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SUMMARY

Human papillomavirus (HPV) types 6 and 11 are the aetiological agent of recurrent respiratory
papillomatosis (RRP). The complete genome of an HPV6 isolate with a 170 base pair (bp)
duplication identified within the long control region (LCR) from a patient with aggressive recurrent
respiratory papillomatosis was determined. The promoter sequence from the HPV LCR including
the 170 bp duplication was placed upstream of a heterologous reporter gene and the activity of the
reporter gene product determined using transfected cells. In total, mutations were observed at 157
nucleotide positions of the complete genome and included nucleotide substitutions, deletions and
insertions, resulting in amino acid changes at 43 residue positions. Reporter gene activity using an
HPV-derived LCR region with a 170 bp duplication was significantly higher than that using an
HPV-derived LCR region with no duplication within this region. The results suggest that novel
HPV variants warrant further investigation for potential biomarkers of aggressive disease.
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INTRODUCTION

Human papillomaviruses (HPVs) are members of the
Papillomaviridae family, with over 150 HPV types
having been identified [1, 2]. They are small,
non-enveloped DNA viruses with a double-stranded
circular DNA molecule of ∼8000 base pairs (bp)
[1, 2]. HPVs, usually HPV types 6 or 11, are the aetio-
logical agent of recurrent respiratory papillomatosis

(RRP) [3]. HPV6 is classified into two variant lineages
(A and B), and five B sublineages (B1, B2, B3, B4, B5)
[4]. HPV variant lineages and sublineages are defined
based on the nucleotide differences across the com-
plete HPV genome sequences of 1·0–10·0% and 0·5–
1·0%, respectively [5].

The HPV genome is organized into early (E) and
late (L) open reading frames (ORFs) and includes a
non-coding region [6]. The early region ORFs code
for proteins that play a role in viral regulation as
well as for proteins that are essential in initiating
viral DNA replication. The late ORFs code for the
two structural capsid proteins [6, 7]. The non-coding
region, also known as the long control region (LCR)
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or the upstream regulatory region (URR), contains
the crucial elements necessary for control of viral rep-
lication and transcription as well as the origin of DNA
replication [6, 8]. The LCR extends from the termin-
ation of the L1 gene to the first methionine of the
E6 gene It is less conserved than one would expect
these regions to be and contains a variety of transcrip-
tional regulatory motifs, the early promoter, viral
coded E2 regulator binding sites and the viral origin
of DNA replication [8].

Nucleotide alterations in the HPV6 LCR have pre-
viously been described [4, 9–11]. The clinical signifi-
cance of these variations is still not clear. Conflicting
results have been described in studies investigating
the effect of alteration on viral enhancer activity-based
assays using reporter gene constructs [11–15]. While
almost equal amounts of luciferase activities were
demonstrated with HPV6 variants where point muta-
tions were observed in the LCR, reporter gene activity
using HPV-derived LCR regions from two variants
that included duplications of 459 bp and 236 bp with-
in the 3’ region of the LCR was significantly raised
[14]. Similarly, functional analysis of nucleotide sub-
stitutions in seven different HPV16 LCR isolates
revealed enhanced transcriptional activity of the P97
promoter for two variants and no change in transcrip-
tional activity for five of the seven variants [12]. It is
unclear whether mutations within the LCR influence
the transcriptional activity, and it is possible that the
site where the mutation occurs, or the type of muta-
tion, might play a role in the alteration of replication
or transcription.

In a previous study, we identified a 170 bp duplica-
tion within the LCR of an HPV6 isolate obtained
from a patient with aggressive RRP [10]. Based on un-
certainty regarding the influence of alterations, further
investigation of the duplication on function was war-
ranted. Hence the complete genome of the isolate
was determined and the promoter sequence from the
HPV LCR including the 170 bp duplication was
placed upstream of a heterologous reporter gene and
the activity of the reporter gene product determined
using transfected cells.

MATERIALS AND METHODS

The complete nucleotide sequence data was deter-
mined for the HPV6 isolate laboratory number
VBD19/10 with a 170 bp duplication within the
LCR (Genbank accession no. JN573172.1).
Sequence data were determined for HPV6 isolate

VBD02/10 (Genbank accession no. JN573167.1) that
did not have alterations within the LCR relative to
prototypic strain and was selected as a control for re-
porter gene studies.

The biopsies were collected from patients treated
for RRP at the Universitas Academic hospital in
Bloemfontein, South Africa in 2010. The clinical fea-
tures of the patients are summarized in Table 1.
Neither of the patients had spread distal to the sub-
glottis or had required a tracheostomy. Written
informed consent for inclusion in the study was
obtained from the parents of these patients. The
study was approved by the Ethics Committee of the
Faculty of Health Sciences, University of the Free
State (ECUFS 6/2011).

Two pairs of primers were designed that amplified
two overlapping fragments of the full-length HPV6
genome. The complete genome sequence data of one
HPV6a (L41216), two HPV6b (NC_001355 and
X00203) and one HPV6vc (AF092932) isolates were
retrieved from GenBank. The sequence data was
aligned in Clustal X version 2.1 [16]. Using the align-
ment file, a primer pair designated HPV6_F1 (5’-CAG
TTATAGGGGAAGCACCAG-3’) at position 1826–
1846 relative to HPV6b, and HPV6_R1 (5’-CTG GTA
ATA AGT TCT AAG GGC GG-3’) at position 6354–
6332relative toHPV6bweredesigned toamplifya region
of∼4529 bp.A secondprimer pair designatedHPV6_F2
(5’-GTA TCC AAA GTT GTT GCC ACG G-3’) at
position 5837–5858 relative to HPV6b, and HPV6_R2
(5’-CTC ATA CAA AAG TAC GAT TTC CCA G-3’)
at position 2300–2276 relative to HPV6b were designed
to amplify a region that overlapped of ∼4460–4631 bp.

The primer pairs amplified two overlapping regions
that targeted the complete HPV6 genome of each
isolate. The amplification of each region was per-
formed using the Phusion HotStart DNA polymerase-
mediated PCR amplification kit (Finnzymes, Finland)
according to the manufacturer’s instructions using the
following cycling conditions, denaturation at 98 °C
for 30 s and 30 cycles of 98 °C for 10 s, 47 °C for 30 s,
72 °C for 135 s and a final extension at 72 °C for
10 min. PCR amplicons were purified for nucleotide
sequence determination.

Purified amplicons were submitted to the National
Institute for Communicable Diseases (NICD),
Sandringham, Johannesburg for determination of nu-
cleotide sequences of amplicons using the Roche GS
Junior System (Roche 454 Life Sciences, USA). The
sequence data obtained was mapped against the refer-
ence HPV6b using GS Reference Mapper Roche
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software and assembled using the GS De Novo
AssemblerRoche software. The contiguousfile obtained
from the GS Reference Mapper and GS De Novo
Assembler Roche software were assembled and aligned
against the sequence of the corrected HPV6b reference
genome (PAVE ID: HPV6REF), HPV6a (GenBank
accession no.L41216) andHPV6vc (GenBankaccession
no. AF092932) using Geneious Pro v. 4.8.5 (www.
geneious.com) [17], The aligned sequence data was
edited in Geneious Pro v. 4.8.5 according to the
phred confidence values observed in Gap4 v. 4.11 [18].

The complete genome sequence data of the isolate
was aligned with complete sequence data of 193
HPV6 isolates from GenBank using MEGA v. 6.06
[19] using the ClustalW algorithm and a maximum
likelihood phylogenetic tree was constructed.

Functional analysis of LCR region

The purified DNA amplicons were cloned into pBlue-
TOPO reporter vector (Invitrogen, USA) according to
the manufacturer’s instructions. Positive transfor-
mants were identified and confirmed by sequence ana-
lysis. Purified recombinant plasmid was prepared from
overnight cultures and transfection grade DNA plas-
mid was purified using the Qiagen Plasmid Mini kit
(Qiagen, USA) according to the manufacturer’s
instructions.

Babyhamster kidney (BHK)21 (ATCCCCL-10) cells
were grown to 90–95% confluency in growth media,
Dulbecco’s Modified Eagle’s Medium (DMEM;
Lonza, Belgium) with 5% fetal calf serum (FCS; Delta
Bioproducts, South Africa), 1% L-glutamine (L-Glu;
Sigma Aldrich, UK), 1% non-essential amino acids
(NEAA; Lonza), and 1% penicillin/streptomycin
(Pen/Strep) antibiotics (Sigma Aldrich). A ratio of
1·6–1·7 µg DNA:5 µl lipofectamine was determined
as optimal based on transfection efficiencies and plas-
mid. Untransfected BHK cells were used as negative
controls. Levels of active β-galactosidase expressed
from BHK cells transfected with plasmids expressing

the lacZ gene were determined using the
β-galactosidase assay kit (Invitrogen) according to
the manufacturer’s instructions. Absorbance values
were measured at 420 nm using a Spectronic
Genesys 5 spectrophotometer (Thermo Electron
Corp., USA). The protein concentration of the cell
lysate was determined using the Qubit protein assay
(Invitrogen) according to the manufacturer’s instruc-
tions. The specific activity of the cell lysate, deter-
mined in a total volume of 8 × 105 nl, was calculated
as follows:

specific activity

= nmolONPGhydrolysed/t/mgprotein,

where nmolONPGhydrolysed

= OD420( ) (8× 105nl)
(4500nl/nmol− cm) 1 cm( ) ,

whereONPG=ortho-nitrophenyl-β-galactoside; 4500 =
the extinction coefficient, t= time of incubation (min)
at 37 °C, and mg protein = the amount of protein
assayed. Two independent transfection experiments
were performed with duplicates within each experi-
ment with three readings within each experiment.
The ratio of pBlueTopo_19/10 to pBlueTopo_02/10
was determined for each experiment in order to
normalize data from different experiments.

Data analysis was performed using IBM SPSS
Statistics v. 22 (IBM Corp., USA). The specific activ-
ities of the cell lysate measured were analysed using
the independent samples t test and 95% confidence
intervals (CIs) were calculated for the ratio of
pBlueTopo_19/10 to pBlueTopo_02/10.

RESULTS

The complete genome sequence data for isolate
VBD19/10 was aligned for identification of variants.
Nucleotide positions were numbered relative to the
corrected HPV6b reference genome (PAVE ID:
HPV6REF). Genome data for HPV6b from lineage
A, HPV6vc (AF092932) from sublineage B1, and

Table 1. Clinical features of patients with recurrent respiratory papillomatosis

Laboratory
no.

Age at
diagnosis
(years)

Average
Coltera–
Derkay
score

Total
procedures

Average
procedures per
year while having
active disease

Procedures in
first year after
diagnosis

Average
Coltera–Derkay
score in first year
after diagnosis

Status at last
follow-up

2/10 6·3 19·4 15 2·3 4 12·5 Remission
19/10 6·9 26·5 20 5·9 7 26·1 Remission
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HPV6a (L41216) from sublineage B3, were included
in the alignment for comparing genomic variation.
Mutations observed in the full-length genome of
VBD19/10 with base positions relative to the HPV6b
reference genome are summarized in Table 2 with
the amino acid substitutions and corresponding resi-
due positions in Table 3.

The phylogenetic tree showed the isolate to form
part of the B3 sublineage, with the closest isolates
being ZA54/10 and ZA65/11 (Fig. 1). Pairwise dis-
tances relative to these isolates and to the corrected

reference HPV6b isolate from lineage A, HPV6vc
from sublineage B1, and HPV6a from sublineage B3
are shown in Table 4.

Functional analysis

The level of β-galactosidase activity expressed from
the lacZ gene of cells transfected with the plasmid
containing the duplication within the LCR
(pBlueTopo_19/10) was significantly higher than the
level expressed from cells transfected with the plasmid

Table 2. Schematic representation of the mutations observed within the complete genome of isolates VBD19/10
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* NNCR3 is a non-classic non-coding region between the stop codon of genomic region E5b and start codon of genomic re-
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without the duplication (pBlueTopo_02/10) in both
experiments. In experiment 1, the range of
pBlueTopo_02/10 was 9·4–12·7 (mean 10·89) and
that of pBlueTopo_19/10 was 35·3–57·2 (mean 44·6)

(P = 0·000) while in experiment 2, pBlueTopo_02/10
ranged between 39·1 and 92·1 (mean 70·0) and
pBlueTopo_19/10 ranged between 113·5 and 287·8
(mean 193·6) (P = 0·002) (Fig. 2). The ratio of specific
activity detected in cells transfected with plasmid
pBlueTopo_19/10 to that detected in cells transfected
with plasmid pBlueTopo_02/10 was 3·4 (95% CI
2·9–3·9). The difference in absolute values between
the two experiments is probably because they were
performed at different times using different passages
of cells.

DISCUSSION

The complete genome sequence was determined and in
vitro functional analysis was performed on HPV6 iso-
late VBD19/10. In total, mutations were observed at
157 nucleotide positions and included nucleotide sub-
stitutions, deletions and insertions, resulting in amino
acid changes at 43 residue positions.

Four amino acid mutations that have been
described previously: at residue 222 in the E2, residue
6 in the E4, residue 65 in the E5b, and residue 55 in
E5b regions resulting in changes in the hydrophobic
property of the protein that are probably more signifi-
cant than the two novel mutations that did not alter
hydrophobicity index, as hydrophobic amino acids
are likely to be located within the protein folds. The
E2 gene regulates the transcription of the HPV gen-
ome and a difference in transcriptional activation
can be a result of a difference in the specific binding
of E2 to DNA. Thus, a modification in the amino
acid properties could alter the folding of the protein
and may influence the specific binding of E2 to
DNA and ultimately influence transcription of the
viral genome. Moreover, the E4 and E5 proteins mod-
ify the cellular environment to assist indirectly in
amplification of the viral genome, with reports of
transforming activities for the E5 gene. Therefore,
mutations in the E4 and E5 proteins, especially non-
synonymous mutations could have extensive effects
on the structure of the proteins. The implications
and significance of each amino acid change would re-
quire further investigation, possibly using mutagenesis
studies.

The biological functioning of promoter sequences
can be investigated using reporter vectors in which
PCR-amplified regions are inserted into promotorless
vectors upstream of a reporter gene. A 170 bp duplica-
tion was previously identified in the central segment
of the LCR of an HPV6 isolate from a patient with

Table 3. Summary of the amino acid substitutions
observed in the full-length genome of VBD19/10

Genomic
region

Reference
amino acid

Mutated
amino
acid

Residue
position*

Nucleotide
position†

E6 H Q 50 251
E7 G E 22 594

N D 88 791
E1 L A 235 1534/1535

L V 280 1669
E D 303 1740
T S 459 2207
D E 575 2556
T A 608 2653

E2 H N 27 2801
M I 36 2830
R K 84 2973
N T 142 3147
T S 144 3152
H Q 183 3271
L P 222 3387
K Q 228 3404
R K 307 3642
S P 324 3692
D H 338 3734
D N 348 3764
S R 357 3793

E4 I N 6 3271
G E 60 3433
P H 69 3460
D E 99 3551

E5a F L 16 3934
E D 39 4003
L C 80 4125/4126
Y H 84 4136
T N 88 4149

E5b M V 26 4234
K N 46 4296
N T 52 4313
D A 55 4322
Y H 62 4342
T D 63 4345/4346
D A 65 4352

L2 Q G 75 4645/4646
V I 185 4975
V I 200 5020
G D 356 5489
L I 392 5596

None of the mutations observed in the L1 gene modified the
amino acid.
* Residue positions are relative to the HPV6b prototype.
†Nucleotide positions are relative to the HPV6b prototype.
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Fig. 1. Phylogenetic tree of representative HPV6 isolates.
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RRP [10]. The duplication was located where the ma-
jority of transcriptional factor-binding sites are and
between two E2-binding sites [8]. In HPV11, this cen-
tral segment of the LCR has been shown to serve as an
enhancer specific for epithelial transcription [20].
Quantitation of the enzyme β-galactosidase expressed
by the reporter gene, lacZ, was used as an indicator of
the functioning of the promoter sequences. Although
the specific activity level of β-galactosidase expressed
from cells transfected with the recombinant plasmid
pBlueTopo_19/10 was 3·4 times higher than the activ-
ity determined from cells transfected with recombin-
ant plasmid pBlueTopo_2/10, the conclusions drawn
need to take into consideration the limitations of the
assay. Estimations of transfection efficiencies based
on staining cells for protein β-galactosidase showed
higher transfection efficiencies from the recombinant
plasmid pBlueTopo_19/10. Higher transfection

efficiency could be responsible for detection of higher
levels of specific activity. However, similarly, higher
transfection efficiencies may have been detected by
staining due to higher levels of protein expression.
Hence the outcome suggests that the influence of the
170 bp duplication on the levels of transcription of
downstream genes warrants further investigation.

Mutations that occur in the LCR could have an en-
hancing or inhibiting effect on the replication and
transcription of the virus. Reporter gene technology
has been used successfully in the analysis of transcrip-
tional regulation by HPV6 E2 proteins and in the
evaluation of the effect of sequence modifications in
the LCR of HPV6 isolates on gene expression [14, 21].
Sequence rearrangements in the LCR did not seem
to affect the promoter activity, but where large dupli-
cations in the LCR were identified, it resulted in
enhanced promoter activity and thus it was stated
that the duplication may have caused an increase in
the oncogenic potential of HPV6 variants ascribed
to overexpression of E6 and E7 [14]. Further investi-
gations and long-term studies of patients are war-
ranted to determine if it is possible to use
duplications as prognostic indicators or biomarkers
of disease. It may also depend on the site at which
the mutation occurs, for instance at the origin of rep-
lication, at E2-binding sites, or whether additional
transcription binding sites were produced. This, how-
ever, needs further investigation, namely introducing
mutagenesis in the form of the same duplication in
the LCR of the control in order to determine whether
an increase in expression levels is due to an increase in
promoter activity or due to a higher transfection
efficiency. If the duplication enhanced the activity
and consequentially the expression of the protein, it
could be used as a molecular determinant in the pre-
diction of aggressiveness of RRP disease. Isolate
VBD19/10, which was obtained from a patient with
aggressive RRP disease, showed additional muta-
tions in other regions of the genome other than the
duplication observed in the LCR. The role of these
mutations also warrants investigation. The combin-
ation of the mutations could also contribute to the
aggressive behaviour of the disease, but requires further
investigation.

In conclusion, this study provides complete genome
sequence data on a HPV6 isolate from a patient with
aggressive RRP. We have possibly identified a mo-
lecular determinant that could influence promoter ac-
tivity. However, further mutagenesis investigations
will be required to substantiate the exact role of

Fig. 2. Level of β-galactosidase activity expressed from the
lacZ gene of cells transfected with the plasmid containing the
duplication within the long control region (pBlueTopo_19/
10) and without the duplication (pBlueTopo_02/10).

Table 4. Pairwise distances

Isolate Pairwise distance (%)

ZA54/10 0·4
ZA65/11 0·4
HPV6b 1·8
HPV6vc 0·9
HPV6a 0·5
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duplications on promoter activity and possibly disease
severity.
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