such that, for all Q ∈ µ−1(OK), there exists an irreducible
Harish-Chandra module MQ for GR with trivial infinitesimal character with the properties that:

(i) supp◦(MQ) = Q; and

(ii) µ(T ∗
QB) is dense in an irreducible component of AV(MQ).

1Actually, if K is disconnected, then T ∗
QB and hence µ(T ∗

QB) need not be irreducible. However, this complication is
harmless and we ignore it for the purposes of the introduction.
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We conjecture that the more general Hypothesis (�) of § 3.3 always holds for any special orbit O.
(By the above remarks, if Hypothesis (�) holds, O must indeed be special.) This is clearly a technical
condition, but it does not seem inaccessible to general techniques. We have, however, been unable
to prove it in general. Using less general techniques, we establish Hypothesis (�) for all special orbits
for all classical types, for G2, and for some cases in F4; see § 5. (As explained there, the Type D
case is due to unpublished work of W. McGovern.)

In any event, we may now describe the bijection of Theorem 1.2. Retain the hypothesis of the
theorem. In § 3 (see Theorem 3.13), we prove that the map

AG(ξ) · Z(Q) �→ Ann(MQ) (1.3)

is a bijection from

AG(ξ)\ Irr(µ−1(ξ)) → Prim(g,O)ρ,

as in the theorem. Since we have assumed (for the purposes of the introduction) that the AK(ξ) and
AG(ξ) orbits coincide on Irr(µ−1(ξ)), the assignment Q ∈ µ−1(OK) to Z(Q) ∈ AG(ξ)\ Irr(µ−1(ξ))
described above is a bijection. Now µ−1(OK) is a subset of K orbits on B and hence inherits the
partial order arising from the closure order. Hence AG(ξ)\ Irr(µ−1(ξ)) inherits this partial order and,
according to the bijection in (1.3), so does Prim(g,O)ρ. Fix any total order compatible with this
partial order. This total order and the bijection of (1.3) are the ones that appear in Theorem 1.2.

The construction of this bijection is interesting for several reasons. Most obviously, the problem
of relating the p- and q-bases seems like a problem that involves only the complex semisimple Lie
algebra g, and yet the total order of the theorem is intimately related to the geometry of real groups.
A second key observation is that, for a given complex orbit O, there may be several real groups GR,
or several K-orbits OK for which Hypothesis (�) holds. In extreme cases, for instance, by using
two different components OK one can recover two total orders that are the exact opposite of each
other; the immediate conclusion is that the matrix in this case is actually diagonal. (Understanding
the family of partial orders obtained in this way on AG(ξ)\ Irr(µ−1(ξ)) might be very enlighten-
ing.) In § 4 we interpret these phenomena as a means to transfer information about characteristic
cycles of Harish-Chandra modules between two different real forms of the same complex group; see
Remark 3.14. In Remark 5.47, we indicate how this transfer could be related to information about
the conjectural automorphic spectrum of a real group.

The theorem indicates the importance of Hypothesis (�). As remarked above, it holds for any
special orbit O for a classical Lie algebra. Section 5 gives a complete status report, but for the
purposes of the introduction we give one example. Suppose g = sp(2n,C) and fix O. Then O is
parametrized by a partition of 2n in which all odd parts occur an even number of times. Suppose also
that each even part 2ni occur an even number of times, say 2di. This latter condition is equivalent to
the existence of some p and q with p+q = n such that if GR = Sp(p, q), then O∩(g/k)∗ is nonempty.
In Theorem 5.2, we prove that Hypothesis (�) holds for O by choosing any irreducible component
of O ∩ (g/k)∗, and thus Theorem 1.2 applies. As we let p and q vary and the choice of irreducible
component OK varies, one obtains roughly 2

∑
i di possibilities satisfying Hypothesis (�). The partial

orders corresponding to each different choice are wildly different (although the bijections they define
are the same). Piecing each of them together gives powerful information. See § 5 for more details.

To conclude the introduction, it is worth detailing the content of our techniques in the special
case of complex groups or, by the Bernstein–Gelfand–Gelfand–Enright–Joseph equivalence of cate-
gories (e.g. [BB85]), the highest weight category. Fix a Borel subalgebra b1 ⊂ g, write B1 for the
corresponding complex group, and let L denote an irreducible (g, B1)-module with trivial infinitesi-
mal character. We may write L = L(wρ) in the standard parametrization, and recall the associated
variety AV(L) (e.g. [Jos84]); see § 4 below. Write O = AV(Ann(L)), and fix ξ ∈ O. Then AV(L)
is a union of the closures of a subset of the irreducible components O1, . . . ,On of O ∩ (g/b1)∗.
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Spaltenstein [Spa77] attached to each Oi an orbit Zi of AG(ξ) on Irr(µ−1(ξ)) (see Proposition 2.3).
If we apply the equivalence of categories between (g, B1)-modules and the category of Harish-
Chandra bimodules for the complex group G, and use the properties of characteristic cycles
developed in § 3, we may conclude that

AV(L) = O1 ∪ · · · ∪ Ok if and only if qAnn(L(w−1)ρ) =
k∑

i−1

ci pZi with each ci �= 0. (1.4)

This (given the computations of [Hot84]) is the main result of [Jos84], and indeed the main motiva-
tion for his definition of the p-basis. (We sketch a simple proof of (1.4) using the techniques of this
paper in Theorem 4.1 below.) Thus, Theorem 1.2 implies that the geometry of characteristic cycles
of real groups has implications in the highest weight category. Earlier in [Tra05b, Theorem 1.3],
using the computation of characteristic cycles of derived functor modules, we produced many new
infinite families of highest weight modules with irreducible associated varieties, and different real
forms gave different families. The present ideas may be seen as a significant extension.

2. Background and notation

2.1 General notation

Let G be a complex reductive group. Let GR be a real form of G corresponding to a (complexified)
Cartan involution θ. Let KR = Gθ

R
denote the maximal compact subgroup of GR. Write gR for the

Lie algebra of GR, write g for that of G, and likewise for kR and k. Let K be the corresponding
complex subgroup of G and write g = k⊕p for the Cartan decomposition with respect to θ. Write N ∗

for the cone of nilpotents in g∗ and N ∗
p for N ∗∩(g/k)∗. Let B denote the variety of Borel subalgebras

in g, and now revert to the more customary notation for a base point, b = h⊕ n, so that B = G/B.
Let µ : T ∗B −→ N (g∗) denote the moment map for the G-action on T ∗B. For ξ ∈ N ∗, write µ−1(ξ)
for the inverse image of ξ under µ. Let W denote the Weyl group of h in g.

Given a complex orbit O, we write K\(O∩(g/k)∗) for the set of K orbits on O∩(g/k)∗. When this
notation is used, we often implicitly assume that O ∩ (g/k)∗ is nonempty.

Given ξ ∈ N ∗
p , we let AG(ξ) denote the component group of ZG(ξ), the centralizer of ξ in G,

and write AK(ξ) for the component group of ZK(ξ). The groups AG(ξ) are sensitive to the isogeny
class of G, but we will only study certain orbits of AG(ξ) which are insensitive to isogeny. (So, for
instance, we could assume with little loss of generality that G was adjoint.) In any event, the natural
inclusion

ZK(ξ) −→ ZG(ξ)

descends to a map

iξ : AK(ξ) −→ AG(ξ).

In general, iξ is neither injective nor surjective. (First examples: surjectivity fails for the nonzero
nilpotent orbit for Sp(1, 1); injectivity fails for any orbit in Sp(4,R) with Jordan form 22.) For an
algebraic variety Z, we let Irr(Z) denote the set of its components. Note that AG(ξ) and AK(ξ) act
on Irr(µ−1(ξ)), and, in particular, the orbits will coincide exactly when iξ is surjective.

Given Q ∈ K\B and an irreducible K-equivariant local system ψ supported on Q, we write
X(Q,ψ) for the Harish-Chandra module for GR with trivial infinitesimal character corresponding
to ψ via localization as in [Mil93, Theorem H.5.3]. If ψ = �, the trivial local system supported on
Q, then we often write X(Q) instead of X(Q,�).

For w ∈ W , we write L(w) for the simple highest weight module for g with trivial infinitesimal
character parameterized by w. We adopt the standard convention so that L(e) is an irreducible
Verma module, while L(wo) is finite dimensional (where wo is the long element of W ).
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2.2 Primitive ideals
Let Prim(U(g)) denote the set of primitive ideals in U(g). For each element I ∈ Prim(U(g)), let
gr I denote the ideal in S(g) obtained from the grading of I by degree in the enveloping algebra.
Define AV(I), the associated variety of I, to be the subvariety of g∗ cut out by gr I. It is well known
that AV(I) = O for some nilpotent orbit O ⊂ N ∗ (see [BB82]).

It is easy to see that I contains a unique maximal ideal of the center of U(g). Write χ ∈ h∗

for the dominant weight parameterizing this ideal via the Harish-Chandra isomorphism and write
I ∈ Prim(U(g))χ. For any dominant integral λ ∈ h∗, write I(χ+λ) ∈ Prim(U(g))χ+λ for the primitive
ideal obtained from I using the translation functor from χ to χ+ λ. Finally, recall the Goldie rank
polynomial qI ∈ S(h) attached to I. This polynomial is characterized by the condition that its value
at χ+ λ is the Goldie rank of the primitive quotient U(g)/I(χ + λ); see [Jos80a].

Primitive ideals with trivial infinitesimal character in Type B, C, or D are parametrized by
standard domino tableaux of special shape, where the notion of specialness depends on the type
[Gar90, Gar92, Gar93a].

2.3 Fiber polynomials
Fix ξ ∈ N (g∗) and Z ⊂ Irr(µ−1(ξ)). Fix a Borel subgroup B and consider the function, φZ say,
that assigns to each antidominant character χ of B the Euler characteristic of the restriction of
the Borel–Weil line bundle G ×B Cχ to Z. All cohomology groups are in fact finite, and thus φZ

is an integer-valued function on the lattice of dominant weights in h∗. The following result may be
extracted from [Jos89].

Theorem 2.1. We have the following.

(i) The function φZ extends to a W -harmonic polynomial on h∗, which we denote pZ .

(ii) If C,C ′ ∈ Irr(µ−1(ξ)) are in the same AG(ξ) orbit, then pC = pC′ .

(iii) The relations in (ii) are the only dependence relations among the polynomials {pC | C ∈
Irr(µ−1(ξ))}. In particular, the polynomials {pZ | Z ∈ AG(ξ)\ Irr(µ−1(ξ))} are independent.
Moreover,

Span{pZ | Z ∈ AG(ξ)\ Irr(µ−1(ξ))}
is W -invariant and isomorphic as a W-representation to Sp(G · ξ), the representation attached
to the trivial local system on G · ξ by the Springer correspondence.

Remark 2.2. Joseph originally defined the pC in a different way; again see [Jos89].

2.4 Orbital varieties and the Springer fiber
We recall the following result of Spaltenstein [Spa77]. In its statement, we fix a Borel subgroup B
whose nilradical has Lie algebra n, write η for the projection of G onto G/B, and write πξ for the
map G→ G · ξ defined by g �→ g · ξ.
Proposition 2.3. Fix ξ ∈ O ∈ G\N (g∗). Then there is a bijection between Irr(O ∩ (g/b)∗) and
AG(ξ)\ Irr(µ−1(ξ)). Given Z in the latter set, πξ(η−1(Z)) meets a unique element O(Z) in the former
set densely, and the bijection maps Z to O(Z).

2.5 Conormal bundles
Given an orbit Q ∈ K\B, write T ∗

QB for the conormal bundle of Q in T ∗B. As above, let µ :
T ∗B −→ N (g∗) denote the moment map for the G-action on T ∗B. As outlined in the introduction,
the moment map image

µ(T ∗
QB) (2.4)
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is always the closure of a single K orbit on N ∗
p . To simplify notation as in the introduction,

we write µ(Q) for the dense orbit of K in µ(T ∗
QB). (2.5)

For a given OK ∈ K\N ∗
p , define

µ−1(OK) := {Q ∈ K\B | µ(Q) = OK}. (2.6)

Fix any ξ ∈ OK , and recall the notation AK(ξ) for the component group of the centralizer of ξ
in K. (The following result is from a lecture by T. Springer.)

Proposition 2.7 (see, e.g., [Tra05a, Proposition 2.6.1]). Retain the above notation. Then

µ−1(ξ) ∩ T ∗
QB

is dense in a unique orbit, say Z(Q), of AK(ξ) on Irr(µ−1(ξ)). The map

Q −→ Z(Q)

is a bijection between µ−1(OK) and AK(ξ)\ Irr(µ−1(ξ)).

2.6 Notation for fiber polynomials

Given Z ⊂ Irr(µ−1(ξ)), recall the fiber polynomial pZ of § 2.3. If Q ∈ K\B, we write pQ for pZ(Q),
where Z(Q) = µ−1(ξ)∩T ∗

QB. If O is an irreducible component of O∩(g/b)∗ and Z(O) ⊂ Irr(µ−1(ξ))
is the subset corresponding to O by Proposition 2.3, we write pO for pZ(O).

3. Characteristic cycles of Harish-Chandra modules

We follow the notation of § 2.1 and fix a real linear reductive group GR with complexified Lie algebra
g and complexified Cartan decomposition g = k⊕ p. Let D denote the sheaf of algebraic differential
operators on the flag variety B of g.

Fix a finite length (g,K) module X with trivial infinitesimal character. Since the enveloping
algebra U(g) acts by global differential operators on B, the localization X = D ⊗U(g) X makes
sense; it is a (DB,K) module.

Definition 3.1. The support of a (g,K) module X with trivial infinitesimal character is defined
to be the support of the localization X . This is a K invariant subvariety of B. If X is irreducible,
then the support of X is the closure of a unique K orbit on X (e.g. [Mil93, Lemma H.5.1]). We
denote this orbit by supp◦(X).

3.1 Characteristic varieties

We need a microlocalization of the support construction. Choose a good K invariant filtration
X j of X compatible with the degree filtration on D and pass to the associated graded object grX .
This is a (grD,K) module. Since the symbol calculus identifies grD with functions on T ∗B, we may
view grX as an (OT ∗B,K) module, where OT ∗B denotes the structure sheaf of T ∗B. Since X was
assumed to have finite length (and hence to be finitely generated), it follows that we may identify
grX with a K-equivariant coherent sheaf on T ∗B. Define the characteristic variety of X, denoted
by CV(X), to be the support of the sheaf grX . This is transparently a K-equivariant subvariety
of T ∗B, but since X is a special kind of D module (arising as the localization of X), much more is
true: there exists a subset cv(X) of K orbits on B such that

CV(X) =
⋃

Q∈cv(X)

T ∗
QB;
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here cv(X) is a subset of K\X. See [Mil93, Proposition H.3.6] for more details. It is also useful to
keep track of the rank of the sheaf grX along each irreducible component. The resulting invariant
is called the characteristic cycle and is denoted by

CV(X) =
∑

Q∈cv(X)

mQT
∗
QB;

here each mQ is a positive integer. Both invariants are independent of the filtration initially chosen.
Clearly each construction is additive on short exact sequences and descends to the appropriate
Grothendieck group.

There is no effective algorithm known to compute cv(X). The following result provides some
very weak information; its proof is quite easy and follows from the considerations around [Mil93,
Proposition H.3.6], for instance.

Proposition 3.2. Let X be the Harish-Chandra module with trivial infinitesimal character. Recall
its support (Definition 3.1). Then

supp◦(X) ∈ cv(X) and msupp◦(X) = 1 (3.3)

and

cv(X) ⊂ {Q ∈ K\B | Q ⊂ supp◦(X)}. (3.4)

Example 3.5. There is one important case where the computation of characteristic cycles is easy.
Suppose Q ∈ K\B is closed. Recall the notation X(Q) = X(Q,�) of § 2.1. Then (3.3) and (3.4)
taken together imply that

CV(X(Q)) = 1 · [T ∗
QB]. (3.6)

We may pursue this argument more generally by localizing on a partial flag variety. More precisely,
suppose there exists a θ-stable parabolic s of g. (The notation q would be more customary, but
the letter ‘q’ already has been taken.) Write S for the corresponding subgroup of G. Fix a Borel
subalgebra b ⊂ s and write B for the corresponding subgroup of S. Write π for the projection from
G/B to G/S. Suppose Q ∈ K\B is dense in the preimage of the (closed) orbit of s under K on G/S.
Then X(Q) is a derived functor module of the form As (in the terminology of [VZ84]). It follows
that

CV(X(Q)) = 1 · [T ∗
QB], (3.7)

which generalizes (3.6). This will be important in Example 3.21 below.

We have assumed that X has trivial infinitesimal character. We could have just as easily worked
with any infinitesimal character that differed from the trivial one by a weight of a finite-dimensional
representation of G. In this setting, we localize using a sheaf of twisted differential operators on the
flag variety, and define CV(X) just as above.

Proposition 3.8. Assume for simplicity that GR is connected. Suppose X is an irreducible Harish-
Chandra module with trivial infinitesimal character. Choose a representative ρ of the infinitesimal
character, or equivalently a system of positive roots ∆+ for a fixed Cartan h in g. Suppose ν is
the highest weight of a finite-dimensional representation of G that is dominant for ∆+. Define the
translation functor ψρ+ν

ρ from infinitesimal character ρ to ν+ρ (e.g. [KV95, Equation (7.141)]) and
set X(ν) = ψρ+ν

ρ (X). Then

CV(X) = CV(X(ν)). (3.9)

(If GR is disconnected, the extra technical requirements needed to define translation functors are
treated in [KV95, Theorem 2.229]. Once the is done, the conclusion of (3.9) holds.)
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3.2 Associated varieties
The construction of the characteristic variety may be imitated without localizing; see [Vog91].
One chooses a good K-invariant filtration Xj on X compatible with the degree filtration on the
enveloping algebra. The associated graded grX is a (gr U(g),K) module. Of course gr U(g) =
S(g), and, since the filtration was chosen to be K-invariant, the action of S(g) factors to S(g/k).
Thus, grX is a finitely generated (S(g/k),K) module, i.e. a K-equivariant coherent sheaf on (g/k)∗.
The associated variety of X, denoted by AV(X), is defined to be the support of this sheaf. It is a
K-invariant subvariety of (g/k)∗, but again since X is a special kind of U(g) module (annihilated
by a central ideal of finite codimension) much more is true: there exists a subset av(X) of K orbits
on N(g/k)∗ such that

AV(X) =
⋃

OK∈av(X)

OK .

In fact, O := G · OK is well defined independent of the choice of OK ∈ av(X) and, moreover, O is
dense in AV(Ann(X)). According to a theorem of Barbasch and Vogan [BV82], O is a special orbit.
Again we may keep track of the rank of the sheaf grX along each irreducible component and define
the associated cycle

AV(X) =
∑

OK∈av(X)

mOK
OK ,

where each mOK
is a positive integer. Again both AV(X) and AV(X) do not depend on the choice

of filtration.
There is a simple relationship between the sets cv(X) and av(X).

Proposition 3.10. Let X be a finite-length (g,K) module with trivial infinitesimal character. Let µ
denote the moment map T ∗B → g∗ and recall the notation of (2.4). Then µ(CV(X)) = AV(X);
that is,

av(X) = {µ(Q) | Q ∈ cv(X)}.
Consequently, in the notation of Propositions 3.2 and 3.8,

AV(X) = AV(X(ν)).

The relationship between the multiplicities in CV(X) and AV(X) is more subtle, however,
as must be the case by the following result.

Proposition 3.11 (See, e.g., the proof of [Vog78, Corollary 4.4]). Retain the notation of Propo-
sition 3.8. Fix OK ∈ av(X). By Proposition 3.10, OK ∈ av(X(ν)), and so we may consider the
assignment

ν �→ mOK
(ν) := mOK

(X(ν)).

Then mOK
extends to a harmonic polynomial on h.

Roughly speaking, for suitably compatible choices of filtrations, grX is the pushforward of grX
via the moment map µ. So to compute the rank of grX along an irreducible component, we have
to compute the integral over the fiber of µ, weighted by the appropriate rank of grX . To make that
precise we need a little more notation. Given OK ∈ av(X), define (using the notation of (2.6) and
(2.5))

cv(X;OK) := cv(X) ∩ µ−1(OK) = {Q ∈ cv(X) | µ(Q) = OK},
and write

CV(X;OK) =
⋃

Q∈cv(X;OK)

T ∗
QB,
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and
CV(X;OK) =

∑

Q∈cv(X;OK)

mQT
∗
QB.

We call this the leading term of the characteristic cycle of X over OK . The pushforward argument
may be quantified precisely as follows.

Proposition 3.12 (See [Cha93, Corollary 2.5.6]). Retain the notation of Proposition 3.8, and fix
any OK ∈ av(X) = av(X(ν)). Then

mOK
(ν) =

∑

Q∈cv(X;OK)

mQpQ(ν)

with the notation as in § 2.6.

An argument reproduced in [Cha93, § 1.6] shows that the multiplicity polynomial in Proposi-
tion 3.12 is in fact proportional to the Goldie rank polynomial of the annihilator ofX. More precisely,
we have the following result.

Theorem 3.13. Suppose X has integral infinitesimal character. Fix any OK ∈ av(X). Then there
is a nonzero constant c such that

qAnn(X) = c
∑

Q∈cv(X;OK)

mQpQ,

with the notation as in §§ 2.2 and 2.6.

Remark 3.14. It is important to note that the theorem holds for any OK ∈ av(X). Recall (from
Theorem 2.1) that the polynomials pQ are nearly independent. Thus, Theorem 3.13 says (up to the
slight potential dependence of the pQ) that once one computes CV(X;OK ) for some OK ∈ av(X),
then one may transfer this computation to compute CV(X;O′

K) for any other O′
K ∈ av(X).

However, even more is true: since the expression of Goldie rank polynomials in terms of fiber
polynomials does not depend on the real form (apart from the minor complication posed by the
difference between the AK(ξ) and AG(ξ) orbits on Irr(µ−1(ξ))), one may transfer the computation
of leading-term cycles between two different real forms of the same complex group. This should have
interesting and possibly deep applications. Some are proposed in Remark 5.47.

Theorem 3.13 has additional significant philosophical import. It says that the information of the
annihilator of X is encoded in the leading term of the characteristic cycle of X over any irreducible
component of AV(X). This gives a geometric interpretation of the annihilator of a Harish-Chandra
module. (Such ideas were implicitly present in the context of Harish-Chandra bimodules in [BB85].)

We have assembled the set of tools to prove Theorem 1.2 in the case when the orbits of AK(ξ)
and AG(ξ) coincide. In fact, we have the following more precise result.

Theorem 3.15. Fix a special orbit O and OK ∈ K\(O ∩ (g/k)∗). Assume the orbits of AK(ξ) and
AG(ξ) on Irr(µ−1(ξ)) coincide. Suppose that Hypothesis (�) (described in the introduction) holds
for OK . Enumerate µ−1(OK) as Q1, . . . , Qd and the Harish-Chandra modules in Hypothesis (�) as
MQ1, . . . ,MQd

.

(i) Recall the notation of Proposition 2.7; so µ−1(ξ) ∩ T ∗
Qi

B is dense in Z(Qi). The map

Ann(MQi) �−→ Z(Qi)

defines a bijection

Prim(g,O)ρ := {I ∈ Prim(U(g))ρ | AV(I) = O} −→ AG(ξ)\ Irr(µ−1(ξ)). (3.16)

In particular, the primitive ideals Ann(MQi) are distinct.
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(ii) Choose any total order on µ−1(OK) ⊂ K\B compatible with the closure order on K\B, and
reorder indices so that i < j implies Qi < Qj in this total order. Set Ii = Ann(MQi), let
d = dim(Sp(O)), and define a d× d matrix (Mij) by

qIj =
∑

i

mijpQi.

Then M is upper triangular.

Proof. Define the matrix M as indicated in part (ii) of Theorem 3.15. Theorem 3.13 together with
Proposition 3.2 imply that the matrix is upper triangular with nonzero entries on the diagonal.
(The fact that the matrix is triangular follows from (3.4); the fact that the diagonal entries are
nonzero follows from (3.3).) This proves Theorem 3.15(ii). It also proves the fact that the Goldie rank
polynomials of the various primitive ideals Ij are independent. Hence, the various primitive ideals
Ij are distinct. This is the last assertion of Theorem 3.15(i). The theory of Goldie rank polynomials
mentioned in the introduction implies that cardinality of Prim(g,O)ρ is d, and so the various Ij
exhaust Prim(g,O)ρ. Meanwhile, the number of AG(ξ) orbits on Irr(µ−1(ξ)) is d by Theorem 2.1,
and so the two sets in (3.16) have the same cardinality. Finally, the map of Theorem 3.15(i) is
injective by Proposition 2.7. Hence, it is bijective and Theorem 3.15 is proved.

3.3 Hypothesis (�) and Theorem 1.2 in general
Theorem 3.15 and the discussion in the introduction assumed that the AG(ξ) and AK(ξ) orbits on
Irr(µ−1(ξ)) coincided. In this section, we treat the mild complications that present themselves if
that is not the case.

Fix Q ∈ µ−1(OK) (with the notation as in (2.6)) and ξ ∈ OK . Recall from Proposition 2.7 that
T ∗

QB ∩ µ−1(ξ) is dense in an AK(ξ) orbit Z(Q) on Irr(µ−1(ξ)). The map

Φ : µ−1(OK) −→ AG(ξ)\ Irr(µ−1(ξ)) (3.17)
Q −→ AG(ξ) · Z(Q) (3.18)

is surjective by Proposition 2.7 and the fact that each AG(ξ) orbit is a union of AK(ξ) orbits.
Recall that µ−1(O) is partially ordered by the closure order on K\B. The following is the definition
we need.

Definition 3.19. A subset µ−1(OK)′ ⊂ µ−1(OK) is said to be of minimal type if the map Φ of
(3.17) restricts to a bijection

µ−1(OK)′ −→ AG(ξ)\ Irr(µ−1(ξ))
Q −→ AG(ξ) · Z(Q)

and if, furthermore, whenever Q′ ∈ µ−1(OK)′ and Q ∈ µ−1(OK) are such that Φ(Q) = Φ(Q′), then
Q′ ⊂ Q. Hence, a subset µ−1(OK)′ of minimal type is constructed by picking an element Q′ out
of each fiber of Φ with the property that Q′ is minimal in the closure order restricted to the fiber.
Note that the cardinality of any subset of minimal type is simply that of AG(ξ)\ Irr(µ−1(ξ)), the
dimension of Sp(O). Note also that it is obvious that if the AG(ξ) and AK(ξ) orbits on Irr(µ−1(ξ))
coincide, then the only subset of µ−1(OK) which is of minimal type is µ−1(OK) itself.

The following is the general version of Hypothesis (�); when the orbits of AK(ξ) and AG(ξ)
coincide it restricts to the version given in the introduction.

Hypothesis (�). A complex nilpotent orbit O for g∗ is said to satisfy Hypothesis (�) if there is a
real group GR with complexified Lie algebra g, an irreducible component OK of K\(O∩(g/k)∗), and
a subset µ−1(OK)′ of µ−1(OK) of minimal type (Definition 3.19), such that, for all Q ∈ µ−1(OK)′,
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there exists a Harish-Chandra module MQ for GR with trivial infinitesimal character with the
properties that:

(i) supp◦(MQ) = Q; and
(ii) µ(T ∗

QB) is dense in an irreducible component of AV(MQ).

The following is the more general version of Theorem 3.15. Its proof follows in exactly the same
way.

Theorem 3.20. Fix a special orbit O and OK ∈ K\(O ∩ (g/k)∗). Suppose that Hypothesis (�)
holds for OK and the subset µ−1(OK)′ of minimal type. Enumerate µ−1(OK)′ as Q1, . . . , Qd and
the Harish-Chandra modules in Hypothesis (�) as MQ1 , . . . ,MQd

.

(i) Then the map

Ann(MQi) �−→ µ−1(ξ) ∩ T ∗
Qi

B

defines a bijection

Prim(g,O)ρ := {I ∈ Prim(U(g))ρ | AV(I) = O} −→ AG(ξ)\ Irr(µ−1(ξ)).

In particular, the primitive ideals Ann(MQi) are distinct.

(ii) Choose any total order on µ−1(OK)′ ⊂ K\B compatible with the closure order on K\B, and
reorder indices so that i < j implies Qi < Qj in this total order. Set Ii = Ann(MQi), let
d = dim(Sp(O)), and define a d× d matrix (Mij) by

qIj =
∑

i

mijpQi .

Then M is upper triangular.

Example 3.21. Recall Example 3.5 above. Fix OK and assume that OK is Richardson in the sense
of Definition 5.26 below. Write Q ∈ K\B for the orbit attached to s as in Example 3.5. Then, in
the notation of § 2.1, X(Q) = As, and OK is dense in µ(T ∗

QB). Hence, it follows that MQ := X(Q)
satisfies conditions (i) and (ii) of Hypothesis (�). This is the main trick we will use in verifying
Hypothesis (�) in § 5: we start with a derived functor module where the verification of the conditions
of the hypothesis is easy, and then use that information to define other (not necessarily derived
functor) modules MQi to fulfill the hypothesis.

4. Connection with highest weight modules

Fix a Borel subgroup B in G with Lie algebra b = h ⊕ n, and write W for the Weyl group of h

in g. Let ρ denote the half-sum of the positive roots of h in n. Consider the category of finite-length
(g, B) modules. The irreducible objects with trivial infinitesimal character are parametrized by W .
If w◦ denotes the long element in W , we arrange the parametrization so that L(w) is the unique
irreducible quotient of the Verma module M(w) := indgb(Cww◦ρ−ρ).

We may easily transcribe the constructions of § 3 from the category of (g,K) modules to that
of (g, B) modules: one need only replace K with B in the discussion. In this case we write

CV(L) =
⋃

w∈cv(L)

T ∗
wB, CV(L) =

∑

w∈cv(L)

mwT ∗
wB.

Here cv(L) is a subset of B orbits on B; by the Bruhat decomposition, we identify B\B with W ,
and write T ∗

wB for the conormal bundle to the orbit parametrized by w. Analogously, we write

AV(L) =
⋃

O∈av(L)

O, AV(L) =
∑

O∈av(L)

mOO.
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Let O denote the associated variety of Ann(L) (§ 2.2). Just as av(X) for an irreducible (g,K) module
consisted of K invariant Lagrangians of O∩ (g/k)∗, so av(L) consists of B invariant Lagrangians in
O ∩ (g/b)∗.

The following theorem is due to Joseph [Jos84]. His proof is algebraic in nature. A very simple
geometric proof using Theorem 3.13 is indicated below.

Theorem 4.1. Consider the simple (g, B) module L(w) with trivial infinitesimal character. Then

AV(L(w)) = O1 ∪ · · · ∪ Ok

if and only if there exist nonzero constants ci such that

qAnn(L(w−1)) =
∑

i

cipOi ,

with the notation as in §§ 2.2 and 2.6.

Sketch of the proof. Let X(w) denote the irreducible Harish-Chandra module for the complex group
G parameterized by w; this is a (g⊕g,∆(G)) module where ∆(G) denotes the diagonal copy of G in
G×G. It is an easy consequence of the geometric equivalence of categories between Harish-Chandra
modules for G and highest weight modules for g (e.g. Borho and Brylinski [BB85, Corollary 4.10])
that AV(X(w)) = AV(Ann(L(w))) =: O. (Here we are being a little sloppy: AV(X(w)) is the closure
of a nilpotent orbit of ∆(G) on (g ⊕ g/∆(g))∗ where ∆(g) denotes the diagonal copy of g in g ⊕ g,
but we simply identify O with a nilpotent orbit of G on N (g∗).) Moreover, it is easy to check that

AnnU(g⊕g)(X(w)) = I(w−1) ⊗ U(g) + U(g) ⊗ I(w),

from which one concludes that the Goldie rank polynomial of Ann(X(w)) factors as

qAnn(X(w)) = qI(w−1)qI(w).

Let T ∗
x (B × B) denote the conormal bundle to Q(x), the ∆(G) orbit on B × B parameter-

ized by x. (Informally Q(x) consists of flags in relative position x.) Suppose x ∈ W such that
µ(T ∗

x (B × B)) = O, and fix ξ ∈ O. Proposition 2.7 attaches an orbit ∆(AG(ξ)) · (Cl, Cr) ∈
∆(AG(ξ))\ Irr(µ−1(ξ) × µ−1(ξ)) to Q(x); here ∆(AG(ξ)) denotes the diagonal copy of ∆(AG(ξ))
in AG(ξ)×AG(ξ). Write Zl(x) = AG(ξ) ·Cl ∈ AG(ξ)\ Irr(µ−1(ξ)) and similarly for Zr(x). From the
geometric equivalence of categories, one deduces that O ∈ av(L(w)) if and only if there exists
Q(x) ∈ cv(X(w);O) such that Zl(x) corresponds to O in the bijection of Proposition 2.3; after some
unraveling, this follows, for instance, from [BB85, Theorem 4.8(a)]. According to Theorem 3.13 and
the factorization of qAnn(X(w)) mentioned above, we conclude that Q(x) ∈ cv(X(w);O) if and only
if the expression of qI(w−1) in the basis {pZ | Z ∈ AG(ξ)\ Irr(µ−1(ξ))} contains pZl(x) with nonzero
coefficient. The last two sentences then give the conclusion of the theorem.

Using Theorem 3.13, we can thus transfer information between the Harish-Chandra category
and the highest weight category.

Corollary 4.2. Fix a special nilpotent orbit O, a real form GR for G, and OK ∈ K\(O ∩ (g/k)∗).
Suppose that:

(i) X is a Harish-Chandra module for GR with trivial infinitesimal character such that OK ∈
av(X); and

(ii) L(w) is a simple highest weight module for g with trivial infinitesimal character such that
Ann(L(w−1)) = Ann(X).

Fix Q ∈ µ−1(OK) (with the notation as in § 2.5), and let O(Q) denote the orbital variety corre-
sponding to AG(ξ) · (µ−1(ξ) ∩ T ∗

QB) (Propositions 2.3 and 2.7). Then

Q ∈ cv(X;OK) =⇒ O(Q) ∈ av(L).
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If we further assume that the AK(ξ) and AG(ξ) orbits on Irr(µ−1(ξ)) coincide (so the assignment
Q �→ O(Q) is bijective by Propositions 2.3 and 2.7), then

Q ∈ cv(X;OK) ⇐⇒ O(Q) ∈ av(L).

Proof. According to Theorem 3.13, Q ∈ cv(X,OK) implies that pQ appears with nonzero coefficient
in the expression of qAnn(X) in terms of fiber polynomials. Since we have assumed that Ann(X) =
Ann(L(w−1)), Theorem 4.1 implies that the condition of the previous sentence implies O(Q) ∈
av(L). If AK(ξ)\ Irr(µ−1(ξ)) = AG(ξ)\ Irr(µ−1(ξ)), then Theorem 2.1(ii) implies pQ �= pQ′ for
Q �= Q′ in µ−1(OK). This gives the final conclusion of the theorem.

Note that Corollary 4.2 quantifies how difficult it is to compute leading-term cycles of a Harish-
Chandra module X. Roughly speaking, one must compute the annihilator and associated variety of
X and then the associated variety of a single simple highest weight module.

Remark 4.3. It seems likely that the statement of Corollary 4.2 can be deduced from a general
functorial relationship between Harish-Chandra modules and highest weight modules. We would
like to return to this elsewhere.

5. Hypothesis (�)

The purpose of this section is to place Hypothesis (�) (given in § 3.3) in a broader context, as well
as establish it in all classical cases.

So fix notation as in Hypothesis (�). Fix GR such that O ∩ (g/k)∗ is nonempty and fix OK

and Q ∈ µ−1(OK). Then it is essentially obvious that we may find a virtual Harish-Chandra
module MQ satisfying the conditions of Hypothesis (�) for OK . This is easy to arrange since the
characteristic cycle construction is additive: we start with any MQ supported on Q and subtract
off appropriate Harish-Chandra modules. The techniques of § 3 then relate an algebraic basis of
multiplicity polynomials of the virtual Harish-Chandra modules MQ to the geometric basis arising
in the Springer fiber. The change of basis matrix is upper triangular because of Proposition 3.2.
As explained in § 2, if MQ is irreducible (that is, if Hypothesis (�) holds), then the multiplicity
polynomial is a Goldie rank polynomial, and hence we obtain Theorem 1.2. It seems very likely that
the appropriate virtual representations may be chosen so that their multiplicity polynomials are, in
fact, proportional to Goldie rank polynomials. If this is the case, Theorem 1.2 would hold without
Hypothesis (�). However, we have been unable to see that the virtual Harish-Chandra modules may
be chosen so that their multiplicity polynomials are in fact of the form pI . Thus, we are left with
proving Hypothesis (�).

We begin with a discussion of Type A. Given [Mel93], this is less interesting from the point of
view of Tanisaki’s conjecture since it has already been established in [Mel93] that the matrix in
Theorem 1.2 is, in fact, diagonal. Nonetheless, the Type A case is worth understanding. For instance,
using the real group U(p, q) one may recover the main results of [Mel93]. The case of U(p, q) will
also be important in the proof of Theorem 5.32. The following is taken from [Tra99, Theorem 5.6];
as explained there, for GL(n,C) the result follows by combining the work of Steinberg [Ste88] and
Joseph [Jos77].

Theorem 5.1. Suppose GR = GL(n,C), GL(n,H) or U(p, q). (In these cases all A-group orbits on
irreducible components of the Springer fiber are singletons.) If X is an irreducible Harish-Chandra
module for GR with trivial infinitesimal character, then

µ(T ∗
supp◦(X)B) = AV(X).
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Consequently, if O is any orbit such that O ∩ (g/k)∗ is nonempty, and OK ∈ K\(O ∩ (g/k)∗),
Hypothesis (�) may be verified for OK by taking, for each Q ∈ µ−1(OK), MQ to be any (in fact, the
unique) irreducible Harish-Chandra module with trivial infinitesimal character supported on Q.

By contrast [Tra99, Remark 8.9] essentially provides an orbit Q for GL(n,R) for which there is no
Harish-Chandra moduleMQ satisfying the requirements (i) and (ii) of the hypothesis. This indicates
the subtle nature of matters.

For the groups Sp(p, q) and SO∗(2n), the situation is very similar to that of Theorem 5.1.

Theorem 5.2. Suppose GR = Sp(p, q) or SO∗(2n). (For these groups, the orbits of AK(ξ) on
Irr(µ−1(ξ)) are singletons, while those of AG(ξ) are typically larger.) Suppose X is an irreducible
Harish-Chandra module with trivial infinitesimal character. Then

µ(T ∗
supp◦(X)B) = AV(X). (5.3)

Consequently, if O is a complex nilpotent orbit for g such that O ∩ (g/k)∗ is nonempty, OK ∈
K\(O∩ (g/k)∗), and µ−1(OK)′ is any subset of µ−1(OK) of minimal type, then Hypothesis (�) may
be verified for OK by taking, for each Q ∈ µ−1(OK)′, MQ to be any (in fact, the unique) irreducible
Harish-Chandra module supported on Q.

Proof. The proof is a rather elaborate counting argument using [McG98b, Theorems 6 and 10].
Given a Harish-Chandra module X for GR, let C(X) denote the cell of Harish-Chandra modules
containingX (e.g. [McG98b, § 1]). Write G for the complexification ofGR. For the groups in question,
all Cartan subgroups are connected. So the only K-equivariant local system supported on a fixed
orbit Q ∈ K\B is the trivial one. As in the notation of § 2.1, we set X(Q) = X(Q,�).

The first ingredient we need is the inclusion

G · µ(Q) ⊂ AV(Ann(X(Q))); (5.4)

here µ(Q) is defined as in (2.4). The conclusion of (5.4) follows from (3.3), Proposition 3.10, and
the well-known fact (e.g. [Vog91, Theorem 8.4]) that

G · AV(X) = AV(Ann(X)). (5.5)

Now fix Q ∈ K\B, set OK = µ(Q) (with the notation as in (2.4)), and fix ξ ∈ OK . By imitating
the explicit centralizer calculations given in [CM93, § 6.1], one quickly concludes that the image of
AK(ξ) in AG(ξ) is trivial. Hence, by Proposition 2.7,

#µ−1(OK) = # Irr(µ−1(ξ)), (5.6)

with the notation as in § 2.5. On the other hand, set C(Q) = C(X(Q)), the cell containing X(Q).
In the terminology of [McG98b], C(Q) is Springer in the sense that the cell affords the same Weyl
group representations as the representation on the top homology of the entire Springer fiber; see
[McG98b, Theorems 6 and 10]. This implies that

#C(Q) = # Irr(µ−1(ξ)), (5.7)

and so

#C(Q) = #µ−1(OK). (5.8)

Let N denote this number. Set O = G ·OK . For the groups in question, it follows from the partition
classification (see Remark 5.25 below) that O is special. Enumerate the orbits of K on O ∩ (g/k)∗

as O1
K , . . . ,Ok

K . Since

µ−1(O) := {Q | G · µ(Q) = O} = µ−1(O1
K) ∪ · · · ∪ µ−1(Ok

K), (5.9)
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Equation (5.6) implies
#{Q | G · µ(Q) = O} = kN. (5.10)

One the other hand, consider the set of Harish-Chandra modules

{X | AV(Ann(X)) = O}.
From general principles, this set is a union of cells, say C1, . . . , Cl, each of whose corresponding
representation contains the special representation Sp(O); moreover, each cell whose corresponding
representation contains Sp(O) is among the Ci. McGovern proves that each cell contains Sp(O)
exactly once [McG98b, Theorem 1]. Meanwhile, it is not difficult to compute the multiplicity of
Sp(O) in the full coherent continuation representation on the Grothendieck group of Harish-Chandra
modules with trivial infinitesimal character. This is done in [McG98b, Theorems 6 and 10], and the
multiplicity turns out to be exactly k = #K\(O∩ (g/k)∗). Combining the last few sentences implies
that k = l. Consequently, {X | AV(Ann(X)) = O} is a union of k cells, each of size N (by (5.8)),
and we conclude from (5.10) that

#{Q | G · µ(Q) = O} = #{X | AV(Ann(X)) = O} = kN. (5.11)

As we have remarked above, all Cartan subgroups for the groups in question are connected, so the
map Q �→ X(Q) is a bijection, and we may recast (5.11) as

#{Q | G · µ(Q) = O} = #{Q | AV(Ann(X(Q))) = O} = kN. (5.12)

This equality will be important below.
We now seek to establish (for the groups in question) that equality actually holds in (5.4); that

is, we now show
G · µ(Q) = AV(Ann(X(Q))). (5.13)

Suppose (5.13) fails. Let Q denote an orbit for which

G · µ(Q) � AV(Ann(X(Q))). (5.14)

Assume µ(Q) has minimal dimension among all orbits for which the failure (5.14) holds.
By assumption,

S1 := {Q′ | G · µ(Q′) = G · µ(Q)}
is not contained in

S2 := {Q′ | AV(Ann(X(Q′))) = G · µ(Q)}
since Q is contained in the former set but not the latter. However, we have seen (in (5.12)) that S1

and S2 have the same size. Thus, there must exist an element Q′′ ∈ S2 such that Q′′ /∈ S1. Since Q′′

is in S2,
G · µ(Q) = AV(Ann(X(Q′′))).

Combined with (5.4), we conclude that

G · µ(Q′′) ⊂ AV(Ann(X(Q′′))) = G · µ(Q). (5.15)

Since Q′′ does not belong to S1, we conclude that

G · µ(Q′′) is properly contained in AV(Ann(X(Q′′))) = G · µ(Q). (5.16)

However, now (5.15) and (5.16) contradict the assumption that µ(Q) had minimal dimension among
all orbit for which the failure (5.14) holds. This contradiction thus establishes (5.13).

We now turn to proving the first assertion of the theorem. Fix O so that K\(O ∩ (g/k)∗) =
{O1

K , . . . ,Ok
K} is nonempty. Define µ−1(O) as in (5.9). Now (5.5) and (5.13) imply that, for any Q,

µ(Q) is dense in an irreducible component of AV(X(Q)), (5.17)

530

https://doi.org/10.1112/S0010437X06002545 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002545


Leading-term cycles of Harish-Chandra modules

in the notation of § 3.2. Now choose Q1 of minimal dimension in µ−1(O). We claim that indeed

AV(X(Q1)) = µ(Q1). (5.18)

Suppose Q′
1 is an element of cv(X(Q1)) not equal to Q1. Then, by Proposition 3.2,

Q′
1 � Q1. Since Q1 has minimal dimension in µ−1(O), Q′

1 /∈ µ−1(O). Now Proposition 3.10
implies (5.18).

Let C1 denote the cell containing X(Q1). Since the associated varieties of two elements in the
same cell are the same (see, e.g., the proof of [BB82, Lemma 4.1]), it follows that AV(X) = µ(Q1)
for all X ∈ C1, and indeed

C1 ⊂ {X(Q) | µ(Q) = µ(Q1)}.
However, in fact, (5.8) implies that this inclusion must be an equality,

C1 = {X(Q) | µ(Q) = µ(Q1)}. (5.19)

Let O1 be the dense orbit in µ(Q1). Combining (5.18) and (5.19) with the fact that associated
varieties are constant on cells, we obtain

C1 = {X | AV(X) = O1} (5.20)

or, after unwinding the notation,

for all X ∈ C1, AV(X) = µ(T ∗
supp◦(X)B), (5.21)

the conclusion of the theorem for the cell C1.
Next choose Q2 of minimal dimension in

µ−1(O) \ µ−1(O1).

Let X2 = X(Q2) and write C2 for the cell containing it. Arguing as in (5.17), we conclude that
µ(Q2) is an irreducible component of AV(X2) and arguing as in (5.18), we conclude that the only
other possible irreducible component of AV(X2) is µ(Q1). Hence,

C2 ⊂ {X(Q) | µ(Q) ∈ {µ(Q1), µ(Q2)}},
and (5.19) then implies that

C2 ⊂ C1 ∪ {X(Q) | µ(Q) = µ(Q2)}.
Since cells are disjoint, we conclude that

C2 = {X(Q) | µ(Q) = µ(Q2)}.
Thus, we may argue as in (5.20) and (5.21) to conclude that

C2 = {X | AV(X) = O2} (5.22)

or, after unwinding the notation,

for all X ∈ C2, AV(X) = µ(T ∗
supp◦(X)B), (5.23)

the conclusion of the theorem for the cell C1.
Clearly we may continue in the this way and establish the analogs of (5.21) and (5.23) for any

cell. Thus, the first assertion of the theorem follows. The final assertion follows easily from the
former.

Although it is not relevant to Hypothesis (�), we isolate the following interesting consequence
of the above proof.
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Corollary 5.24. Let GR = Sp(p, q) or SO∗(2n) and retain the notation introduced at the beginning
of the proof of Theorem 5.2. Fix OK ∈K\N ∗

p . Then the set of irreducible Harish-Chandra modulesX

with trivial infinitesimal character such that AV(X) = OK is a cell of Harish-Chandra modules.
Moreover, all cells arise in this way. In particular, if X is an irreducible Harish-Chandra module for
GR with integral infinitesimal character, the associated variety of X is irreducible.

Proof. The first two assertions follow from the general analogs of (5.20) and (5.22) established by
the preceding proof. The final assertion is obvious for trivial infinitesimal character, and the general
integral case follows from the final assertion of Proposition 3.10.

Remark 5.25. We make the hypothesis that O ∩ (g/k)∗ be nonempty in Theorem 5.2 more explicit.
As remarked in the introduction, nilpotent orbits for G = Sp(2n,C) are parametrized by partitions
of n in which odd parts occur with even multiplicities. Fix such a partition λ, and write O for the
corresponding nilpotent orbit. Then there exists a real form Sp(p, q) of G such that O ∩ (g/k)∗ is
nonempty if and only if every part of λ occurs with even multiplicity. (In this case O is automatically
special since an orbit is special if it corresponds to a partition in which the number of even parts
between consecutive odd parts or greater than the largest odd part is even.) Meanwhile nilpotent
orbits for O(2n,C) are parametrized by partitions of 2n in which even parts have even multiplicity.
Fix such a partition λ and let O for the corresponding orbit. Fix p arising from the real form
SO∗(2n). Then O ∩ (g/k)∗ if and only if each part of λ occurs with even multiplicity. (Again this
implies that O is special.)

In view of Remark 5.25, Theorem 5.2 falls short of verifying Hypothesis (�) for all orbits O
in Types C and D. We now sketch a complete treatment of Types B, C, and D using the groups
SO(p, q) and Sp(2n,R). (The Type D case is due to unpublished work of W. McGovern.) As alluded
to in Example 3.21, we need the following definition.

Definition 5.26. Fix GR and the notation of § 2.1. An orbit OK ∈ K\(O ∩ (g/k)∗) is called
Richardson if there exists a θ-stable parabolic s = l ⊕ u such that OK is dense in K · u. (If GR
is a complex group, this latter condition reduces to the usual notion of complex Richardson orbits
defined, for example, in [CM93, § 7.1].) As explained in the introduction of [Tra05b], if OK is
Richardson, then G · OK is automatically special.

We need to make this definition explicit for applications. We begin with GR = Sp(2n,R). Fix O
parametrized by a partition λ as in Remark 5.25. Then, according to [CM93, Theorem 9.3.5], the
elements of K\(O∩ (g/k)∗) are parametrized by diagrams obtained by filling the boxes of λ (viewed
as a Young diagram) with plus and minus signs so as to alternate across rows and so that the
number of plus signs which begin rows of each odd length 2k + 1 coincides with the number of
minus signs that begin rows of length 2k+1, modulo the equivalence of interchanging rows of equal
length. Hence, O ∩ (g/k)∗ is always nonempty.

Proposition 5.27 (see [Tra05b, Corollary 4.2]). Let GR = Sp(2n,R). Fix a complex special orbit
O. Consider OK ∈ K\(O∩ (g/k)∗) parametrized, as described above, by a signed diagram λ±. Fix a
chunk of even rows between consecutive odd rows or greater than the largest odd row, and enumerate
the distinct parts of this chunk as 2k1, . . . , 2kr. Then the orbit OK is Richardson (Definition 5.26)
if and only if the following two conditions are satisfied for each such maximal chunk of even rows:

(i) each row of length 2ki begins with the same sign εi; and

(ii) there is a fixed sign ε (depending on the chunk of even rows being considered) such that

εi = ε(−1)ki .

Note that, for any special orbit O, there exists an element of K\(O ∩ (g/k)∗) which is Richardson.
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It is perhaps useful to give a slightly less combinatorial interpretation of the explicit Richardson
condition appearing in the proposition. Fix an arbitrary orbit OK parametrized by λ±, and let
Z(OK) denote the centralizer in K of a point of OK . (So Z(OK) is well defined up to isomorphism.)
The group Z(OK) factors as a direct product indexed by the distinct parts of the underlying
partition λ. Suppose d is such a part that occurs with multiplicity m. If m = 2l + 1 is odd, then
the part d contributes a factor O(l, l + 1) to Z(OK). If m = 2k is odd, write k+ (respectively k−)
for the number of plus (respectively minus) signs at the beginning of the rows of length 2k in λ±.
Then the part m contributes a factor Sp(k+, k−) to the centralizer Z(OK). Hence, part (i) of the
Richardson condition is that the centralizer of an element of OK is, in an appropriate sense, as
compact as possible; part (ii) is a requirement on the signatures of the compact factors of the
centralizer.

We will ultimately verify Hypothesis (�) for orbits OK which are a special kind of Richardson
orbit. The following is the definition we need.

Definition 5.28. Let GR = Sp(2n,R). Fix a complex special orbit O. Consider OK ∈ K\(O ∩
(g/k)∗) to be parametrized, as described above, by a signed diagram λ±. The orbit is called a
relevant orbit if it is Richardson (Definition 5.26 and Proposition 5.27) and additionally, if λ has
only even parts, the condition of Proposition 5.27 applies to the chunk consisting of all its even
parts. (This latter condition is of course a strengthening of the Richardson one.) Note that, for any
special orbit O, there exists an element of K\(O ∩ (g/k)∗) which is relevant.

Once again, one may provide a slightly more intrinsic definition of relevant by translating it into
a condition on the compact part of the centralizer of a point in OK .

We need the analogous definitions for the groups GR = O(p, q). (The combinatorics of the
full (disconnected) orthogonal group, as usual, is slightly simpler, although we could easily work
with SO(p, q) or its identity component instead.) This time complex nilpotent orbits for g are
parametrized by partitions λ in which every even part occurs an even number of times. If p + q is
odd (respectively even), an orbit is special if its corresponding partition has an even number of odd
parts between consecutive even parts and an odd (respectively even) number of odd parts greater
than the largest even part.

Fix O corresponding to λ. Then, according to [CM93, Theorem 9.3.4], the elements of K\(O ∩
(g/k)∗) are parametrized by diagrams obtained by filling the boxes of λ (viewed as a Young diagram)
with p plus and q minus signs so as to alternate across rows and so that the number of plus signs
which begin rows of each even length 2k coincides with the number of minus signs that begin rows
of length 2k, modulo the equivalence of interchanging rows of equal length. Hence, for the split
groups O(n, n+ 1) and O(n, n), O ∩ (g/k)∗ is always nonempty.

Proposition 5.29 (See [Tra05b, Corollary 7.2]). Let GR = O(p, q). Fix a complex special orbit O.
Consider OK ∈ K\(O ∩ (g/k)∗) parametrized, as described above, by a signed diagram λ±. Fix a
maximal chunk of odd rows between consecutive even parts, and enumerate the distinct parts of
this chunk as 2k1 + 1, . . . , 2kr + 1. The orbit OK is Richardson (Definition 5.26) if and only if the
following two conditions are satisfied for each maximal chunk of odd rows:

(i) each row of length 2ki + 1 begins with the same sign εi; and

(ii) there is a fixed sign ε (depending on the chunk of odd rows being considered) such that

εi = ε(−1)ki .

Note that for the split groups O(n, n + 1) and O(n, n), given any special orbit O, there exists an
element of K\(O ∩ (g/k)∗) which is Richardson.
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Once again, the definition translates into a condition on the compact part of the centralizer.
We omit the details.

Definition 5.30. Let GR = O(p, q). Fix a complex special orbit O. Consider OK ∈ K\(O∩ (g/k)∗)
parametrized, as described above, by a signed diagram λ±. The orbit OK is called a relevant orbit
if it is Richardson (Definition 5.26 and Proposition 5.29) and additionally, if λ has only odd parts,
the condition of Proposition 5.29 applies to the chunk consisting of all its odd parts. Note that for
any special orbit O such that O∩ (g/k)∗ is nonempty (which is always the case if GR is split), there
exists an element of K\(O ∩ (g/k)∗) which is relevant.

Now fix G′
R

= SO(p, q) and a complex special orbit O′ for g′. An orbit O′
K ∈ K ′\(O′ ∩ (g′/k′)∗)

is called a relevant orbit for SO(p, q) if and only if K · O′
K is a relevant orbit for O(p, q).

The next result simplifies matters slightly for the groups Sp(2n,R) and O(p, q).

Lemma 5.31. Let GR = Sp(2n,R) or O(p, q) and fix a nilpotent element ξ ∈ (g/k)∗. Then the
natural map

AK(ξ) −→ AG(ξ)
is always surjective. In particular, the orbits of AK(ξ) and AG(ξ) on Irr(µ−1(ξ)) coincide.

Proof. This may be verified by a direct computation of centralizers along the lines of [CM93, ch. 6].
We omit the details.

Theorem 5.32. Let GR = Sp(2n,R) or SO(p, q) with p + q odd. Fix a complex special orbit O
such that O ∩ (g/k)∗ is nonempty. (This is always the case if GR is split.) Fix a relevant orbit
OK ∈ \(O∩ (g/k)∗) (Definitions 5.28 and 5.30); as remarked above, if O∩ (g/k)∗ is nonempty, then
such a relevant orbit exists. For anyQ ∈ µ−1(OK), write (as in § 2.1)X(Q) for the irreducible Harish-
Chandra module attached to the trivial local system on Q; so, in particular, supp◦(X(Q)) = Q.
Then

µ(T ∗
QB) = AV(X(Q)) = OK .

Thus, Hypothesis (�) may be verified by taking MQ = X(Q) for each Q ∈ µ−1(OK).

Remark 5.33. Example 3.5.2 in [Tra05a] shows that the relevant hypothesis on OK is necessary in
general.

Remark 5.34. As the proof below shows, each moduleMQ appearing in the statement of the theorem
lies in the same Harish-Chandra cell as a module of the form As for a θ-stable parabolic s = l ⊕ u

where OK is dense in K · u.

Sketch of the proof of Theorem 5.32. Lemma 5.31 simplifies notation somewhat, for example
µ−1(OK) is the only subset of minimal type appearing in Hypothesis (�), and #µ−1(OK) coin-
cides with the dimension of Sp(O) (by Proposition 2.7). We will prove the theorem for Sp(2n,R).
The modifications necessary for SO(p, q) are straightforward.

Fix O and choose OK ∈ K\(O ∩ (g/k)∗) relevant. Since OK is relevant, it is Richardson, and
there exists a θ-stable s = l ⊕ u with OK dense in K · u. Let Q ∈ K\B be the orbit attached to
s according to Example 3.5. Example 3.21 shows that we may take MQ := X(Q) = As to satisfy
conditions (i) and (ii) of Hypothesis (�) for the orbit Q.

We will define the other modules MQi by applying a sequence of operators of the form Tαβ to
MQ = X(Q). These operators are introduced in [Vog79a, § 3] on the level of primitive
ideals, and their definitions easily extend to Harish-Chandra modules using [Vog79b, Theorem 3.10].
See also [Gar90, Gar92, Gar93a, McG98a, McG98b, GV92] for further details. Their domains and
ranges may be specified using the Borho–Jantzen–Duflo τ -invariant (see [Vog79b, Definition 3.3]
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and [Gar90, Gar92, Gar93a]), which is defined for Harish-Chandra modules or primitive ideals with
trivial infinitesimal character. They are single-valued (respectively potentially double valued) if α
and β have equal (respectively unequal) length. If Y ∈ Tαβ(X) and X and Y are Harish-Chandra
modules, then X and Y belong to the same cell and hence, as mentioned in the proof of Theorem 5.2,
AV(X) = AV(Y ). In the course of verifying Hypothesis (�) for the modules MQi we will also cal-
culate the annihilators and associated varieties of these modules, using algorithms introduced in
[Tra05a, § 3].

Set MQ = X(Q), the derived functor module fixed above. Suppose T = Tαk,βk
◦ · · · ◦ Tα1β1 is

a sequence of Tαβ operators so that T(MQ) is defined. Write I(Q) for the set of primitive ideals
obtained as annihilators of elements in T(MQ). Suppose that

for all I ∈ I(Q),

there exists Q1 ∈ µ−1(OK) such that Ann(X(Q1)) = I and MQ1 := X(Q1) ∈ T(MQ) (5.35)

with the notation as in § 2.1. Then since supp◦(MQ1) = Q1 and since (as we remarked above)
T preserves associated varieties (so that AV(MQ1) = AV(MQ) = OK), it follows that MQ1 satisfies
conditions (i) and (ii) of Hypothesis (�) for the orbitQ1. If we can make the corresponding conclusion
for all well-defined sequences T, then it follows that Hypothesis (�) holds for OK : it follows from
general principles that the collection of modulesMQ1 obtained from all such sequences T corresponds
to a submodule of the special representation Sp(O); since Sp(O) is irreducible, the submodule must
be all of Sp(O); and, finally, since #µ−1(OK) coincides with the dimension of Sp(O) (as mentioned
above), it follows that conditions (i) and (ii) in Hypothesis (�) hold for every orbit in µ−1(OK) and
hence Hypothesis (�) holds. The remaining assertions in the theorem are then obvious.

Thus, our task is to establish (5.35) for every possible sequence T. Clearly by induction it suffices
to do this for a single operator Tαβ . More precisely, if Q ∈ µ−1(OK) is an orbit for which X(Q)
satisfies condition (ii) of Hypothesis (�), write Iαβ(Q) for the (one or two element) set of primitive
ideals obtained as annihilators of elements of Tαβ(X(Q)) (when defined). Then we are to show

for all I ∈ Iαβ(Q),

there exists Q1 ∈ µ−1(OK) such that Ann(X(Q1)) = I and MQ1 := X(Q1) ∈ Tαβ(MQ), (5.36)

for each Tαβ for which Tαβ(MQ) is defined. (Here Q now denotes an arbitrary element of µ−1(OK),
not the orbit corresponding to As.)

We need to recall the computation of moment map images of conormal bundles given in [Tra05a].
For this we need the group G′

R
= U(n, n). Adopt the usual notation for G′

R
with the appropriate

addition of primes; for instance, we will consider B′, the flag variety for g′  gl(2n,C), with moment
map µ′. Embed GR in G′

R
in the obvious way. Fix a Cartan involution θ′ for G′

R
and let θ denote its

restriction to GR, a Cartan involution for GR. Then K is a subgroup of K ′. Fix a Cartan subalgebra
h′ for g′ and let h = h′ ∩ g; this is a Cartan subalgebra for g.

Since K is a subgroup of K ′, to each orbit Q ∈ K\B, we may consider the well-defined orbit

Q′ := K ′ ·Q ∈ K ′\B′.

The (injective) map Q �→ Q′ is computed explicitly in [Tra05b, § 2.11]. In addition, [Tra05a, Propo-
sition 3.3.1] implies that

K ′ · µ(Q) = µ′(Q′), (5.37)

with notation as in (2.5).
Suppose α is a short root for h in g. There are two roots, say α′

1 and α′
2, for h′ in g′ which

coincide with α when restricted to h. Meanwhile, if γ is a long root of h in g, there is a unique root,
say γ′, of h′ in g′ which restricts to γ. In terms of the obvious notation for standard coordinates,
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if α = ei − ei+1 (with 1 � i � n− 1), then α′
1 = e′i − e′i+1 and α′

2 = e′2n−i − e′2n+1−i; and if γ = 2ei,
then γ′ = e′i − e′2n+1−i.

Fix a system of positive roots for h′ in g′. This restricts to a system of positive roots for h in g.
Suppose α is a short simple root for h in g. We want to investigate the conditions under which

α ∈ τ(X(Q)) if and only if α′
1, α

′
2 ∈ τ(X(Q′)). (5.38)

Using the explicit calculation of Q �→ Q′, the calculations of τ -invariants for U(p, q) in [Gar93b,
§ 1.13], and the analogous calculations for Sp(2n,R), it is easy to see this is always the case except in
one family of cases. It can happen that α is a noncompact imaginary root for X(Q) (and hence not
in the τ -invariant of X(Q)), while both α′

i are complex roots for X(Q′) with θ′(α′
i) < 0 (and so they

are both in the τ invariant of X(Q′)). As a matter of terminology (for the purposes of this proof), we
say that α is an exceptional noncompact imaginary root. The first case where such a root appears is
in the rank-two group Sp(4,R) with Q the unique orbit attached to the Cartan subgroups attached
to C× which does not support a derived functor module. (This orbit has complex dimension three.)
Then the short simple root is exceptional noncompact. In this case µ(Q) is the unique nilpotent
orbit corresponding to the partition 4 = 2 + 2 which is not relevant. It may happen, however,
in higher rank examples that we may encounter an exceptional noncompact imaginary root α for
X(Q) while µ(Q) is still relevant. However, the following always holds: if α is a simple exceptional
noncompact root for X(Q) and β is a simple root adjacent to α such that β ∈ τ(X(Q)), then
µ(Q) is not relevant. To prove this, one needs to make a detailed analysis of the combinatorial
algorithm computing µ(Q) given in [Tra05a, § 3]. We omit this analysis. The conclusion is that if
OK is relevant, Q ∈ µ−1(OK), and α is short, then (5.38) holds:

(i) whenever α is not exceptional noncompact imaginary; and

(ii) whenever α is exceptional noncompact imaginary so that there is a short adjacent simple root
β ∈ τ(X(Q)).

Now suppose γ is a long simple root. A similar analysis as discussed in the previous paragraph
allows one to conclude that

γ ∈ τ(X(Q)) if and only if γ′ ∈ τ(X(Q′)), (5.39)

with no additional restrictions on Q.
The previous two paragraphs imply that if Q ∈ µ−1(OK) with OK relevant, then X(Q) is in the

domain of an operator of the form Tαβ with α and β short if and only if X(Q′) is in the domain of
the operators Tα′

1,β′
1

and Tα′
2,β′

2
. Meanwhile, X(Q) is in the domain of Tαγ with γ long if and only

if X(Q′) is in the domain of each Tα′
iγ

′ . Fix an orbit Q ∈ µ−1(OK) so that X(Q) satisfies condition
(ii) of Hypothesis (�). Suppose α and β are two short simple roots for h in g that together span
a root system of type A2. Fix Q ∈ K\B and suppose X(Q) is in the domain of Tαβ . Using the
computations in the proof of [Vog79b, Theorem 3.10] distilled in [Gar93b, Definition 1.14.1], and
the fact that the relevant hypothesis rules out the exception remarked upon above, one deduces
that there exists an orbit Q1 so that

Tαβ(X(Q)) = X(Q1).

Recall that the previous paragraph implies that X(Q′) is in the domain of Tα′
1,β′

1
and Tα′

2,β′
2
; since

the roots involved in the two sets of operators are orthogonal, we can consider the composition
of the two applied to X(Q′). (The result is independent of the order in which the composition is
taken.) Again using the computation in [Vog79b, Theorem 3.10], and the explicit computation of
the map Q �→ Q′, we deduce

X(Q′
1) = Tα′

1,β′
1
◦ Tα′

2,β′
2
(X(Q′)).
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It now follows from (5.37) and Theorem 5.1 (for U(n, n)) that indeed Q1 ∈ µ−1(OK). Hence we
have verified (5.36) whenever T is a single operator Tαβ with α and β short (and Iαβ(Q) necessarily
consists of one element).

We now turn to verifying (5.36) for an unequal-length operator. So let α be a short simple root
and let γ be a long simple root so that together they span a root system of Type C2. Fix Q ∈
µ−1(OK) and, as usual, assume OK is relevant. It transpires that the relevant hypothesis rules
out the case that α is exceptional noncompact imaginary (in the terminology introduced above).
This follows by exactly the same kind of detailed analysis of the combinatorial algorithm computing
µ(Q) given in [Tra05a, § 3] that we needed above. We omit further details.

Assume now that X(Q) is in the domain of Tαγ . Let S1 denote Tαγ(X(Q)). This set has one
or two elements, each of which is in the domain of Tαγ . Let S2 be the set obtained by applying
Tαγ to each element of S1; again S2 has one or two elements, and X(Q) is always contained in
S2. Let S = S1 ∪ S2. (More abstractly, S is the smallest subset of Harish-Chandra modules with
trivial infinitesimal character containing X(Q) consisting of modules in the domain of Tαγ that
is actually closed under application of Tαγ .) A relatively short case-by-case analysis shows that S
always has three elements and, moreover, since we have assumed that α is not exceptional non-
compact imaginary, each element of S is of the form X(Q◦) for some orbit Q◦. Hence we may
write

S = {X(Qi),X(Qii),X(Qiii)}.
The case-by-case analysis mentioned above in fact implies that we may arrange the notation so that
Tαγ(X(Qi)) = X(Qii), Tαγ(X(Qiii)) = X(Qii), and

Tαγ(X(Qii)) = {X(Qi),X(Qiii)}.
We next implement (to the greatest possible extent) the technique used to treat the equal-length

operator situation. A case-by-case analysis shows that the technique always applies to show that
either

µ(Qii) = µ(Qi) or µ(Qii) = µ(Qiii). (5.40)

More precisely, we can show that there is a well-defined composition, say T′, of equal-length
operators for U(n, n) so that either

T′(X(Q′
ii)) = X(Q′

i) or T′(X(Q′
ii)) = X(Q′

iii).

Arguing as above, this implies (5.40). After further relabeling we now assume the first case holds,
namely

µ(Qii) = µ(Qi). (5.41)

Recall that we are assuming that X(Q) satisfies Hypothesis (�) for the orbit Q ∈ µ−1(OK) and we
are trying to establish (5.36). There are three cases to consider: Q = Qi, Q = Qii, or Q = Qiii. In all
cases, we now argue that (5.36) is ultimately reduced to proving

if Ann(X(Qi)) �= Ann(X(Qiii)), then µ(Qi) = µ(Qiii). (5.42)

To see this, first assume Q = Qi. Then (5.41) says that (5.36) holds whenever Ann(X(Qi)) =
Ann(X(Qiii)); hence we are reduced to (5.42). Next assume Q = Qii. Then (5.41) again says
that (5.36) holds whenever Ann(X(Qi)) = Ann(X(Qiii)); hence we are again reduced to (5.42).
Finally assume Q = Qiii. If µ(Qi) �= µ(Qiii), a case-by-case analysis with the algorithm of [Tra05a,
§ 3] shows that µ(Qiii) � µ(Qi). Hence the GK-dimension of X(Qi) (which is weakly greater than
the dimension of µ(Qi)) is strictly greater than the dimension of µ(Qiii) which, by the assumption
that Q = Qiii satisfies condition (ii) of Hypothesis (�), is the GK-dimension of X(Qiii). Hence the
GK-dimension of X(Qi) is strictly greater than that of X(Qiii). However, this contradicts the fact
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that X(Qi) can be obtained from applying the (GK-dimension preserving) operator Tαγ successively
to X(Qiii). This contradiction shows that if Q = Qiii, then indeed µ(Qi) = µ(Qiii) and (5.36) holds
automatically. Hence, we really are reduced to (5.42) and we may assume Q = Qi or Qii. By (5.41),
part (ii) of Hypothesis (�) holds for Qi if and only if it holds for Qii. So indeed we may assume it
holds for both of them.

Retain the setting of (5.42) and assume that Q = Qii. Recall (as mentioned in § 2.2) that
primitive ideals with trivial infinitesimal character in Type C are in bijection to standard domino
tableaux with special shape. Moreover, there is an action of Tαγ on domino tableaux satisfying
the appropriate condition compatible with this bijection [Gar90, Gar92, Gar93a]. Then the domino
tableaux attached by [Tra05a, § 3] to Qi and Qiii, which parametrize the annihilators of X(Qi) and
X(Qiii), differ by moving through a single closed cycle in the sense of [Gar90, Gar92, Gar93a].
The construction of [Tra05a, § 3] then guarantees that Qi and Qiii lie in the same fiber of µ, as
desired.

Theorem 5.43 (McGovern). The conclusion of Theorem 5.32 holds for the orthogonal groups
SO(p, q) with p+ q even.

Sketch of the proof. The argument leading to Theorem 5.32 applies in Type D with appropriate
(and sometimes rather intricate) modifications. One needs to replace the unequal-length operators
Tαγ appearing in the proof of Theorem 5.32 with the more complicated ones TD and SD defined in
[McG98a] using the main results in [GV92]. By making further explicit calculations, one rules out
a longer list of case-by-case exceptions that arise. We omit the details.

Remark 5.44. For Sp(2n,R) and SO(p, q), the proofs of Theorems 5.32 and 5.43 provide an effective
way to compute the annihilator (and associated variety) of each Harish-Chandra module of the form
X(Q) for Q ∈ µ−1(OK) and OK relevant. As W. McGovern has pointed out in unpublished work,
this provides the as-of-yet most complete computation of annihilators and associated varieties for
these groups. Because the unitary group U(n, n) (all of whose Cartan subgroups are connected) is
used in the proofs, one cannot conclude much about computing annihilators of modules of the form
X(Q,ψ) with ψ nontrivial. Such nontrivial local systems present serious complications, and the
problem of computing annihilators for all representations of Sp(2n,R) and SO(p, q) remains open.
(D. Garfinkle, in personal communication to the author, has suggested that she has made progress
on this problem.)

Remark 5.45. Since Theorems 5.32 and 5.43 verify Hypothesis (�) for all complex special orbits in
Types B, C, and D, it may seem that Theorem 5.2 is superfluous, but this in not the case. For the
kinds of complex orbits that appear in Theorem 5.2 (see Remark 5.25), the ordering giving the
triangularity of the matrix in Theorem 3.20 provided by using Sp(p, q) or SO∗(2n) can be wildly
different from the ordering provided by using Sp(2n,R) or SO(p, q). The orderings, which originate
in the closure order for the orbits of two different reductive groups on the same flag variety, in fact
bear no resemblance to each other whatsoever. This is a somewhat mysterious feature of our results.

Remark 5.46. For G2 and the complex orbits relevant for the rank one form of F4, the hypothesis
is easy to verify. We omit the details.

Remark 5.47. The main results of [ABV92], especially those of ch. 26, provide an algorithm to
define a set of Arthur packets whose union conjecturally exhausts the automorphic spectrum of
a group GR arising as the real points of a connected reductive algebraic group defined over R.
(The automorphic spectrum consists of those (unitary) representations that appear in L2(Γ\GR)
for a congruence subgroup Γ of GR.) The algorithm depends on the computation of CV(X) for
Harish-Chandra modules X with trivial infinitesimal character and, as we mentioned in § 3, there

538

https://doi.org/10.1112/S0010437X06002545 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002545


Leading-term cycles of Harish-Chandra modules

is no known effective way to compute these characteristic cycles. The main results of this paper
give restrictions on the leading terms of such cycles. While these results are far from definitive,
they lead to highly nontrivial conclusions in examples. Using [ABV92], such conclusions should
have applications to computing the smallest representations in an Arthur packet. (Because the
duality of [Vog82] is involved in the definition of such packets, the computation of leading-term
cycles (the ‘largest’ piece of the characteristic cycle) corresponds to information about the smallest
representations in an Arthur packet. For many interesting packets (such as unipotent packets)
all representations have the same size.) Remark 3.14 is particularly intriguing since it suggests a
potential relationship between the computation of Arthur packets for different real forms of the
same complex group. It would be interesting to make this more explicit.
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