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Abstract. A compact hyperbolic surface of genus g is called an extremal
surface if it admits an extremal disc, a disc of the largest radius determined by g. Our
problem is to find how many extremal discs are embedded in non-orientable extremal
surfaces. It is known that non-orientable extremal surfaces of genus g > 6 contain
exactly one extremal disc and that of genus 3 or 4 contain at most two. In the present
paper we shall give all the non-orientable extremal surfaces of genus 5, and find the
locations of all extremal discs in those surfaces. As a consequence, non-orientable
extremal surfaces of genus 5 contain at most two extremal discs.

2010 Mathematics Subject Classification. 30F50, 30F40

1. Introduction. A compact hyperbolic surface S of genus g has the unit disc �

as its universal covering surface, where g denotes the number of handles (g � 2) if S is
orientable, or the number of cross caps (g � 3) if S is non-orientable. The hyperbolic
metric on S is the one induced by the hyperbolic metric on �. Bavard showed in [1]
that the radius r of a disc embedded in S satisfies the inequality

cosh r � 1
2 sin π

6−6χg

, (1)

where χg denotes the Euler characteristic, that is χg = 2 − 2g in the orientable case
and χg = 2 − g in the non-orientable case. For each case we denote by Rg the radius
satisfying equality in (1). A compact surface S of genus g is called an extremal surface
if a disc of radius Rg, called an extremal disc, is isometrically embedded in S. A natural
problem arising here is to find how many extremal discs are embedded in extremal
surfaces. If the surfaces are orientable, then the problem is completely solved ([2, 3,
6, 7]). If the surfaces are non-orientable, previous research has revealed that extremal
surfaces of genus g > 6 contain a unique extremal disc ([4]) and that those of genus 3
or 4 contain at most two ([4, 8]), where the surfaces containing two extremal discs are
obtained. In the present paper we shall consider the case of non-orientable extremal
surfaces of genus 5. Our problem is still open for the case of genus 6.

THEOREM 1.1. There exist 3,627 non-orientable extremal surfaces of genus 5. They
contain at most two extremal discs, and 17 of them contain exactly two extremal discs.

Table 1 shows the 17 surfaces, the location of the centres of extremal discs and the
group of automorphisms Aut±. To describe the centres we assume that the fundamental
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Table 1. Extremal surfaces with two extremal discs

Surface Centres of extremal discs Aut±

S1 π (0), π

(
1−√

2+(
√

2−√
3−2)i√

6(
√

2+√
6−2)

)
�2

S2, S3, S4, S5 π (0), π

(√√
2+√

6−2
2 i

)
�2 × �2

S6, S7, S8, S9 π (0), π

(√
2
√

2−√
3−1+i

√
2
√

2+√
3+1

2
√√

6+√
3+1

)
�2 × �2

S10, S11, S12, S13 π (0), π

(√√
2+√

6−2(
√

2
√

2−√
3−1+i

√
2
√

2+√
3+1)

4
√

(2+√
3)(

√
2−1)

)
�2 × �2

S14, S15, S16, S17 π (0), π

(
1+(

√
2−√

3)i√√
2+√

6−2

)
�2 × �2
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Figure 1. Side-pairing patterns and the centres of extremal discs (•).

region is centrally located in � such that the vertices vn, n = 1, 2, . . . , 24, satisfy arg vn =
(2n − 1)π/24, and π denotes the projection from � onto each surface Sj.

Surfaces Sj are derived from the hyperbolic polygons Pj in Figures 1. and 2., where
lines and dotted lines indicate pairs of sides pasted by the different and the same
direction, respectively; bullets correspond to the centres of extremal discs.

2. Side-pairing patterns of 24-gon. It is known that a non-orientable extremal
surface S of genus g � 3 has a regular (6g − 6)-gon in � as its fundamental region
([1]). It is proved by facts that the hyperbolic area of S is 2π (g − 2) and the density of
a disc of radius r in a fundamental region (the Dirichlet–Volonoi cell determined by
the points that project to the same centre of a disc of radius r in S) is bounded by the
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P16 P17

P13 P14 P15

Figure 2. Side-pairing patterns and the centres of extremal discs (•).

A B C D E

F G H I J

Figure 3. Trivalent graphs for 17 surfaces.

density of three discs of radius r mutually tangential to one another with respect to the
triangle whose vertices are the centres of the three discs. We shall therefore consider a
regular 24-gon for g = 5. The polygon has a generic property of having three edges in
every vertex of the underling graph of the surface. Considering all the trivalent graphs
with eight vertices and 12 edges, we see that there are 3,627 side-pairing patterns for
the 24-gon to be a non-orientable surface of genus 5 [9].

Figure 3. shows 10 trivalent graphs obtained from 17 surfaces. Graph A is from
P2; B is from P3, P6 and P7; C is from P10; D is from P13; E is from P1; F is from P11

and P12; G is from P4; H is from P14 and P15; I is from P5, P8 and P9 and graph J is
from P16 and P17 (cf. [5]).

3. Extremal discs for 3,627 surfaces. In order to describe the centres of extremal
discs, we shall normalise the hyperbolic regular 24-gon P such that the centre is
the origin and that the vertices vn satisfy arg vn = (2n − 1)β (n = 1, . . . , 24), where
β = π/24. We denote by Cn the sides between vn and vn+1 and by wn the middle point
of Cn, where subscripts are regarded as modulo 24. The two hyperbolic distances
l = d(0, v1) and s = d(v1, v2) are calculated by l = sinh−1 ( 2√

3
sinh R

) ≈ 2.158 and

s = 2 sinh−1 ( 2√
3

sin β sinh R
) ≈ 1.064, where R = R5 denotes the maximal radius

satisfying (1) in Section 1.
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LEMMA 3.1. Let S be a non-orientable extremal surface of genus 5 and π : � → S
the natural projection. If p ∈ S is the centre of an extremal disc, then the list of hyperbolic
distances between two points in the set π−1(p) consists of d1 = 2R ≈ 4.037, d2 ≈ 5.380,
d3 ≈ 6.157 and so on.

Proof. The elements of the list are calculated by considering the tessellation of �

by hyperbolic regular 24-gons. For example, d2 = 2 sinh−1(sinh 2R sin 2β) and d3 =
2 sinh−1(sinh 2R sin 3β). �

Let Kn ⊂ P (n = 1, . . . , 24) be the pentagon with vertices at wn−1, vn, vn+1, wn+1

and the origin.

LEMMA 3.2. Let n be fixed. If z ∈ Kn projects to the centre of an extremal disc,
then d(z, tn(z)) = d1, where tn = tn,m denotes an orientation preserving or reversing side-
pairing mapping from Cn onto the other side Cm.

Proof. Our proof is the same as the case of g = 4 (Lemma 3.2 in [8]) because it is
independent of genus g. The two hyperbolic lengths l and s are used here. �

Suppose z ∈ Kn projects to the centre of an extremal disc. The equation
d(z, tn,m(z)) = 2R implies that z is on the curves Ln,m or Mn,m (L′

n,m or M′
n,m,

respectively) if tn,m is orientation preserving (or reversing) (see Lemma 5.5 in [4]):

Ln = Ln,m :

∣∣∣∣z − tanh R ei(n+m)β

2 cos(n − m)β

∣∣∣∣ = tanh R
2| cos(n − m)β| (n − m 	≡ 12 (mod 24)),

Mn = Mn,m : z = coth R e2inβ − tei(n+m+12)β (t ∈ �),

L′
n = L′

n,m :

∣∣∣∣z − coth R ei(n+m)β

2 cos(n − m)β

∣∣∣∣ = coth R
2| cos(n − m)β| (n − m 	≡ 12 (mod 24)),

M′
n = M′

n,m : z = tanh R e2inβ − tei(n+m+12)β (t ∈ �).

Figure 4. shows examples of these curves.

Though our process to find the centres of extremal discs is the same as that of the
cases g = 3 and g = 4, we shall describe it for the sake of completeness.

(1) According to the side-pairing mappings tn = tn,m of Pj, draw Ln, Mn (or
L′

n, M′
n) on Kn for every n = 1, . . . , 24.

(2) Find intersections of these curves on Kn ∩ Kn+1 for every n.
(3) Select every point ζ in the intersections such that the hyperbolic distance

d(ζ, tk(ζ )) is in the list of Lemma 3.1 for every side-pairing mapping tk of
Pj.

Applying this process to Pj (j = 1, . . . , 3, 627) by a computer, we see that only 17
side-pairing patterns yield two points (the origin and ζ 	= 0) and that the others yield
a unique (the origin). For each of the 17 patterns, we can show that the two points
are transitive by a certain isometry f of �, which is compatible with the side-pairing
mappings. Since the origin projects to the centre of an extremal disc, so does the other
point.

EXAMPLE. We shall apply the process to P1. Then we get two points ζ = (1 − √
2 +

(
√

2 − √
3 − 2)i)/

√
6(

√
2 + √

6 − 2) and the origin. Let αn,m (or γn,m) denote the
orientation preserving (or reversing) side-pairing mapping from Cn onto Cm. Put
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2

Figure 4. L3,12, M3,12, L′
15,22 and M′

15,22.

f (z) := (|ζ |2 − ζz)/(ζ − |ζ |2z), then we can verify that f is compatible with the side-
pairing mappings of P1:

f α1,8 f −1 = γ7,17γ18,2, f γ2,18 f −1 = γ18,2,

f γ3,23 f −1 = α22,19γ18,2, f γ4,15 f −1 = α0,14γ18,2,

f α5,10 f −1 = γ7,17α10,5γ17,7, f α6,12 f −1 = γ11,16γ17,7,

f γ7,17 f −1 = γ17,7, f α9,13 f −1 = γ4,15γ17,7,

f γ11,16 f −1 = γ16,11, f α14,24 f −1 = α22,19α14,0,

f α19,22 f −1 = α22,19, f γ20,21 f −1 = γ21,20.

Consequently, the projection π (ζ ) of ζ is the centre of an extremal disc.
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It is considered in [9] that the surfaces Sj derived from Pj (j = 1, . . . , 3, 627) are
not isomorphic to each other. If there exists an isomorphism T between two extremal
surfaces Sj and Sk (j 	= k), then it maps the centre of an extremal disc of Sj to that
of Sk. Since we can assume that a lift T̃ : � → � of T fixes the origin, T̃ must be a
rotation around the origin or a reflection in a line passing through the origin. It is
clear that such a mapping is incompatible with the side-pairing patterns Pj and Pk.
Furthermore, it is not difficult to determine the full group of automorphisms by the
fact that the centres of extremal discs are fixed or interchanged by automorphisms.

For example, Aut±(S1) = �2 = 〈T〉, where T denotes the automorphism induced
by z �→ f (z).

REMARK. For the other side-pairing patterns P2, . . . , P17, we shall give a required
isometry f of � and the relations between f and the side-pairing mappings. In the
following, ζ denotes the point representing the centre of an extremal disc that appeared
in Table 1. In the case of Pj, j = 14, 15, 16, 17, we set

ζ1 = 1 + (
√

2 − √
3)i√√

2 + √
6 − 2

and ζ2 = −1 − 2
√

2 + √
3 + (1 − 2

√
2 + √

3)i

2
√√

2 + √
6 − 2

,

which represent the same centre of an extremal disc and are located in the boundary
of Pj in Figure 2.

P2: f (z) = (ζ − z)/(1 − ζz).

f α1,8 f −1 = α8,1, f γ2,24 f −1 = α1,8 γ9,3,

f γ3,9 f −1 = γ9,3, f α4,11 f −1 = α11,4,

f γ5,13 f −1 = γ13,5, f γ6,18 f −1 = γ18,6,

f γ7,23 f −1 = γ23,7, f γ10,12 f −1 = α11,4 γ3,9,

f α14,17 f −1 = γ18,6 α17,14 γ6,18, f γ15,16 f −1 = γ18,6 γ16,15 γ6,18,

f α19,22 f −1 = γ18,6 α22,19 γ6,18, f γ20,21 f −1 = γ18,6 γ21,20 γ6,18.

P3: f (z) = (ζ − z)/(1 − ζz).

f γ1,4 f −1 = γ8,11, f α2,12 f −1 = γ1,4 γ9,3,

f γ3,9 f −1 = γ9,3, f γ5,13 f −1 = γ13,5,

f γ6,18 f −1 = γ18,6, f γ7,23 f −1 = γ23,7,

f γ8,11 f −1 = γ1,4, f α10,24 f −1 = γ11,8 γ3,9,

f α14,17 f −1 = γ18,6 γ5,13, f γ15,16 f −1 = γ18,6 γ15,16 γ5,13,

f α19,22 f −1 = γ23,7 γ6,18, f γ20,21 f −1 = γ23,7 γ20,21 γ6,18.

P4: f (z) = (ζ − z)/(1 − ζz).

f α1,8 f −1 = α8,1, f γ2,24 f −1 = γ23,7 α8,1,

f γ3,9 f −1 = γ9,3, f α4,11 f −1 = α11,4,

f γ5,13 f −1 = γ13,5, f γ6,18 f −1 = γ18,6,

f γ7,23 f −1 = γ23,7, f γ10,12 f −1 = γ13,5 α4,11,

f α14,17 f −1 = γ18,6 γ5,13, f α15,20 f −1 = γ18,6 α15,20 γ5,13,

f α16,21 f −1 = γ23,7 α16,21 γ6,18, f α19,22 f −1 = γ23,7 γ6,18.
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P5: f (z) = (ζ − z)/(1 − ζz).

f γ1,4 f −1 = γ8,11, f α2,12 f −1 = γ1,4 γ9,3,

f γ3,9 f −1 = γ9,3, f γ5,13 f −1 = γ13,5,

f γ6,18 f −1 = γ18,6, f γ7,23 f −1 = γ23,7,

f γ8,11 f −1 = γ1,4, f α10,24 f −1 = γ11,8 γ3,9,

f α14,17 f −1 = γ18,6 γ5,13, f α15,20 f −1 = γ18,6 α15,20 γ5,13,

f α16,21 f −1 = γ23,7 α16,21 γ6,18, f α19,22 f −1 = γ23,7 γ6,18.

P6: f (z) = (ζ − z)/(1 − ζz).

f γ1,2 f −1 = γ9,10, f α3,24 f −1 = α11,8,

f γ4,13 f −1 = γ13,4, f γ5,19 f −1 = γ16,6,

f γ6,16 f −1 = γ19,5, f γ7,22 f −1 = γ22,7,

f α8,11 f −1 = α24,3, f γ9,10 f −1 = γ1,2,

f γ12,23 f −1 = γ22,7 α3,24, f α14,18 f −1 = γ16,6 γ4,13,

f α15,20 f −1 = γ16,6 γ5,19, f α17,21 f −1 = γ22,7 γ5,19.

P7: f (z) = (|ζ |2 − ζz)/(ζ − |ζ |2z).

f γ1,2 f −1 = γ9,10, f α3,24 f −1 = α11,8,

f γ4,13 f −1 = γ13,4, f α5,16f −1 = α16,5,

f α6,19 f −1 = α19,6, f γ7,22 f −1 = γ22,7,

f α8,11 f −1 = α24,3, f γ9,10 f −1 = γ1,2,

f γ12,23 f −1 = γ22,7 α3,24, f γ14,17 f −1 = α16,5 γ4,13,

f α15,20 f −1 = γ16,6 γ5,19, f γ18,21 f −1 = γ22,7 α6,19.

P8: f (z) = (ζ − z)/(1 − ζz).

f α1,9 f −1 = α9,1, f α2,10 f −1 = α10,2,

f α3,24 f −1 = α11,8, f γ4,13 f −1 = γ13,4,

f γ5,19 f −1 = γ16,6, f γ6,16 f −1 = γ19,5,

f γ7,22 f −1 = γ22,7, f α8,11 f −1 = α24,3,

f γ12,23 f −1 = γ22,7 α3,24, f α14,18 f −1 = γ16,6 γ4,13,

f α15,20 f −1 = γ16,6 γ5,19, f α17,21 f −1 = γ22,7 γ5,19.

P9: f (z) = (ζ − z)/(1 − ζz).

f α1,9 f −1 = α9,1, f α2,10 f −1 = α10,2,

f α3,24 f −1 = α11,8, f γ4,13 f −1 = γ13,4,

f α5,16 f −1 = α16,5, f α6,19 f −1 = α19,6,

f γ7,22 f −1 = γ22,7, f α8,11 f −1 = α24,3,

f γ12,23 f −1 = γ22,7 α3,24, f γ14,17 f −1 = α16,5 γ4,13,

f α15,20 f −1 = α19,6 α5,16, f γ18,21 f −1 = γ22,7 α6,19.

P10: f (z) = (ζ − z)/(1 − ζz).

f γ1,3 f −1 = γ8,10, f α2,22 f −1 = α15,6 α9,13,

f γ4,23 f −1 = γ12,7, f α5,20 f −1 = α15,6,

f α6,15 f −1 = α20,5, f γ7,12f −1 = γ23,4,

f γ8,10 f −1 = γ1,3, f α9,13 f −1 = γ23,4 γ3,1,

f γ11,14 f −1 = α20,5 γ4,23, f α16,19 f −1 = α15,6 α5,20,

f γ17,18 f −1 = α15,6 γ18,17 α5,20, f γ21,24 f −1 = γ12,7 α6,15.
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P11: f (z) = (ζ − z)/(1 − ζz).

f α1,8 f −1 = α8,1, f γ2,13 f −1 = γ23,4 α8,1,

f α3,10 f −1 = α10,3, f γ4,23 f −1 = γ12,7,

f α5,20 f −1 = α15,6, f α6,15 f −1 = α20,5,

f γ7,12 f −1 = γ23,4, f γ9,22 f −1 = α15,6 γ2,13,

f γ11,14 f −1 = α20,5 γ4,23, f α16,19 f −1 = α15,6 α5,20,

f γ17,18 f −1 = α15,6 γ18,17α5,20, f γ21,24 f −1 = γ12,7 α6,15.

P12: f (z) = (ζ − z)/(1 − ζz).

f α1,8 f −1 = α8,1, f α2,22 f −1 = α15,6 α9,13,

f α3,10 f −1 = α10,3, f α4,12 f −1 = α12,4,

f α5,20 f −1 = α15,6, f α6,15 f −1 = α20,5,

f α7,23 f −1 = α23,7, f α9,13 f −1 = α12,4 α3,10,

f α11,21 f −1 = α15,6 α4,12, f α14,24 f −1 = α23,7 α5,20,

f α16,19 f −1 = α15,6 α5,20, f γ17,18 f −1 = α15,6 γ18,17 α5,20.

P13: f (z) = (ζ − z)/(1 − ζz).

f γ1,3 f −1 = γ8,10, f γ2,13 f −1 = α12,4 γ8,10,

f α4,12 f −1 = α12,4, f α5,20 f −1 = α15,6,

f α6,15 f −1 = α20,5, f α7,23 f −1 = α23,7,

f γ8,10 f −1 = γ1,3, f γ9,22 f −1 = α23,7 γ3,1,

f α11,21 f −1 = α15,6 α4,12, f α14,24 f −1 = α23,7 α5,20,

f α16,19 f −1 = α15,6 α5,20, f γ17,18 f −1 = α15,6 γ18,17 α5,20.

P14: f (z) = (ζ1z − ζ2ζ1)/(|ζ1|2z − ζ2).

f α1,15 f −1 = α15,1 α23,12, f γ2,4 f −1 = α6,22 γ4,2 α22,6,

f γ3,14 f −1 = γ4,2 α22,6, f α5,13 f −1 = α22,6,

f α6,22 f −1 = α12,23 α22,6, f γ7,9 f −1 = γ8,21 α22,6,

f γ8,21 f −1 = α12,23 γ21,8, f α10,20 f −1 = α12,23 α20,10,

f γ11,17 f −1 = γ18,24, f α12,23 f −1 = α12,23,

f γ16,19 f −1 = γ18,24 α1,15, f γ18,24 f −1 = α12,23 γ24,18.

P15: f (z) = (ζ1z − ζ2ζ1)/(|ζ1|2z − ζ2).

f γ1,20 f −1 = α17,24 γ16,19 α23,12, f γ2,4 f −1 = γ5,22 α14,8 α23,12,

f α3,21 f −1 = α12,23 α14,8 α23,12, f γ5,22 f −1 = α12,23 γ22,5,

f γ6,13 f −1 = γ22,5, f γ7,9 f −1 = α3,21 γ22,5,

f α8,14 f −1 = α21,3, f γ10,15 f −1 = γ20,1,

f α11,18 f −1 = α17,24, f α12,23 f −1 = α12,23,

f γ16,19 f −1 = α17,24 γ1,20, f α17,24 f −1 = α12,23 α24,17.

P16: f (z) = (ζ1z − ζ2ζ1)/(|ζ1|2z − ζ2).

f α1,15 f −1 = α15,1 α23,12, f α2,7 f −1 = α6,22 α14,8 α23,12,

f α3,21 f −1 = α12,23 α14,8 α23,12, f α4,9 f −1 = α3,21 α22,6,

f α5,13 f −1 = α22,6, f α6,22 f −1 = α12,23 α22,6,

f α8,14 f −1 = α21,3, f α10,20 f −1 = γ18,24 γ19,16,

f γ11,17 f −1 = γ18,24, f α12,23 f −1 = α12,23,

f γ16,19 f −1 = α12,23 α20,10 γ24,18, f γ18,24 f −1 = α12,23 γ24,18.
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P17: f (z) = (ζ1z − ζ2ζ1)/(|ζ1|2z − ζ2).

f γ1,20 f −1 = α17,24 γ16,19 α23,12, f α2,7 f −1 = γ5,22 γ14,3 α23,12,

f γ3,14 f −1 = γ14,3 α23,12, f α4,9 f −1 = γ8,21 γ22,5,

f γ5,22 f −1 = α12,23 γ22,5, f γ6,13 f −1 = γ22,5,

f γ8,21 f −1 = α12,23 γ21,8, f γ10,15 f −1 = γ20,1,

f α11,18 f −1 = α17,24, f α12,23 f −1 = α12,23,

f γ16,19 f −1 = α17,24 γ1,20, f α17,24 f −1 = α12,23 α24,17.
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