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FUNCTIONAL EQUATIONS, DISTRIBUTIONS 
AND APPROXIMATE IDENTITIES 

JOHN A. BAKER 

1. Introduction. The subject of this paper is the use of the theory of Schwartz 
distributions and approximate identities in studying the functional equation 

N 

(1) ^ ( ^ ( * + /*;(*)) = b(s)g(x). 

The a/ s and b are complex-valued functions defined on a neighbourhood, U, of 
0 in Rm, hy. U-+Rn with fy(0) = 0 andjj-, g: Rn -* C for l^j^N.ln most 
of what follows the a/s and h/s are assumed smooth and may be thought of as 
given. Them's, b and g may be thought of as the unknowns. Typically we are 
concerned with locally integrable functions f\, . . . , fy such that, for each s in 
(7, (1) holds for a.e. (almost every) x G R", in the sense of Lebesgue measure. 
Such general equations have been studied extensively, see e.g. [2], [3], [4], [8], 
[9] and [12]. 

To motivate the method we aim to expose, suppose m — 1 and all our func­
tions are of class C77, / = f}• — g for 1 ^ j ^ N and (1) holds for all 
(JC, s) G Rn x U. Differentiating (1) with respect to s and setting s = 0 in the 
resulting equation we find that 

TV 

YtWjMfW + û;(0)[^«» • VA*)]} = b'(0)f(x) for all* G Rn. 
7=1 

This is a first order, linear, homogeneous differential equation with constant 
coefficients which we may write simply as T\f = 0. More generally, if for 
1 ^ / ^ p we differentiate (1) / times with respect to s and set s = 0 in the 
resulting equation we obtain a linear, homogeneous differential equation with 
constant coefficients of order at most /: 

(2) 7 / / = 0, O^l^p. 

It sometimes happens, as illustrated in [3], that the system (2) can be "solved" 
and by substituting back into (1) we are thus able to find the smooth solutions 
of (1). If one of the equations in (2) is elliptic then one can conclude that / is 
in fact of class c°°. Examples will be given below. 
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FUNCTIONAL EQUATIONS 697 

An evident deficiency of the above method is that the differentiability assump­
tions are unnatural (although in many, if not most, of the cases in which ( 1 ) has 
been studied, the a/s are constant and the h/s are linear). In many interesting 
cases this deficiency can be overcome, to a large extent, by appealing to the 
theory of distributions as was done, for example, in [2], [4] and 12]. 

The main technique of this paper is that of smoothing and approximation 
by convolution. Our aim is to refine a method which was used in [3] to find 
the continuous solutions of certain special cases of (1). It will be used here 
to consider distributional analogues of (1) and thereby obtain regularity results 
closely related to those of [12]. 

Unless otherwise indicated, our notation and terminology is that of Rudin 
[10]. 

2. Background. If h G Rn and / : R" -+ C define rh f:Rn-^C by 
(nf)(x) — fix + h) for x G Rn. Note that (1) can then be written 

N 

(3) ^2 aAs)Thj(s)fj = Hs)g for s eU. 
7=1 

A function / : Rn —> C is called locally integrable provided it is Lebesgue 
measurable and JK\fix)\dx < oo for every compact subset, K, of R". Denote 
the set of all such functions by Ll

hc(R
n). If / G Ll

loc(R
n) and h G Rn then 

rhfeL\0CiW). 
Let £>n denote the space of all test functions on R" and let *D„ denote the 

space of all Schwartz distributions on R". If <j> G <Dn and h G Rn then 77,0 G *Dn. 
If / G Ljoc(R

n) then the mapping <\> —• JRn f(x)<l>(x)dx (for </> G <Dn) belongs 
to £>n'; it will be called the regular distribution determined b y / and denoted by 
Af. For / ,g G Ll

loc(R
n) we have Af = Ag if and only if fix) = gix) for a.e. 

x G Rn (see [10], page 136). 
If h G Rn, / G Ll

lociR
n) and <j> G <Dn then 

(Ar,/)((/>)= [ fix + h)$ix)dx= [ fiy)j>iy-h)dy = AfiT-h<t>). 
JR" JRn 

Given h G R" and u G <D„ it is therefore natural to define rhu\ *Dn —» C by 
irhu)i4>) = uir-h<l>) for all <f> G (Dn. It follows that rhu G £>„ whenever h e Rn 

and u G (D^. Moreover rhAf = AThf whenever h G Rn and/ G LJoc(R
n). 

Now observe that if (3) holds w i t h / , . . . , /v , g G L/oc(R
n) and if we let 

Uj = A jr., I Sj ^ N, and v = Ag then we have 

(4) y^fly^^.^My = Z?(̂ )v for all s G L̂  
7=1 

- a distributional analogue of (1). 
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698 JOHN A. BAKER 

If / G Ll
loc(R

n) and <j> G *Dn then /*( />, the convolution of / with </>, is the 
function defined by 

( /*( />) (*)= / f(x-f)<Kt)dt 

= [ f(s)<Kx - s)ds for x G Rn. 
JR" 

The following three Propositions are crucial for what follows. Their proofs may 
be found in [10], pages 155-161. 

PROPOSITION 1. Iffe Ll
loc(R

n) and <j> G £>„ then 
(i) f * </> G C°°(R") 
W r A ( / *</>) = (rhf) * 0 - / * (n&for all heRn 

(Hi) Da(f *</>) = / * (Da<j)) for every multi-index a. 

It follows from (//) that if (3) holds w i t h / i , . . . ,fN,g e Ll
loc(R

n), and if 
^ G 2>n then J^jLi aj(s)Thjis)(fj * <j>) = b(s)(g * </>) for all s eU. Thus (1) holds 
wi th^ replaced b y ^ * (/> (1 ^ j ^ A0 and g replaced by g * <j>\ moreover, all of 
fi * 0, . . . , fN * </> and g * </> are C°° functions. 

If for </> G Dn we let </>~(.x) = </>(—x) for J C G R " then the mapping <j> —•> 0~ is 
an extremely healthy bijection of £>„. For / € L/oc(R

w) and </> € (Dn we have 

( / * </>)(*) = / f(s)(T-x<t>-)(s)ds for x G Rn . 

This motivates the following definition ([10], page 155). If (j> G (D„ and </> G % 
define 

(M * 0)(JC) = U(T-X</>~) for * G Rn. 

PROPOSITION 2. / / w G £>„', (/> G îDn, /z G Rn and a is a multi-index then 

(i) u*<l>e C°°(Rn) 
(ii) Th(u*<f>) = u* (jh(j>) 
(Hi) rhAm(j) = (Anu) * <f) 
(iv) Da(u * </>) - u * (Da</>) 
(V) DaAu*<j> = (ADau) * (/>. 

Remark. If we identify a locally integrable function with its corresponding 
regular distribution (as we will do when convenient below) then (iii) and (v) 
can be written as T/,(W *</>) — (jhu) * <j> and Da(u * <£) = (Daw) * </> respectively. 

Let (j>\ G £>„ such that <j>\(x) ^ 0 for all x e Rn and JR„ <l>\(x)dx = 1. Let 
<t>k(x) = kn<l)\(kx) for x G R" and & = 1,2, Then {</>^}^i is sometimes 
called an approximate identity (see [10], page 157) because (for example) of 

PROPOSITION 3. (/) Iff G Cp(Rn) then {/*</>*}A*LI converges to f in the sense 

of Cp(Rn) whenever 0 ^ p ^ +oo. 
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(H) Iff G Ll
loc(R

n) then { / * fa}™=l converges to f in the sense of LJoc(R
n), 

i.e. l im^oo JK \ f * fa — f \ — 0 for every compact K Ç R". 
(Hi) IfuE'Dn then {u * fa}^ converges to u in the weak topology of *D„. 
More precisely, the last assertion means that 

lim ku*6k(<t>) = u(<f>) for every <j> G <Dn. 
k—*oo 

Remark. The idea of approximating by convolution with an approximate iden­
tity (or something similar) goes back at least to Weierstrass [13] where he used 
it to prove his famous approximation theorem and, in the same paper, to study 
the heat equation. The idea is pervasive in analysis. For example, it was used by 
Fejér [5] to prove that the Fourier series of a continuous, periodic function, / , is 
uniformly Cesàro summable ( t o / ) on R. It is basically this idea that is used to 
show that the Poisson integral formula indeed defines a continuous function up 
to the boundary; see [6] page 20. Also see [11] for an amazing use by Carleman 
of such ideas in proving a beautiful generalization of Weierstrass' theorem. 

3. General Properties of (1) and (4). The next three assertions involve no 
smoothness assumptions on the a/s or the h/s. They hold with U replaced by 
any nonempty set and follow easily from the previous remarks. 

PROPOSITION 4. Suppose (u\, . . . , w#, v) is a solution of (4) (i.e. u\, . . . , u^, 

v G (D„ and (4) holds for each s G U). Then, for every <j> G (Dn, (wi*(/>, . . . ,w#* 
</>, v*</>) is a C°° solution of (I) (for all (x, s) G Rrt x U). If we let fa — Uj*fa and 
gk = v * <j>k for 1 ̂  j Û N, k = 1, 2, . . . , then (flkl . . . , /#*, gk) is a C°° 
solution of (I) for every k — 1, 2, . . .. Moreover, for each j = 1, 2, . . . , N, 
we have fa —• Uj and gk —• v in (D„ as k —• oo. 

PROPOSITION 5. Suppose f\1 . . . , /#? g G Ll
loc(R

n) are such that, for each s G 
U, (1) holds for a.e. x G R". If <j> G (Dn then (f\ * < / > , . . . , fN * </>, g * <j>) is a 
C°° solution of (1) (for all (JC, s) G Rn x U). If fa = fj * fa and gk — g * fa 
for k = 1 , 2 , . . . then ( f\k, . . • , fm, gk) is a C°° solution of (1) for every 
k = 1, 2, . . . , fa —>fj in Ll

loc(K
n) as k —> oo for each j — 1, 2, . . . , N and 

gk^g in Ll
loc(R

n) ask^oo. 

COROLLARY. If (4) has a nontrivial solution in 2)w' or (I) has a nontrivial 
solution in Ll

loc(R
n) then (1) has a nontrivial solution in C°°(Rn). 

Proof. Suppose u\, . . . , uN, v G (D„, (4) holds and not all of wj, . . . , uNl v 
are zero. Suppose, for example, that v ̂  0. Since v * fa —• v in *D„ as /: —•> oo 
we must have v * (/>£0 ^ 0 for some natural number &o. Hence, according to 
Proposition 4, (wi * </>&0, . . . , uN * <^ , v * </>£0) is a nontrivial solution of (1). 
The rest of the assertion can be proved in a similar manner. 

4. Smooth Coefficients and Differential Equations. In this section we sup­
pose that #1, . . . , au G CP(U) and /zi, . . . , hN are of class Cp for some p 
where 1 ̂  /? ^ +oo. 
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PROPOSITION 6. (/) Suppose/i, . . . ,/w, g G Ljoc(R") and, for each s e U, (\) 
holds for a.e. x G Rn. If g ^ 0 (i.e. it is not true that g(x) = 0 for a.e. x G Rn) 
then b G CP(U). 

(ii) If (4) holds for some u\, . . . , w#, v G £>„' and ifv^O then b G CP{U). 

Proof, (i) As in the proof of the last corollary, choose <j> G (Dn such that 
g *(/> ^ 0. Thus, for some xo G Rn, (g *</>)(JCO) ^ 0- But, according to Proposition 
4, 

yv 
J ] fl;(5)(^ * (/>)(* + /*,(*)) = fc(*)te * <£)(*) for (xs)eRnxU. 
7=1 

Hence fe(s) = [(g * (A)Uo)]"1 EjLi aj(s)(fj * <£)(* + fyC*)) f o r Ms EU and the 
assertion follows since f * (/> G C°°(RW) for 1 ^jûN. 

The proof of (ii) is similar. 

If (1) were to hold with all the a/s , ^ ' s , h/s, b and g of class Cp and if a 
were a multi-index of order at most p then by differentiating ( 1 ) a times with 
respect to s and setting s — 0 in the resulting equation (recall hj(0) = 0 for 
1 ^ j ^ N) we would obtain a system of linear differential equations, each of 
order at most |a|: 

/v 
(5) ^Lajfj = bag, \a\ èp. 

y'=i 

For each a andy, Laj is a linear differential operator with constant coefficients 
and/?<, = Da&(0) for |a| è p. 

To illustrate how the above can be used to study functional equations we 
consider a generalization of the "cosine equation": 

f{x+y)+f(x-y) = 2f(x)f(y). 

The essence of the method may be clearer when applied to the more general 
equation 

(#) f(x + s)+f(x-s) = 2b(s)f(x). 

Its distributional analogue is 

(#y TSU + T-Su = 2b(s)u. 

Such equations have been studied extensively (see [1], §3.2). Our aim here is 
only to illustrate a method of solution. 
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PROPOSITION 7. Suppose 8 > 0, b: ( -£ , 6) -> C, / G C°°(R) a/w/ ft G 

C°°(—6, <5). TTien (#) holds for all (JC, ^ ) G R x (—5, <5) if and only if one of the 
following hold: 

d)f = 0t 

(ii) for some A, a j E C w/ffc A ̂  0, f(x) = aexx + /fe_AX for all x G R 
arcd Z?(̂ ) = cosh(Xs) for all s G (—5, £), 

(Hi) b=\ and, for some a, ft G C, / (JC) = a + /3x for all x G R. 

Proof Putting 5 = 0 in (#) we find that / = b(0)f. Hence either / = 0 or 
b(0) = 1. 

Suppose / ^ 0 so that b(0) — 1. If we differentiate (#) twice with respect to 
s, put s — 0 in the resulting equation and let bf,(0) = —A2 then we find that 

f(x) = -X2f(x) for all x G R. 

If A ^ 0 then there exist a, f3 G C such that / (JC) = aeA* + (3e~Xx for all 
JC G R and hence, from (#), it follows that 

b(s) = cosh(A5-) for all s G (— £, 5). 

If A = 0 then there exist a j3 G C such that 

f(x) = a + f3x for all JC G R. 

In this case (#) implies that b = 1. 

COROLLARY 7. Suppose 6 > 0, /?: (—5, <5) —* C, w G D{ am/ (#)' holds for all 

s G (—5, S). Then either u — 0 or b G C°° arcd u = Af for some f G C°°(R) 
swc/z f/i<2f (#) holds. 

Proof If fc(0) = 0 then (#)', with s = 0, implies that M = 0. 
Suppose b(0) ^ 0. Then, by (#)', either u = 0 or fc(0) = 1. Suppose b(0) = 1 

and u ^ 0. 
L e t / = M * 0; for 7 = 1 , 2 , . . . . Then, for 7 = 1, 2, . . . , / G C°°(R) and 

/ (JC + 5) + / ( J C - 5) = 2b(s)fj(x) for all (JC, ^ ) G R X ( / . 

Since w ^ 0, according to Proposition 6, Z? G C°°(R). By Proposition 7, either 
Z? = 1 or there exists A G C such that b(s) = cosh(As) for every s G (—<5, 6). 

If b = 1 then for each j = 1 , 2 , . . . there exist a,, /3y G C such that 

/ ( J C ) = a7 + fax for all JC G R. 

Let wo = A/>0 where PoC*) — 1 f° r all JC G R and let u\ — APl where P\(x) = x 
for all JC G R. Let S be the subspace of *D{ spanned by {«o? ^ i } - T h e n / G 5 
for each j = 1 , 2 , . . . and S, being finite dimensional, is closed (see [10] page 
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16). But fi —» u in *D[ so that u G S. Thus there exists a, /3 G C such that 
« = a«o + /3u\. That is w = A/ where /(JC) = a + /3JC for all i G R . 

If b ^ 1 then, by Proposition 7, there exists A G C such that fr(s) = cosh(As) 
for all s G (—6,8). By Proposition 7, for each y = 1 , 2 , . . . , there exist a,, /?7- G 
C such that 

fj(x) = ctjeXx + f3je~Xx for all JC G R. 

By using an argument like that employed in the last paragraph, we conclude that 
u — Kf where, for some a, /? G C, f(x) — aeXx + (3e~Xx for all JC G R. 

Similarly, it is possible to prove 

COROLLARY 2. Suppose è > 0, b: (—<5, 5) —> C, F G £/„c.(R) tf^d, /or <?ac/z 
J G (-«, <5), 

F(JC + s) + F(JC - s) = 2b(s)F(x) for a.e. JC G R. 

77z^ e/fAer F(JC) = Ofor a.e. x G R o r ^ G C°°(R) and there exists f G C°°(R) 
such that (#) /îo/ds am/ F(JC) = f{x) for a.e. JC G R. 

5. Regularity Properties. In the remainder of the paper we will consider 
(1) with/i = • • • —fN = / , b = 0 and (4) with wj = • • • = uN = u, b = 0. that 
is, we consider the equation 

N 

(1)' 5]a/5)/(j: + A^)) = 0 
7=1 

and the associated distributional equation 

N 

(4)' ^ aj(syrhjis)u = 0. 

We assume that #i, . . . , ŷy G C^((7), for some natural number /?. We also 
assume that hj is of class Cp on £/ and fy(0) = 0 for 1 ^ y ' ^ N. In the 
examples below m = 1, the a/s are constant and the h/s are linear. If we 
formally differentiate ( 1 / a times with respect to s (a being a multi-index of 
order at most p) and set s — 0 in the resulting equation we obtain a system of 
linear differential equations 

(5/ Taf = 0, \<x\£p. 

The following result is a particular case of Theorem 1 of [12] which is ap­
plicable to many particular cases of ( 1 / that have been extensively studied, as 
illustrated below. 
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PROPOSITION 8. Suppose one of the operators, Ta, in (5)' is elliptic, 
(i) IfuE <D„ and (4)' holds for all s G U then there exists f G C°°(Rn) such 

that (1)' holds for all (JC, S) G Rn x U and u = Af. 
(ii) Iff G Ll

loc(R
n) and, for each s G U, (1)' holds for a.e. x G W then f is 

almost everywhere equal to a C°° solution of (I)'. 

Proof (i) Let/* = u * <j>k for k = 1,2, . . . . Then /* G C°°(R") for each 
k = 1, 2, . . . and, according to (iii) of Proposition 2, $2/=1

 aj(s)Thj(s)fk = 0 
for all s e t / . Hence J^Li dj(s)fk(x + hj(s)) = 0 for JC G R", s G U and 
& = 1, 2, . . . Thus 7a(/*) = 0 for all k = 1,2, But/* —• u in £>'(R") 
as & —> oo and Ta is a continuous mapping of £>„' to itself (see [10] page 146). 
Hence Ta(u) = lim^oo Ta(fk) = 0. Since Ta is elliptic, (see [10], page 201) 
there exists / G C°°(Rn) such that u = Ay. Hence, because of (4)' and the 
continuity of/, (1)' holds for all (x, s) eRn x U. 

(ii) Let u = Af. Since ( 1 / holds so does (4/. Hence, by (i), there exists a 
C°° solution, say/ , of (1) such that u = A?. Thus/(x) =f(x) for a.e. x G Rn. 
The continuity of/ implies the rest. 

6. Functional Equations Analogues of PDE's. Let b\, . . . , bn denote the 
usual basis of Rn. For/: Rn —> C, h G R and / ^ A; ^ n let 

A*/to =/(* + /**)-/(*) 

and 

Â*/(*) = / ( * + (h/2)bk) -f(x - (h/2)bk) for x G R \ 

We may regard each A& and Â* as a linear "difference" operators. Notice that 
h h 

Akf = rhbk f - / , etc. If/ G Cl(Rn) then, for x G Rn and 1 ^ it ^ n, 

D t/(jc) = lim(l/A)A*/(Jc) = lim(l/h)Akf(x). 
/j—>0 h n-M) h 

This suggests that if 0 ^ h G R", /z is small and 1 ^ /: ^ n then h~lAk and 

/z_1Â^ are good approximations to Dk (see [10], page 178, for a distributional 
h 

analogue of this heuristic). 
Given a linear, homogeneous, constant coefficient differential equation of 

order p,LF — 0, one may replace Dk by s~x Ak (or ^_1Â^) for 1 ^ k ^ n, 
s s 

multiply the resulting equation by sp and obtain an equation of the type ( 1 / 
with polynomial af s and linear hfs. One may then study the resulting equation. 
This was done for the one-dimensional wave equation in [3] using Â k and it was 

h 

found that, roughly speaking, the solutions of the resulting functional equation 
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are the same as those of the original wave equation. In contrast, the solutions 
of the functional analogue of the Laplace equation are harmonic polynomials of 
degree depending on the dimension, n, (see [2] and [4]). 

We aim to examine the Cauchy-Riemann equations and the heat equation in 
a similar spirit. From now on n = 2. 

The Cauchy-Riemann equations can be written as the single equation 

(C-R) Dxf{x, v) + iD2fix, v) = 0, (*, v) G Rn. 

If in (C-R) we replace D\ by s - 1 A i , replace D2 by s - 1 A2 and multiply the 

resulting equation by s we arrive at the equation 

(6) [f(x + s, y) -f{x, y)] + *[/(*, y + s) -fix, y)] = 0. 

Notice that (6) holds trivially when 5 = 0. The distributional analogue of (6) is 

( 6 / T(J,0)M + *T(0,*)W - (1 + *>(0,0)M = 0, 

a special case of (4)'. 

PROPOSITION 9. Let ë > 0. 

(i) Iff G C2(R2) then (6) holds for all (x, y) G R2 and all s G i~è, b) if 
and only if there exist ao, bo G C such that 

Ç1) fix, y) = a0 + hix + ry) for all (*, 3;) G R2 . 

(//) If u € (Dj then (6)' /zo/ds / o r a// 5 G (—<5, <5) //" and only if u — Ay- for 
somef G C°°(R2) satisfying (6). 

(Hi) Iff G L]oc(R2) and, for each s G (—8, è), (6) holds for a.e. (x, _y) G R2 

then there exist ao, bo G C swc/i that fix, y) — ao+boix+iy)for a.e. (JC, >>) G R2. 
f/vj //*/ G C(R2) a/id (6) holds for all (JC, J , S) belonging to a dense subset 

ofK3 then there exist ao, bo G C such that (7) holds. 

Proof (i) If (7) holds for some ao, bo G C then it is easy to check that (6) 
holds for all x, y, s G R. 

Suppose / G C2(R2) and (6) holds for ix,y) G R2 and -S < s < 6. Differen­
tiating (6) twice with respect to s and setting s = 0 we find that 

(8) D{f + iD2f = 0 

and 

(9) D? + i D | / = 0. 

Using (8) twice, we deduce that 

D\f = DxiDxf) = Dxi-iD2f) = -iD2iDxf) = -iD2i~iD2f) = - D 2 / 
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or 

(10) D*f+D2
2f = 0. 

From (9) and (10) it follows that D\f = D\f = 0. Since D}f = 0, for each 
y G R there exist a(y)1 b(y) G C such that 

(11) / (* , y) = a(y) + b(y)x for all x G R. 

Thus a(y) = / ( 0 , y) and Z?(y) = / ( l , y)-a(y) for all y G R so that a, b G C2(R). 
Since D | / = 0, (11) implies that a"(y) = b"(y) = 0 for all y G R . Hence there 
exist flo, #b Z?o? b\ G C such that a(y) = ao + a\y and b(y) = bo + b\y for all 
y G R. Thus 

(12) / (* , y) = #0 + a\y + (̂ o + b\y)x for ail I J G R . 

Substituting (12) into (6) we find that 

bos + b\sy + ia\s + /frixs = 0 for x, y G R and — 8 < s < 6 

from which it follows that a\ — ibo and b\ = 0. Hence, by (12), f(x1 y) — 
ao + bo(x + ry) for all (x, y) G R2. Thus (i) has been proved. 

(ii) Suppose u G £>2' and (6)' holds for each s G (—5, 5). Then u*(j>k is a 
C°° solution of (6) for each k = 1 , 2 , . . . . From (i) it follows that for each 
k — 1, 2, . . . there exist a ,̂ bk G C such that 

(K * <£*)(*, y) = ak + &*(* + /y) for all (x, y) G R2. 

The sequence of distributions { A ^ } ^ is therefore contained in a two dimen­
sional subspace of <D{. 

Again using the fact that finite dimensional subspaces of Hausdorff linear 
topological spaces are closed and recalling that { A ^ } ^ converges to u in 
Œ>2 it follows that u belongs to the subspace in question. Hence u = Ay for 
some/: R2 —» C satisfying (7) for some ao, bo G C. The remainder of the proof 
of (ii) follows from (i). 

It is easy to deduce (Hi) from (//) and to deduce (iv) from (///). 

Remark. In the proof of (i) we could have used (8) or (10) and Proposition 
8 to deduce that / G C°°(R2). 

We now consider the heat equation in R2: D\f — D\j". Replacing D\ by 
s~lA l and D\ by s~2A2 w e a r e led to 

s s 

(13) s[f(x +s,y)- / (* , uy)] =f(x, y + 2s)- 2/(x, y + s) +f(x, y). 

A distributional analogue of (13) is 

( 1 3 / S[T(S,O)U ~U]= T(O,2S)W - 2r(0,5)M + r(0,0)M. 
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PROPOSITION 10. Let 8 > 0. 

(i) Iff G C°°(R2) then (13) holds for all (JC, y) G R2 and all s G (-<S, 5) (f 
arcd only if there exist a, f3 G C SWC/Î f/i<zf 

(14) / ( x ) 3 0 = « + /?)> forallx,yeR. 

(ii) If u G £>2' ^£ft ( 1 3 / holds for every s G (—5, <5) if and only if u — Kf 
for some f G C°°(R2) satisfying (14) for some a, /? G C. 

(Hi) Iff G L/oc(R2) and, for each s G (-8, £), (13) holds for a.e. (JC, y) G R2 

£/ie« £/iere e.m£ a:, /? G C swc/z £/to 

/ ( * , y) = a + f3y for a. e. (*, y) G R2 . 

(iv) Iff G C(R2) and (13) holds for all (JC, y, S) belonging to a dense subset 
ofR3 then there exist a, /? G C SWC/Î J/zâtf (14) /z<?/ds. 

P roo / (i) Suppose / G C°°(R2) and (13) holds whenever JC, y G R and 
s G (—<5, 8). By differentiating (13) three times with respect to s and putting 
s = 0 in the resulting equations we conclude that 

(15) D{f = D2
2f 

and 

(16) D\f = 2D\f. 

From (15) and (16) it follows that DxD\f = D2f = 2D\f or 

(17) (D{ - 2D2)D
2
2f = 0. 

Hence there exists A G C°°(R) such that 

(18) D\f(x,y)=A(2x+y) for all x, y G R. 

Comparing (15) and (18) we conclude that 

(19) Dlf(x,y)=A(2x+y) for (x, y) G R2 . 

Let a(t) = (1/2) ^A(i)di for t G R. Then (19) implies that for each y G R 
there exists b(y) G C such that, for all x G R, 

(20) f{x,y) = aQx+y) + b(y). 

It follows that a1 b G C°°(R) and, according to (20) and (15), we have, for all 

*, y G R, 

(21) 2a'(2x + y) = a(2x + y) + £"(y). 
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Let 2k = 2af(0) - a"(0). Then, according to (21), 

b"(y) = 2a'(2(-y/2) + y)- a"(2(-y/2 + y) = 2k for all v G R. 

Hence, by (21) 

2a'(2x + y) - a"(2x +y) = 2k for all je, y G R. 

Thus 

(22) b"(y) = 2k for all y G R 

and 

(23) 2d(t) - a(t) = 2k for all t G R 

According to (22) and (23) there exist bo, b\, c, 7 G C such that 

(24) Z?(j) = b0 + biy + ky2 for all j G R 

and 

(25) a{t) = c + kt + le2t for all t G R. 

Going back to (20) we find that, for all x, y G R, 

(26) /(JC, y) = c + fc(2x + ̂ ) + 7^4x+2^ + b0 + ^ y + Jty2. 

On substituting (26) in (13) we find, after some tedious calculation, that 
7 = k = 0. Thus, if a = c + bo and /3 — b\ we have 

(27) /(JC, y) = a + #y for all x, y e R2. 

Conversely, given a, (3 G R, if we define/ by (27) then (13) holds. This com­
pletes the proof of (i). 

The proofs of (ii), (iii) and (iv) are similar to those of the corresponding parts 
of Proposition 9. 
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