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Inverse Problems for Partition Functions
Yifan Yang

Abstract. Let pw(n) be the weighted partition function defined by the generating function∑∞
n=0 pw(n)xn =

∏∞
m=1(1 − xm)−w(m), where w(m) is a non-negative arithmetic function. Let

Pw(u) =
∑

n≤u pw(n) and Nw(u) =
∑

n≤u w(n) be the summatory functions for pw(n) and w(n),
respectively. Generalizing results of G. A. Freiman and E. E. Kohlbecker, we show that, for a large class
of functions Φ(u) and λ(u), an estimate for Pw(u) of the form log Pw(u) = Φ(u)

{
1 + Ou

(
1/λ(u)

)}

(u→∞) implies an estimate for Nw(u) of the form Nw(u) = Φ∗(u)
{

1+O
(

1/ log λ(u)
)}

(u→∞)
with a suitable functionΦ∗(u) defined in terms ofΦ(u). We apply this result and related results to ob-
tain characterizations of the Riemann Hypothesis and the Generalized Riemann Hypothesis in terms
of the asymptotic behavior of certain weighted partition functions.

0 Introduction

Let w(n) be a non-negative function defined on the set of positive integers, and define
pw(n) by the generating function identity

(0.1)
∞∑

n=0

pw(n)xn =
∞∏

m=1

(1− xm)−w(m).

The usual problem in the asymptotic theory of partition functions in this context is
to deduce the asymptotic behavior of the function pw(n) or that of the summatory
function

(0.2) Pw(u) =
∑
n≤u

pw(n)

from that of the function

(0.3) Nw(u) =
∑
n≤u

w(n).

In the case when w(n) = 1 for all positive integers n, one sees that pw(n) is the
ordinary partition function p(n), and Nw(u) = u + O(1). Hardy and Ramanujan [8]
showed that as n→∞

log p(n) ∼ 2
√
ζ(2)n,

and later [9] improved this estimate to an asymptotic formula for p(n) itself.
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More general results of this type have been obtained by many authors, including
Brigham [2], Hardy and Ramanujan [8, 9], Ingham [10], Kohlbecker [12], Meinar-
dus [13, 14], Richmond [18, 19] Roth and Szekeres [20], and Schwarz [21, 22]. Ad-
ditional references can be found in Chapter 6 of Andrews [1].

The converse problem of deducing the asymptotic behavior of Nw(u) from that of
pw(n) has been less investigated. The earliest result of this type is the following result
obtained by Erdős in 1942.

Theorem A (Erdős [3]) Suppose that w(n) is the characteristic function of a subset S
of positive integers. Then, as u→∞,

(0.4) Nw(u) = #{n ∈ S : n ≤ u} ∼ Au

for some constant A > 0 if and only if, as n→∞,

(0.5) log pw(n) ∼ 2
√

Aζ(2)n1/2.

The deduction of (0.4) from (0.5) is an example of a so-called “inverse” result.
More generally, an inverse problem in the asymptotic theory of partitions is a prob-
lem in which asymptotic information on Nw(u) is to be deduced from the asymptotic
behavior of log pw(n) or log Pw(u). Generalizing Theorem A, Kohlbecker proved the
following result in 1958.

Theorem B (Kohlbecker [12]) Suppose that b is a positive number and that L(u) is
a slowly oscillating function, that is, a positive function satisfying L(cu)/L(u) → 1 as
u→∞ for all c > 0. For large u let xu be a positive number such that

u = bΓ(1 + b)ζ(1 + b)x−(1+b)
u L(1/xu)

and let L∗(u) be a slowly oscillating function defined for large u such that L∗(u) ∼
(1 + 1/b){bΓ(1 + b)ζ(1 + b)L(1/xu)}1/(1+b). Then, as u→∞,

Nw(u) ∼ ubL(u)

if and only if
log Pw(u) ∼ ub/(1+b)L∗(u).

For the case b = 0, an analogous result was obtained by Parameswaran [16]. More
general results for this case have been given by Geluk [6, 7], whose main assumption
is the condition

lim
t→∞

lim sup
u→∞

Nw(tu)

Nw(u)
<∞.

In 1955 Freiman obtained the following inverse result with remainder terms.

Theorem C (Freiman [4]) Suppose that, as u→∞,

(0.6) log Pw(u) = Aua + O(ua1 )
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for some constants A > 0 and 0 < a1 < a < 1. Then, as u→∞,

(0.7) Nw(u) = Bub + O
( ub

log u

)
,

where

b =
a

1− a
and B =

Ab/aab(1− a)

Γ(b/a)ζ(b/a)
.

Kohlbecker’s result allows more general main terms than Freiman’s result, but it
does not give explicit error terms as in (0.8).

We note that the relative error term in (0.7) is much larger than that in estimate
(0.6). This raises the question whether one can sharpen (0.7) to an estimate of the
form

(0.8) Nw(u) = Bub + Oε(ub1+ε)

with b1 < b. However, this is not the case; in his paper [4], Freiman constructed an
example showing that the error term in (0.7) is best possible.

In [25], we showed that in the case w(n) = Λ(n) (whereΛ(n) is the von Mangoldt
function) the relation (0.6) does implies (0.8). More precisely, Theorem 3 of [25]
implies the following inverse result.

Theorem D (Yang [25]) Suppose that θ is a positive constant such that for all ε > 0,
as n→∞,

(0.9) log pΛ(n) = 2
√
ζ(2)n1/2 + Oε(n(θ+ε)/2).

Then for all ε > 0, as u→∞,

NΛ(u) = u + Oε(uθ+ε).

(In [25], the conclusion is given in terms of zero-free regions for the zeta-function.
However, it is well-known that zero-free regions for ζ(s) are equivalent to estimates
for NΛ(u) =

∑
n≤u Λ(n).)

The main result in this paper is an inverse theorem for partition functions which
represents a common generalization of the above results. We will also show that,
under additional assumptions on the weight function w(n), conclusion (0.7) in
Freiman’s theorem can be improved to (0.8).

Notation and Conventions Throughout this paper, we assume that w(n) is a non-
negative arithmetic function, and we let pw(n), Pw(u) and Nw(u) be defined by (0.1),
(0.2), and (0.3).

We use the notations f (u) = O
(

g(u)
)

and f (u)	 g(u) interchangeably to mean
that | f (u)| ≤ cg(u) holds with some constant c for all u in the range under con-
sideration. The constant c here is allowed to depend on other parameters, but any
dependence will be explicitly indicated by writing Ok,	ε, etc. We write f (u) � g(u)
if both f (u)	 g(u) and g(u)	 f (u) hold.

We will use the notation “ f (u)↘ 0 as u→∞” to mean that “ f (u) is monotonic
for sufficiently large u and f (u) tends to 0 as u → ∞”. Similar notations such as
“ f (u)↗∞ as u→∞” and “g(x)↘ 0 as x→ 0” are to be interpreted analogously.
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1 Definitions and Statements of Results

We first define several notations which will be used throughout this paper. For a
non-negative and non-decreasing function Φ(u) defined on (0,∞) and satisfying
−
∫∞

0 log(1 − e−xu) dΦ(u) < ∞ for all x > 0, we define transforms Φ̂(x) and Φ̃(x)
by

(1.1) Φ̂(x) =

∫ ∞
0

e−xu dΦ(u)

and

(1.2) Φ̃(x) = −

∫ ∞
0

log(1− e−xu) dΦ(u).

These two transforms are related by the identities

(1.3) Φ̃(x) =
∞∑

k=1

1

k
Φ̂(kx), Φ̂(x) =

∞∑
k=1

µ(k)

k
Φ̃(kx).

The first of these relations follows from the Maclaurin series for − log(1 − z), while
the second follows easily from the identities

∑
kd=n

1

d

µ(k)

k
=

{
1, if n = 1,

0, if n > 1,

and

r = −
∞∑

k=1

µ(k)

k
log(1− rk) (0 < r < 1),

where µ(k) is the Möbius function.
For a non-negative and non-increasing function φ(u) satisfying φ(u)→ 0 as u→

∞, we define the generalized inverse function φ←(x) for φ(u) by

(1.4) φ←(x) = max(0, inf{u : φ(u) ≤ x}).

Finally, we define a class of pairs of functions that generalizes the pairs ubL(u) and
ub/(1+b)L∗(u) occurring in Theorem B.

Definition A pair
(
Φ(u),Φ∗(u)

)
of non-negative and locally integrable functions

defined on (0,∞) is called admissible if there exist constants 0 < α < 1 and γ >
β > α such that the following conditions are satisfied:

Φ(u) is differentiable and φ(u) = Φ ′(u) is non-increasing;(A1)

Φ ′(u)u1−α ↘ 0 as u→∞;(A2)

Φ∗(u)u−β ↗∞ and Φ∗(u)u−γ ↘ 0 as u→∞;(A3)

Φ̃∗(x) ∼

∫ ∞
x

φ←(y) dy as x→ 0.(A4)

https://doi.org/10.4153/CJM-2001-035-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-035-9


870 Yifan Yang

Furthermore, if (A4) holds in the quantitative form

(A4 ′) Φ̃∗(x) =

(
1 + O

(
1

λ(1/x)

)) ∫ ∞
x

φ←(y) dy,

where λ(u) → ∞ as u → ∞, then the pair
(
Φ(u),Φ∗(u)

)
is called admissible with

accuracy λ(u).
A simple example of an admissible pair of functions (see the proof of Theorem 2)

is

(1.5) Φ(u) = Aua, Φ∗(u) = Bub,

where A > 0 and 0 < a < 1 are constants and

b =
a

1− a
, B =

A1/(1−a)aa/(1−a)(1− a)

Γ
(

1/(1− a)
)
ζ
(

1/(1− a)
) .

We note that this pair of functions is admissible with infinite accuracy in the sense
that Φ̃∗(x) is equal to the integral in (A4). Another instance of an admissible pair is

Φ(u) = 2π

√
u

3 log u
, Φ∗(u) =

u

log u
,

which appears in the study of the partition function p(n; P), the number of par-
titions of n into primes (see [8]). In this case one can show that the accuracy is
log u/ log log u. In Section 4 we will describe a method for finding suitable functions
Φ∗(u) for a large class of functions Φ(u).

Our first result can now be stated as follows.

Theorem 1 Let
(
Φ(u),Φ∗(u)

)
be admissible with accuracy λ(u), where λ(u) is a dif-

ferentiable function satisfying the conditions:

λ(u)↗∞ as u→∞;(T1)

Φ(u)

λ(u)
(log u)−1 ↗∞ as u→∞.(T2)

Suppose that, as u→∞,

(1.6) log Pw(u) = Φ(u)

{
1 + O

(
1

λ(u)

)}
.

Then, as u→∞,

(1.7) Nw(u) =
∑
n≤u

w(n) = Φ∗(u)

{
1 + O

(
1

logλ(u)

)}
.
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The proof of Theorem 1 consists of three steps. In the first step we use an Abelian
result (Proposition 1) to relate estimates for log Pw(u) to estimates for the logarithm
of the Laplace transform

(1.8) P̂w(x) =

∫ ∞
0

e−xu dPw(u) =
∞∏

n=1

(1− e−nx)−w(n).

We then observe that

log P̂w(x) = −
∞∑

n=1

w(n) log(1− e−nx) = −

∫ ∞
0

log(1− e−xu) dNw(u) = Ñw(x),

and we show that an estimate for Ñw(x) will lead to a corresponding estimate for
the Laplace transform N̂w(x) of Nw(u). Finally, we appeal to a Tauberian theorem of
Omey (Proposition 2) to obtain the desired estimate for Nw(u).

By specializing
(
Φ(u),Φ∗(u)

)
to the pair (1.5), we will prove the following gen-

eralization of Theorem C.

Theorem 2 Suppose that, as u→∞,

(1.9) log Pw(u) = Aua

{
1 + O

(
1

λ(u)

)}

for some constants A > 0 and 0 < a < 1, where λ(u) is a positive differentiable function
such that λ(u)↗∞ and u−aλ(u) log u↘ 0 as u→∞. Then, as u→∞,

(1.10) Nw(u) =
∑
n≤u

w(n) = Bub

{
1 + O

(
1

logλ(u)

)}
,

where

(1.11) b =
a

1− a
, B =

A1/(1−a)aa/(1−a)(1− a)

Γ
(

1/(1− a)
)
ζ
(

1/(1− a)
) .

Our next theorem shows that, under additional conditions on the Dirichlet series

(1.12) fw(s) =
∞∑

n=1

w(n)

ns

generated by w(n), the conclusion (0.7) in Theorem C can be sharpened to (0.8). Our
conditions on fw(s) are reminiscent of those in Meinardus [13]. However, Meinar-
dus’ conditions are significantly more restrictive, requiring fw(s) to have an analytic
continuation, except for a simple pole, to a region of the form Re s > −C with a pos-
itive constant C . In particular, Meinardus’ conditions are not satisfied when w(n) is
the von Mangoldt function Λ(n). By contrast, the conditions in Theorem 3 do apply
to this case (see Corollary 1 below).
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Theorem 3

(i) Suppose that, as u→∞,

(1.13) log Pw(u) = Aua + O(ua1 )

for some constants A > 0 and 0 < a1 < a < 1. Then fw(s) has a representation

(1.14) fw(s) =
1

Γ(s)ζ(1 + s)

{ D

s− b
+ hw(s)

}
,

where

(1.15) b =
a

1− a
, D = A1/(1−a)aa/(1−a)(1− a)

and hw(s) has an analytic continuation to the half-plane {s : Re s > a1/(1− a)}.
(ii) In addition to the hypotheses of part (i), suppose that for all ε > 0, as n→∞,

(1.16) w(n)	ε na1/(1−a)+ε

and that for all ε, δ > 0

(1.17) | fw(σ + it)| 	δ,ε tε

uniformly for σ ≥ a1/(1− a) + δ and sufficiently large t. Then we have, for every
ε > 0, as u→∞,

(1.18) Nw(u) =
∑
n≤u

w(n) = Bub + O(ub1+ε),

where B and b are defined by (1.11) and b1 = a1/(1− a).

Remark The error term in (1.13) corresponds to the choice λ(u) = ua−a1 in (1.9).
Theorem 3 suggests that, under similar assumptions, hypothesis (1.9) implies an es-
timate of the form

Nw(u) = Bub

{
1 + O

(
1

λ(uc)

)}
(u→∞)

for more general classes of functions λ(u). However, this is not the case. For exam-
ple, in the case when w(n) = Λ(n), it is easy to see that the function w(n) satisfies
conditions similar to (1.16) and (1.17). On the other hand, using the methods of
[25], one can show that (1.9) holds with

λ(u) = exp

{
c1 log u

(log log u)α+ε

}
, ε > 0, c1 = c1(ε) > 0,
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if and only if

NΛ(u) = u + Oε

(
u exp

{
−c2(log u)1/(1+α)−ε

})
, ε > 0, c2 = c2(ε) > 0.

As applications of Theorem 3 we will prove the following results which give char-
acterizations of the Riemann Hypothesis and related hypotheses in terms of the
asymptotic behavior of certain partition functions. This kind of characterizations,
to the author’s best knowledge, was first formulated in [25].

Corollary 1 Let k be a positive integer, and for any integer l with (k, l) = 1 let

wk,l(n) =

{
Λ(n), if n ≡ l mod k,

0, else.

Then, for any fixed number θ with 1/2 ≤ θ < 1, the Dirichlet L-function L(s, χ) =∑∞
n=1 χ(n)n−s has no zeros in the half-plane {s : Re s > θ} for all characters χ modulo

k if and only if, for all l with (k, l) = 1 and all ε > 0, as u→∞,

(1.19) log Pwk,l (u) = 2

√
ζ(2)

ϕ(k)
u1/2 + Oε,k,l(uθ/2+ε).

In particular, the Generalized Riemann Hypothesis is true if and only if, for every ε > 0
and all positive integers k, l satisfying (k, l) = 1, as u→∞,

log Pwk,l (u) = 2

√
ζ(2)

ϕ(k)
u1/2 + Oε,k,l(u1/4+ε).

In the special case when k = l = 1, this result reduces to the case θ = 1/2 of
Theorem D, showing the equivalence between (0.9) and the Riemann Hypothesis.

Corollary 2 Let w(n) be the characteristic function of the set of positive integers with
an even number of prime factors. Then, for any fixed number θ with 1/2 ≤ θ < 1, the
Riemann zeta function has no zeros in the half-plane {s : σ > θ} if and only if for all
ε > 0, as u→∞,

(1.20) log Pw(u) = 2
√
ζ(2)u1/2 + Oε(uθ/2+ε).

Corollary 3 Let k be a positive integer, and let w(n) be defined by

w(n) =

{
Λ(m), if n = mk,

0, else.

Then the Riemann Hypothesis is true if and only if

(1.21) log Pw(u) = Aku1/(k+1) + Oε(u1/(2(k+1))+ε)
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as u→∞ for every ε > 0, where

(1.22) Ak =
{ 1

k
Γ
(

1 +
1

k

)
ζ
(

1 +
1

k

)} k/(k+1)
(k + 1).

The remainder of the paper is organized as follows. In Section 2 we state the
Abelian and Tauberian results mentioned above. In Section 3 we complete the proof
of Theorem 1. In Section 4 we prove Theorem 2 and briefly discuss how to find
admissible functions for general cases. In Section 5 we prove several auxiliary results
which relate the behavior of the Laplace transform P̂w(x) for Pw(u) to the analytic
properties of the Dirichlet series fw(s) defined by (1.12), and use these results to prove
Theorem 3. In Section 6 we prove Corollaries 1–3.

2 Abelian and Tauberian Results

Our first proposition is an elementary Abelian result which generalizes Proposition 1
in [25]. This result also generalizes Theorem 10 in [5], which is a main ingredient in
the proof of Geluk’s result [7] mentioned above.

Proposition 1 Suppose that P(u) is a non-negative and non-decreasing function satis-
fying P(u) = Oε(eεu) as u→∞ for every positive ε. Let

P̂(x) =

∫ ∞
0

e−xu dP(u)

be the Laplace-Stieltjes transform of P(u). Suppose that, as u→∞,

(2.1) log P(u) =

∫ u

0
φ(v) dv + O

(∫ u

0
r(v) dv

)
,

where φ(v) and r(v) are continuous, non-increasing functions defined on (0,∞) and
satisfying the following conditions:

φ(v), r(v)→ 0 as v→∞;(P1)

φ(v)v, r(v)v→∞ as v→∞;(P2)

r(v) = o
(
φ(v)

)
as v→∞;(P3)

there are constants c1 > 1 and c2 > 0 such that(P4)

φ(c1v)− φ(v) ≤ −c2φ(v) for all sufficiently large v.

Then, as x→ 0,

(2.2) log P̂(x) =

∫ ∞
x

φ←(y) dy + O
(∫ φ←(x)

0
r(v) dv

)

where φ←(x) = max(0, inf{u : φ(u) ≤ x}).
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Proof Suppose that (2.1) holds as u → ∞. Without loss of generality, we may as-
sume that P(0) = 0. Thus, by the assumptions that P(u) is non-decreasing and
non-negative and that P(u) = Oε(eεu), we have for all x, u > 0

P̂(x) =

∫ ∞
0

e−xt dP(t) = x

∫ ∞
0

e−xt P(t) dt(2.3)

≥ x

∫ ∞
u

e−xt P(t) dt ≥ x

∫ ∞
u

e−xt P(u) dt = e−xuP(u).

By (2.1), it follows that there is a positive constant C such that

(2.4) log P̂(x) ≥ −xu +

∫ u

0
φ(v) dv −C

∫ u

0
r(v) dv

for all x > 0 and all sufficiently large u. We apply this with u = ux = φ←(x), where
φ←(x) is the generalized inverse function defined by (1.4), so that for sufficiently
small x

(2.5) ux = φ
←(x) = inf{v : φ(v) ≤ x}.

We note that since φ(v) is continuous and monotonic for sufficiently large v, we have

(2.6) φ(ux) = x.

By considering the graph of φ(v), we see that

(2.7) −xφ←(x) +

∫ φ←(x)

0
φ(v) dv =

∫ ∞
x

φ←(y) dy.

It follows from (2.4) and (2.5) that, for all sufficiently small x,

log P̂(x) ≥

∫ ∞
x

φ←(y) dy −C

∫ φ←(x)

0
r(v) dv.

This proves the lower bound in (2.2). It remains to obtain the corresponding upper
bound.

Let c1 and c2 be constants appearing in condition (P4), and let u0 be a constant
such that condition (P4) is satisfied for v ≥ u0. Given a small positive number x, we
let ux be defined by (2.5) and assume that x is small enough that ux ≥ c1u0. We write

P̂(x) = x
{∫ u0

0
+

∫ ux/c1

u0

+

∫ c1ux

ux/c1

+

∫ ∞
c1ux

}
e−xt P(t) dt(2.8)

= x{I1 + I2 + I3 + I4}.

We will show that, for j = 1, . . . , 4, we have

(2.9) xI j 	 exp
{
−xux +

∫ ux

0
φ(v) dv + C j

∫ ux

0
r(v) dv

}
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with suitable constants C j . By (2.5) and (2.7), this implies the desired estimate (2.2).
The integral I1 is bounded by

∫ u0

0 P(t) dt and is thus O(1). To estimate I4, we
define functions ψ0(t) and ψ(t) for t ≥ u0 by

ψ0(t) = −xt +

∫ t

0
φ(v) dv, ψ(t) = ψ0(t) + C

∫ t

0
r(v) dv,

where C is the constant implicit in the error term of (2.1). Thus (2.1) implies that

(2.10) P(u) ≤ exu+ψ(u)

for sufficiently large u. Since φ(t) is non-increasing, the function ψ ′0(t) = −x + φ(t)
is non-increasing as well. In particular, by (2.6), one has ψ ′0(t) ≥ −x +φ(ux) = 0 for
0 < t < ux and ψ ′0(t) ≤ −x + φ(ux) = 0 for t > ux. Thus, by the assumption that
r(t) is non-increasing, we have for all t ≥ c1ux

ψ ′(t) = ψ ′0(t) + Cr(t) ≤ ψ ′0(c1ux) + Cr(t) = −x + φ(c1ux) + Cr(ux).

By condition (P4) and (2.6) it follows that for all t ≥ c1ux

ψ ′(t) ≤ −x + φ(ux)− c2φ(ux) + Cr(ux) = −c2φ(ux) + Cr(ux).

Since, by condition (P3), r(ux) = o
(
φ(ux)

)
, this implies that

ψ ′(t) ≤ −
c2

2
φ(ux) = −

c2

2
x

for all sufficiently small x and all t ≥ c1ux. In view of (2.10), it follows that

I4 = x

∫ ∞
c1ux

e−xt P(t) dt ≤ x

∫ ∞
c1ux

eψ(t) dt 	

∫ ∞
c1ux

eψ(t)
(
−ψ ′(t)

)
dt

= eψ(c1ux) = exp
{
ψ0(c1ux) + C

∫ c1ux

0
r(v) dv

}

for all sufficiently small x. Since ψ0(t) is decreasing for t > ux, we have ψ0(c1ux) ≤
ψ0(ux). Moreover, the assumption that r(v) is non-increasing implies that

(2.11)

∫ c1ux

0
r(v) dv ≤ c1

∫ ux

0
r(v) dv,

and we conclude that

xI4 	 exp
{
ψ0(ux) + Cc1

∫ ux

0
r(v) dv

}

	 exp
{
−xux +

∫ ux

0
φ(v) dv + Cc1

∫ ux

0
r(v) dv

}
.
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Thus (2.9) holds as x→ 0 for j = 4 with C4 = Cc1.
By a similar argument one sees that (2.9) also holds for j = 2 with C2 = Cc1. It

remains to estimate xI3.
We first recall that t = ux maximizes ψ0(t) = −xt +

∫ t
0 φ(v) dv. Then by (2.10) we

have

xI3 = x

∫ c1ux

ux/c1

e−xt P(t) dt ≤ x

∫ c1ux

ux/c1

exp
{
ψ0(t) + C

∫ t

0
r(v) dv

}
dt

	 xux exp
{
ψ0(ux) + C

∫ c1ux

0
r(v) dv

}

for all sufficiently small x. Furthermore, by conditions (P1), (P2) and (2.6), we have
log xux 	 log ux = o(

∫ ux

0 r(v) dv). Therefore, by (2.11), the last expression is

	 exp
{
ψ0(ux) + (Cc1 + 1)

(∫ ux

0
r(v) dv

)}
.

Hence (2.9) holds as u→∞ for j = 3 with C3 = Cc1 + 1. This completes the proof
of Proposition 1.

We next quote a Tauberian result due to Omey [15] which will play a crucial role
in the proof of Theorem 1.

Proposition 2 (Omey) Suppose that Ψ(u) is a non-negative and monotonically in-
creasing function such that Ψ̂(x) =

∫∞
0 e−xu dΨ(u) < ∞ for all x > 0. Suppose that

Θ(u) and ξ(u) are positive functions and A,B, β > 0 and c1, c2 > 1 are constants such
that the following conditions are satisfied:

Θ(u)u−β ↘ 0 as u→∞;(O1)

c1Θ(u) ≤ 2Θ(2u) for sufficiently large u;(O2)

Θ̂(x) ≤ A + BΘ(1/x) for all x > 0;(O3)

ξ(u)→∞ and ξ(2u) < c2ξ(u) for all sufficiently large u.(O4)

Suppose that, as x→ 0,

Ψ̂(x) = Θ̂(x) + O

(
Θ(1/x)

ξ(1/x)

)
.

Then as u→∞ one has

Ψ(u) = Θ(u) + O

(
Θ(u)

log ξ(u)

)
.
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3 Proof of Theorem 1

We first establish some elementary properties of the functionΦ(u) occurring in The-
orem 1. We recall that, by convention, the symbols↘ and↗mean that the functions
involved are eventually non-increasing and non-decreasing, respectively.

Lemma 1 Let φ(u) be a continuous and non-increasing function. Let Φ(u) =∫ u
0 φ(v) dv, let φ←(x) be the generalized inverse function given by (1.4) and set
Φ←(x) =

∫∞
x φ←(y) dy. Suppose that there exists a constant 0 < α < 1 such that

(3.1) φ(u)u1−α ↘ 0 as u→∞.

Then we have

(3.2) Φ(u)u−α ↘ 0 as u→∞

and

(3.3) φ←(x)x1/(1−α) ↘ 0 and Φ←(x)xα/(1−α) ↘ 0 as x→ 0.

Proof By (3.1) we have φ(u) = o(uα−1) as u → ∞. Consequently, we have Φ(u) =∫ u
0 φ(v) dv = o(uα) as u → ∞. To complete the proof of (3.2), it suffices to show

that u−αΦ(u) is non-increasing for sufficiently large u.
By (3.1), there exists a positive constant u0 such that φ(u)u1−α is non-increasing

for u ≥ u0. Then one has φ(u)u1−α ≤ φ(v)v1−α for all u ≥ v ≥ u0. Multiplying by
vα−1 and integrating from u0 to u, we obtain

1

α
φ(u)u1−α(uα − uα0 ) ≤ Φ(u)− Φ(u0).

It follows that

uα+1 d

du

(
Φ(u)u−α

)
= φ(u)u− αΦ(u) ≤ φ(u)u1−αuα0 − αΦ(u0),

which, by (3.1), is strictly negative when u is sufficiently large. This proves assertion
(3.2).

To prove (3.3), we first observe that (3.1) implies that c1−αφ(cu) ≤ φ(u) for c ≥ 1
and all sufficiently large u. Replacing c with c1/(1−α) and setting x = φ(u), we ob-
tain φ

(
c1/(1−α)φ←(x)

)
≤ c−1x for c ≥ 1 and all sufficiently small x. Note that

φ←(x) is non-increasing for sufficiently small x since φ(u) is non-increasing for suf-
ficiently large u. Therefore we have φ←(c−1x) ≤ c1/(1−α)φ←(x), or equivalently,
(c−1x)1/(1−α)φ←(c−1x) ≤ x1/(1−α)φ←(x). Thus the function x1/(1−α)φ←(x) is non-
decreasing when x is sufficiently small. We now show that x1/(1−α)φ←(x) → 0 as
x → 0. Given a real number ε ∈ (0, 1), let uε be a positive number such that
φ(u)u1−α ≤ φ(uε)u1−α

ε ≤ ε for all u ≥ uε. Then we have φ(uε) ≤ εuα−1
ε and

thus uε = φ←
(
φ(uε)

)
≥ φ←(εuα−1

ε ). Hence, for any 0 < x ≤ εuα−1
ε one has

x1/(1−α)φ←(x) ≤ (εuα−1
ε )1/(1−α)φ←(εuα−1

ε ) ≤ ε1/(1−α).
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It follows that x1/(1−α)φ←(x)→ 0 as x→ 0, which implies that

Φ←(x) = o(

∫ ∞
x

y−1/(1−α) dy) = o(xα/(1−α)).

Finally, using an argument similar to that used in the proof of (3.2), we see that
Φ←(x)xa/(1−a) is monotonic for sufficiently small x. This completes the proof of
(3.3).

Lemma 2 Let φ(u), Φ(u), φ←(x) and Φ←(x) be given as in Lemma 1. Suppose that
there is a constant 0 < α < 1 such that (3.1) holds. Then we have, as x→∞,

Φ
(
φ←(x)

)
� Φ←(x).

Proof It suffices to show that Φ(u) � Φ←
(
φ(u)

)
as u → ∞. By considering the

graph of φ(u), one sees that, for all u ≥ 0,

(3.4) Φ←
(
φ(u)

)
=

∫ ∞
φ(u)

φ←(y) dy = −φ(u)u + Φ(u)

and hence Φ←
(
φ(u)

)
≤ Φ(u). It remains to show that Φ←

(
φ(u)

)
� Φ(u) as u →

∞. By Lemma 1, Φ(u)u−α is decreasing for all sufficiently large u. Differentiating
Φ(u)u−α and then multiplying by u1+α, we obtain φ(u)u − αΦ(u) ≤ 0. By (3.4), it
follows that

(1− α)Φ(u) ≤ −φ(u)u + Φ(u) = Φ←
(
φ(u)

)
for all sufficiently large u. Thus, Φ←

(
φ(u)

)
� Φ(u) and proof of the lemma is

complete.

Lemma 3 Suppose that Ψ(u) is a non-negative and non-decreasing function defined
on (0,∞) with a finite transform Ψ̃(x) = −

∫∞
0 log(1 − e−xu) dΨ(u) for all x > 0.

Suppose that there are constants 0 < β < γ such thatΨ(u)u−β ↗∞ andΨ(u)u−γ ↘
0 as u→∞. Then we have, as x→ 0,

Ψ̃(x) � Ψ(1/x).

Proof Let u0 > 0 be a constant such that Ψ(u)u−β is non-decreasing and Ψ(u)u−γ

is non-increasing for u ≥ u0. We write

Ψ̃(x) =

∫ ∞
0

(
− log(1− e−xu)

)
dΨ(u) =

∫ u0

0
+

∫ ∞
u0

= I1 + I2.

For x ≤ 1/(2u0) and u ≤ u0, we have − log(1− e−xu) � log(xu)−1. It follows that

I1 �

∫ u0

0
log(xu)−1 dΨ(u) � log x−1.
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On the other hand, integrating by parts, we obtain

I2 = Ψ̃(u0) log(1− e−xu0 ) +

∫ ∞
u0

xΨ(u)

exu − 1
du = O(log x−1) + J.

By the assumption thatΨ(u)u−β is non-decreasing for u ≥ u0, we see that, as x→ 0,

J ≥ Ψ(u0)u−β0

∫ ∞
u0

xuβ

exu − 1
du� x−β.

Therefore, one has log x−1 = o( J). Hence, to prove the lemma, it suffices to show
that J � Ψ(1/x).

SinceΨ(u) is non-decreasing, as x→ 0 we have

J ≥

∫ ∞
1/x

xΨ(u)

exu − 1
du ≥ Ψ(1/x)

∫ ∞
1/x

xe−xu du� Ψ(1/x).

To obtain an analogous upper bound, we write

J =

∫ 1/x

u0

+

∫ ∞
1/x
= J1 + J2.

Since Ψ(u)u−β is non-decreasing and Ψ(u)u−γ is non-increasing for u ≥ u0, we
have, for sufficiently small x,

J1

Ψ(1/x)
=

∫ 1/x

u0

x

exu − 1
·
Ψ(u)

Ψ(1/x)
du ≤

∫ 1/x

u0

x(ux)β

exu − 1
du ≤

∫ ∞
0

vβ

ev − 1
dv = Cβ

and

J2

Ψ(1/x)
=

∫ ∞
1/x

x

exu − 1
·
Ψ(u)

Ψ(1/x)
du ≤

∫ ∞
1/x

x(ux)γ

exu − 1
du ≤

∫ ∞
0

vγ

ev − 1
dv = Cγ,

where Cβ and Cγ are constants depending only on β and γ. It follows that J =
J1 + J2 	 Ψ(1/x). This proves the lemma.

The next result will be used in the second step of the proof of Theorem 1.

Proposition 3 Let w(n) and Nw(u) =
∑

n≤u w(n) be given as in the statement of
Theorem 1. Suppose that Ψ(u) is a non-negative and non-decreasing function with a
finite transform Ψ̃(x) < ∞ for all x > 0, and suppose that γ > β > 0 are constants
such that, as u→∞,

(3.5) Ψ(u)u−β ↗∞ and Ψ(u)u−γ ↘ 0.

Suppose that R(x) is a non-negative function and δ > 0 is a constant such that, as
x→ 0,

(3.6) R(x)xδ ↗∞
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and

(3.7) Ñw(x) = Ψ̃(x) + O
(

R(x)
)
.

Then we have, as x→ 0,

(3.8) N̂w(x) = Ψ̂(x) + O
(

R(x) + xβΨ(1/x)
)
.

Proof Let u0 > 0 be a constant such that Ψ(u)u−γ is monotonic for u ≥ u0, and let
x0 > 0 and C > 0 be constants such that

(3.9) |Ñw(x)− Ψ̃(x)| ≤ CR(x)

for 0 < x ≤ x0 and such that R(x)xδ is monotonic in this range. Without loss of
generality, we may assume that

(3.10) u0 =
1

2x0
.

We define N0(u) andΨ0(u) by

N0(u) =

{
Nw(u), if u ≥ u0,

0, if 0 < u < u0,
Ψ0(u) =

{
Ψ(u), if u ≥ u0,

0, if 0 < u < u0.

We then have, for all x > 0,

N̂w(x) = N̂0(x) +

∫ u0

0
e−xu dNw(u),

Ψ̂(x) = Ψ̂0(x) +

∫ u0

0
e−xu dΨ(u)

and

Ñw(x) = Ñ0(x)−

∫ u0

0
log(1− e−xu) dNw(u),

Ψ̃(x) = Ψ̃0(x)−

∫ u0

0
log(1− e−xu) dΨ(u).

Using (1.3), it follows that

|N̂w(x)− Ψ̂(x)| ≤

∫ u0

0
e−xu dNw(u) +

∫ u0

0
e−xu dΨ(u) + |N̂0(x)− Ψ̂0(x)|

≤ I1 + I2 +
∞∑

k=1

1

k
|Ñ0(kx)− Ψ̃0(kx)|

= I1 + I2 +
∑

k≤x0/x

+
∑

k>x0/x

= I1 + I2 + S1 + S2.

https://doi.org/10.4153/CJM-2001-035-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-035-9


882 Yifan Yang

We will estimate the four terms in the last expression separately.
Trivially, we have I1,2 	 1. To estimate S1, we write

S1 ≤
∑

k≤x0/x

1

k
|Ñw(kx)− Ψ̃(kx)| +

∑
k≤x0/x

1

k

∫ u0

0

(
− log(1− e−kxu)

)
dNw(u)

+
∑

k≤x0/x

1

k

∫ u0

0

(
− log(1− e−kxu)

)
dΨ(u)

= S11 + S12 + S13.

By (3.6) and (3.9), one sees that

S11 	
∑

k≤x0/x

1

k
R(kx)	

∑
k≤x0/x

k−1−δR(x)	 R(x).

Moreover, using (3.10) and the fact that Nw(u) = 0 for 0 ≤ u < 1, we obtain, as
x→ 0,

S12 	
∑

k≤x0/x

1

k

∫ u0

1−
log(kxu)−1 dNw(u)	

∑
k≤x0/x

1

k
log(kx)−1 	 (log x−1)2.

Finally, as x→ 0 we have

S13 	
∑

k≤x0/x

1

k

∫ u0

0
log(kxu)−1 dΨ(u)

=
∑

k≤x0/x

1

k

∫ u0

0

(
log(kx/x0)−1 + log(x0u)−1

)
dΨ(u)

	 (log x−1)2 − log x−1

∫ u0

0
log(1− e−x0u) dΨ(u)	 (log x−1)2.

Thus,

(3.11) S1 ≤ S11 + S12 + S13 	 R(x) + (log x−1)2 	 R(x),

where in the last step we used the bound R(x) � x−δ , which follows from (3.6). It
remains to estimate S2.

Integrating Ψ̃0(x) = −
∫∞

u0
log(1− e−kxu) dΨ(u) by parts, we obtain

∑
k>x0/x

1

k
Ψ̃0(kx) =

∑
k>x0/x

Ψ(u0)

k
log(1− e−kxu0 ) +

∑
k>x0/x

∫ ∞
u0

x

ekxu − 1
Ψ(u) du

≤
∑

k>x0/x

∫ 1/x

u0

x

ekxu − 1
Ψ(u) du +

∑
k>x0/x

∫ ∞
1/x

x

ekxu − 1
Ψ(u) du

= S21 + S22.
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Since, by the first part of (3.5),Ψ(u)u−β ≤ Ψ(1/x)xβ for u0 ≤ u ≤ 1/x, we have

S21 ≤ Ψ(1/x)
∑

k>x0/x

∫ 1/x

u0

x(ux)β

ekxu − 1
du	 Ψ(1/x)

∑
k>x0/x

k−β−1 	 xβΨ(1/x).

A similar argument, using the second part of (3.5), gives S22 	 xγΨ(1/x). On the
other hand, we have

∑
k>x0/x

1

k
Ñ0(kx) = −

∑
k>x0/x

1

k

∑
n≥u0

w(n) log(1− e−knx)

	
∑

k>x0/x

1

k

∑
n≥u0

w(n)e−knx 	
∑
n≥u0

w(n)e−nx0

≤ Ñw(x0)	 1.

Therefore, one has S2 	 xβΨ(1/x) + xγΨ(1/x) + 1 	 xβΨ(1/x). Combining this
and (3.11), we obtain conclusion (3.8) of Proposition 3.

Proof of Theorem 1 Let Φ(u), Φ∗(u) and λ(u) be given as in the theorem, and
suppose that pw(n) is a weighted partition function such that Pw(u) =

∑
n≤u pw(n)

satisfies (1.6) as u → ∞. We first apply Proposition 1 with P(u) = Pw(u), φ(u) =

Φ ′(u) and r(u) =
(
Φ(u)/λ(u)

) ′
. Condition (P1) of Proposition 1 follows from (A2)

in the definition of admissibility and (T1). To see that condition (P2) is satisfied, we
note that, by (T2), the function Φ(u)/

(
λ(u) log u

)
is non-decreasing for sufficiently

large u and thus

(
Φ(u)

λ(u)

) ′
(log u)−1 −

Φ(u)

uλ(u)
(log u)−2 ≥ 0

for sufficiently large u. Hence by (T2) we have, as u→∞,

(3.12) r(u)u =

(
Φ(u)

λ(u)

) ′
u ≥

(
Φ(u)

λ(u)

)
(log u)−1 →∞.

Moreover, by the definition of r(u) and (T1),

(3.13) 0 ≤ r(u) =
φ(u)

λ(u)
−
Φ(u)λ ′(u)

λ(u)2
≤
Φ(u)

λ(u)
= o
(
φ(u)

)
.

Therefore φ(u)u → ∞ as u → ∞, and condition (P2) is satisfied. Finally, condition
(P3) follows from (3.13), and condition (P4) follows from (A2) with c1 = 2 and
c2 = 1− 2α−1, so the hypotheses of Proposition 1 are satisfied. Applying conclusion
(2.2) of Proposition 1, we obtain

Ñ(x) = log P̂w(x) =

∫ ∞
x

φ←(y) dy + O

(
Φ
(
φ←(x)

)
λ
(
φ←(x)

) ) .

https://doi.org/10.4153/CJM-2001-035-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-035-9


884 Yifan Yang

Furthermore, by (3.12) and (3.13), we have φ(u)u ≥ 1 for all sufficiently large u.
Thus, by (T1), we see that λ

(
φ←(x)

)
≥ λ(1/x) and hence as x→ 0 one has

Ñw(x) =

∫ ∞
x

φ←(y) dy + O

(
Φ
(
φ←(x)

)
λ(1/x)

)
.

By Lemma 2, it follows that, as x→ 0,

Ñw(x) =

(
1 + O

(
1

λ(1/x)

)) ∫ ∞
x

φ←(y) dy.

By (A4 ′), this is equivalent to, as x→ 0,

Ñw(x) = Φ̃∗(x) + O

(
Φ∗(1/x)

λ(1/x)

)
.

We now apply Proposition 3 with Ψ(u) = Φ∗(u) and R(x) = Φ∗(1/x)/λ(1/x).
Hypothesis (3.5) of Proposition 3 follows immediately from (A3). To show that hy-
pothesis (3.6) is satisfied, we choose δ = β − α and write

R(x)xδ = Φ∗(1/x)xβ
{

log x−1

Φ(1/x)xα

}{
Φ(1/x)

λ(1/x)
(− log x)−1

}
.

By condition (A3) we have Φ∗(1/x)xβ ↗ ∞ as x → 0. By (A2) and (3.2) in
Lemma 1 we have (log x−1)/

(
Φ(1/x)xα

)
↗ ∞ as x → 0, and by (T2) we have

Φ(1/x)(− log x)−1/λ(1/x) ↗ ∞ as x → 0. Hence we see that R(x)xδ ↗ ∞ as
x→ 0. Thus all hypotheses of Proposition 3 hold, and we conclude that as x→∞

N̂w(x) = Φ̂∗(x) + O

(
Φ∗(1/x)

λ(1/x)
+ xβΦ∗(1/x)

)
.

Finally, in the last step of proof we apply Proposition 2 with Ψ(u) = Nw(u),
Θ(u) = Φ∗(u), and ξ(u) = min

(
λ(u), uγ

)
. Conditions (O1) and (O2) follow from

condition (A3) and Lemma 1, condition (O3) follows from (3.15), and condition
(O4) follows from conditions (T1) and (3.2) in Lemma 1. Therefore the conclusion
of Proposition 2 holds, and one has, as u→∞,

N(u) = Φ∗(u)

{
1 + O

(
1

logλ(u)
+

1

log u

)}
.

Since, by condition (T2) and (3.2), λ(u) = o
(
Φ(u)(log u)−1

)
= o(uα), we have

logλ(u)	 log u. It follows that

N(u) = Φ∗(u)

{
1 + O

(
1

logλ(u)

)}
,

which is the claimed result.
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4 Proof of Theorem 2

Let Pw(u) and λ(u) be given as in the statement of Theorem 2. Suppose that (1.9)
holds as u→∞ with some constants A > 0 and 0 < a < 1. Let Φ(u) = Aua and set
Φ∗(u) = Bub, where B and b are constants given by (1.11). The pair

(
Φ(u),Φ∗(u)

)
clearly satisfies conditions (A1)–(A3) in the definition of admissibility. Furthermore,
we have φ(u) = Φ ′(u) = Aau−(1−a), φ←(y) = (Aay−1)1/(1−a) and hence

∫ ∞
x

φ←(y) dy =

∫ ∞
x

(Aay−1)1/(1−a) dy = Dx−b,

where D = A1/(1−a)aa/(1−a)(1 − a). We then observe that, by definition (1.11) of b
and B, one has B = D/

(
Γ(1 + b)ζ(1 + b)

)
and thus

Φ̃∗(x) = −B

∫ ∞
0

log(1− e−xu) dub = B
∞∑

k=1

1

k

∫ ∞
0

e−kxu dub

= BΓ(1 + b)
∞∑

k=1

k−1−bx−b = BΓ(1 + b)ζ(1 + b)x−b

= Dx−b =

∫ ∞
x

φ←(y) dy.

Therefore, condition (A4 ′) is satisfied and the pair of functions
(
Φ(u),Φ∗(u)

)
is

admissible with accuracy λ(u). (In fact, it is admissible with arbitrary accuracy since
the main terms on the left and the right of (A4 ′) are equal.) We now apply Theorem 1
with Φ(u), Φ∗(u), and λ(u) given as above. Conditions (T1) and (T2) in Theorem 1
follow immediately from the assumption on λ(u) in the statement of Theorem 2, and
(1.6) follows from (1. 9). Hence, Theorem 1 applies, and as u→∞ we have

N(u) = Bub

{
1 + O

(
1

logλ(u)

)}
,

completing the proof of Theorem 2.

Remark More generally, if Φ(u) is a function such that log P̂w(x) has an asymptotic
expansion with main term Φ←(x) = x−b

∑n
k=0 ck(log x−1)n−k, where n is a positive

integer, b, c0 > 0, and the numbers ck are arbitrary constants, we can find a suitable
function Φ∗(u) as follows. By the Mellin inversion formula, for σ, x > 0 we have

(4.1) e−x =
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)x−s ds.
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Hence, whenever
∫∞

0 u−σ dΦ∗(u) converges, one has

Φ̃∗(x) = −

∫ ∞
0

log(1− e−xu) dΦ∗(u)

=
1

2πi

∞∑
k=1

1

k

∫ ∞
0

∫ σ+i∞

σ−i∞
Γ(s)(kxu)−s ds dΦ∗(u)

=
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)ζ(1 + s)x−s

(∫ ∞
0

u−s dΦ∗(u)
)

ds.

On the other hand, we have

1

2πi

∫ σ+i∞

σ−i∞
x−s

n∑
k=0

ck

(s− b)n−k+1
ds = x−b

n∑
k=0

ck(log x−1)c−k.

Thus, in order for (A4) to be satisfied, we should choose Φ∗(u) so that

∫ ∞
0

u−s dΦ∗(u) ∼
1

Γ(s)ζ(1 + s)

n∑
k=0

ck

(s− b)c−k+1

as s→ b+. By the Mellin inversion formula this condition translates to

Φ∗(u) ∼
1

2πi

∫ σ+i∞

σ−i∞

us

Γ(1 + s)ζ(1 + s)

n∑
k=0

ck

(s− b)n−k+1
ds ∼ ub

n∑
k=0

dk(log u)n−k,

where

dk =
1

(n− k)!

k∑
j=0

ck− j
d j

ds j

1

Γ(1 + s)ζ(1 + s)

∣∣∣∣
s=b

.

5 Proof of Theorem 3

As usual, let w(n) be a non-negative weight function. We first give a representation
of the Dirichlet series fw(s) =

∑∞
n=1 w(n)n−s as an integral involving the Laplace

transform P̂w(x) of Pw(u) =
∑

n≤u pw(n).

Lemma 4 Let σa be the abscissa of absolute convergence for fw(s). Then we have, for
Re s > max(0, σa),

∫ ∞
0

xs−1 log P̂w(x) dx = Γ(s)ζ(s + 1) fw(s).
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Proof Suppose that Re s > max(0, σa). Then by (1.8) we have

∫ ∞
0

xs−1 log P̂w(x) dx =

∫ ∞
0

xs−1
∞∑

n=1

w(n)
(
− log(1− e−nx)

)
dx

=

∫ ∞
0

xs−1
∞∑

k=1

∞∑
n=1

w(n)

k
e−knx dx

=

∞∑
k=1

∞∑
n=1

Γ(s)w(n)

nsks+1
= Γ(s)ζ(s + 1) fw(s),

where interchanging of order of integration and summation is justified by absolute
convergence of the double series involved.

The next lemma is a version of Landau’s theorem on singularities of Dirichlet
series.

Lemma 5 (Landau)

(i) Let g(n) be a function defined on the set of positive integers and of constant sign for
all sufficiently large n. Suppose that the Dirichlet series

∑∞
n=1 g(n)n−s has finite

abscissa of absolute convergence σa. Then s = σa is a singularity of the function
represented by the Dirichlet series.

(ii) Let g(x) be an integrable function on [0, 1] and of constant sign for all sufficiently

small x. Suppose that the Dirichlet integral
∫ 1

0 g(x)xs−1 dx has finite abscissa of
absolute convergence σa. Then s = σa is a singularity of the function represented
by the Dirichlet integral.

Proof Part (i) is the classical version of Landau’s theorem (see, e.g., Ingham [11,
p. 88]). To obtain part (ii), we note that the given integral can be written as∫∞

1 h(u)u−s du with h(u) = g(1/u)/u and x = 1/u. By the integral version of Lan-
dau’s theorem (Ingham [11, p. 88]) the last integral has a singularity at s = σa.

Proof of Theorem 3 Suppose that (1.13) holds as u→∞ with some constants A >
0 and 0 < a1 < a < 1. We apply Proposition 1 with P(u) = Pw(u), φ(v) = Aava−1

and r(v) = va1−1 and note that φ←(y) = (Aa)1/(1−a) y−1/(1−a). Hypothesis (2.1)
follows from (1.13), and it is easy to see that conditions (P1)–(P4) of Proposition 1
are satisfied. Thus conclusion (2.2) of Proposition 1 holds, and as x→ 0 we have

log P̂w(x) =

∫ ∞
x

φ←(y) dy + O
(∫ φ←(x)

0
r(v) dv

)
(5.1)

= (Aa)1/(1−a)

∫ ∞
x

y−1/(1−a) dy + O
(∫ (Aax−1)1/(1−a)

0
va1−1 dv

)
= A1/(1−a)aa/(1−a)(1− a)x−a/(1−a) + O(x−a1/(1−a))

= Dx−b + O(x−b1 ),

https://doi.org/10.4153/CJM-2001-035-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-035-9


888 Yifan Yang

where b = a/(1 − a), b1 = a1/(1 − a) and D = A1/(1−a)aa/(1−a)(1 − a). Therefore
there exists a constant C > 0 such that, for x ∈ (0, 1),

| log P̂w(x)− Dx−b| ≤ Cx−b1 .

On the other hand, for x ≥ 1 we have the bound

log P̂w(x) = −
∞∑

n=1

w(n) log(1− e−nx)(5.2)

≤ −e−x/2
∞∑

n=1

w(n) log(1− e−nx/2)

≤ e−x/2 log P̂w(1/2)	 e−x/2.

Setting
E(x) = log P̂w(x)− Dx−b

and applying Lemma 4, we then obtain

Γ(s)ζ(1 + s) fw(s) =

∫ ∞
0

xs−1 log P̂w(x) dx(5.3)

=

∫ ∞
1

xs−1 log P̂w(x) dx + D

∫ 1

0
xs−1−b dx

+

∫ 1

0
xs−1E(x) dx

= I1(s) +
D

s− b
+ I2(s),

provided that Re s > max(0, σa). To prove part (i) of Theorem 3, we thus need to
show that the function

hw(s) = I1(s) + I2(s) =

∫ ∞
1

xs−1 log P̂w(x) dx +

∫ 1

0
xs−1E(x) dx

is analytic in the half-plane S = {s : Re s > b1}. Using the upper bound (5.2),
we see that the integral I1(s) converges uniformly on every compact subset of the
complex plane and hence defines an entire function. Furthermore, since, by (5.1),
E(x)	 x−b1 for 0 < x < 1, the integral I2(s) converges uniformly on every compact
subset of the half-plane S and thus represents an analytic function in S. Therefore,
hw(s) is analytic in S. This proves part (i) of Theorem 3.

Part (ii) of the theorem can be deduced from part (i) by a standard contour inte-
gration argument (see, e.g. [23, p. 167]). For completeness, we provide details here.
Without loss of generality, we may assume that u is of the form u = [u] + 1/2. Since
the Dirichlet series fw(s) has non-negative coefficients w(n), a simple pole at s = b,
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and no pole to the right of s = b, Lemma 5 implies that the abscissa of absolute con-
vergence σa of fw(s) is b. Thus, by an effective version of the Perron formula (see [23,
Theorem II.2.2]), we have

(5.4) Nw(u) =
1

2πi

∫ κ+iT

κ−iT

fw(s)

s
us ds + O

(
uκ
∞∑

n=1

w(n)

nκ
(

1 + T| log(u/n)|
) ) ,

whereκ = b+1/ log u and T is a positive number to be chosen later. The contribution
of the ranges n > 2u and n < u/2 to the O-term is

	
uκ

T

∞∑
n=1

w(n)n−κ 	
ub fw(b + 1/ log u)

T
	

ub log u

T
.

When u/2 ≤ n ≤ 2u we use condition (1.16) and obtain

uκ
∑

u/2≤n≤2u

w(n)

nκ
(

1 + T| log(u/n)|
) 	ε ua1/(1−a)+ε

∑
u/2≤n≤2u

1

1 + T|n/u− 1|

	ε ub1+ε

∫ 2u

u/2

dv

1 + T|v/u− 1|
	ε

ub1+1+ε log T

T
,

where we set b1 = a1/(1− a). Therefore the O-term in (5.4) is bounded by

(5.5) uκ
∞∑

n=1

w(n)

nκ(1 + T| log(u/n)|)
	ε

ub log u

T
+

ub1+1+ε log T

T
.

We now move the path of integration to the path consisting of three line segments
γ1 = {σ − iT : κ ≥ σ ≥ b1 + δ}, γ2 = {b1 + δ + it : −T ≤ t ≤ T} and
γ3 = {σ + iT : b1 + δ ≤ σ ≤ κ}, where 0 < δ ≤ ε. The residue of the pole at s = b
contributes Dub/Γ(1 + b)ζ(1 + b) = Bub. By condition (1.17), the contribution from
γ1 and γ3 is

(5.6)

∫
γ1,3

	ε ubTε−1,

and the contribution from γ2 is

(5.7)

∫
γ2

	ε ub1+ε

∫ T

0
tε−1 dt = ub1+εTε.

Combining (5.4)–(5.7) we obtain

Nw(u) = Bub + Oε

( ub log u

T
+

ub1+1+ε log T

T
+ ubTε−1 + ub1+εTε

)
.

We now choose T = max(u, ub−b1 ). It follows that for any fixed ε > 0, as u→∞,

Nw(u) = Bub + Oε(ub1+ε),

which is the claimed result.
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6 Proof of the Corollaries

We first prove an identity relating the Laplace transform P̂w(x) of Pw(u) =∑
n≤u pw(n) to the Dirichlet series fw(s) =

∑∞
n=1 w(n)n−s.

Lemma 6 Let σa be the abscissa of absolute convergence of fw(s). We then have, for all
x > 0 and all σ > max(0, σa),

log P̂w(x) =
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)ζ(1 + s) fw(s)x−s ds.

Proof Using (4.1), we have, for all x > 0 and σ > max(0, σa),

log P̂w(x) = −
∞∑

n=1

w(n) log(1− e−nx) =
∞∑

n=1

∞∑
k=1

w(n)

k
e−knx

=
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)

∞∑
n=1

∞∑
k=1

w(n)

k
(knx)−s ds

=
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)ζ(1 + s) fw(s)x−s ds,

where interchanging of summation and integration is justified by absolute conver-
gence of the series involved.

We next quote a Tauberian result from [25].

Proposition 4 (Yang [25, Proposition 3]) Let P(u) be a non-negative and non-
decreasing function defined on (0,∞). Let P̂(x) be the Laplace transform of P(u). Sup-
pose that, for some constants D and b > 0, as x→ 0,

(6.1) log P̂(x) = Dx−b + O
(

R(x−1)
)
,

where R(u) is a positive differentiable function satisfying the following conditions:

(R1) R(u)u−b ↘ 0 and R(u)(log u)−1 ↗∞ as u→∞;

(R2) R(u)� ub/2 as u→∞.

Suppose further that the function G(x) = log P̂(x) satisfies, as x→ 0,

(6.2) G ′(x) = −Dbx−b−1 + O
(

x−1R(x−1)
)

and

(6.3) G ′ ′(x)� x−b−2.

Then as u→∞ one has

log P(u) = Aua + O
(

R(u1/(1+b))
)
,
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where A and a are constants determined by

a =
b

1 + b
, A =

(
1 +

1

b

)
(Db)1/(1+b).

Proof of Corollary 1 Fix a positive integer k and let wk,l(n) be defined as in the
statement of Corollary 1. For simplicity we write Pk,l(u) for Pwk,l (u) and fk,l(u) for
fwk,l (u), respectively. Let θ ∈ [1/2, 1) be given and suppose first that (1.19) holds as
u → ∞ for all l with (k, l) = 1 and all ε > 0. We apply part (i) of Theorem 3 with
w(n) = wk,l(n), A = 2

√
ζ(2)/ϕ(k), a = 1/2 and a1 = θ/2 + ε, where ε is a fixed

positive number with 0 < ε < (1 − θ)/2. The quantities b and D in Theorem 3
become

b =
a

1− a
= 1, D = A1/(1−a)aa/(1−a)(1− a) =

A2

4
=
ζ(2)

ϕ(k)
,

and the theorem gives

fk,l(s) =
1

Γ(s)ζ(1 + s)

{
ζ(2)

ϕ(k)(s− 1)
+ hk,l(s)

}
,

where hk,l(s) is a function having an analytic continuation to the half-plane

S = {s : Re s > a1/(1− a)} = {s : Re s > θ + 2ε}.

It follows that, for all Dirichlet characters χ modulo k,

−
L ′(s, χ)

L(s, χ)
=
∞∑

n=1

Λ(n)χ(n)

ns
=

k−1∑
l=1

(k,l)=1

χ(l) fk,l(s)(6.4)

=
ζ(2)c(χ)

Γ(s)ζ(1 + s)(s− 1)
+

k−1∑
l=1

(k,l)=1

χ(l)hk,l(s),

where c(χ) = 1 if χ is the principal character modulo k and c(χ) = 0 otherwise.

Since ζ(2)
(
Γ(s)ζ(1 + s)(s − 1)

)−1
is analytic in the half-plane {s : Re s > 0} except

for a simple pole at s = 1 with residue 1, (6.4) implies that the function

−
L ′(s, χ)

L(s, χ)
−

c(χ)

s− 1
=

ζ(2)c(χ)

Γ(s)ζ(1 + s)(s− 1)
−

c(χ)

s− 1
+

k−1∑
l=1

(k,l)=1

χ(l)hk,l(s)

is analytic in S = {s : Re s > θ + 2ε}. Since ε can be taken arbitrarily small, we
conclude that L(s, χ) has no zeros in the half-plane {s : Re s > θ}.

Conversely, suppose that θ ∈ [1/2, 1) is such that, for all characters χ modulo k,
L(s, χ) does not vanish in the half-plane {s : Re s > θ}. Let ε with 0 < ε < 1− θ be
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given. We fix an integer l with (k, l) = 1 and apply Proposition 4 with P(u) = Pk,l(u),
b = 1, D = ζ(2)/ϕ(k) and R(u) = uθ+ε. Then conditions (R1) and (R2) hold, and
we will show that conditions (6.1)–(6.3) are also satisfied.

Using the orthogonality relation for Dirichlet characters

∑
χmod k

χ(m)χ(l) =

{
ϕ(k), if m ≡ l mod k,

0, else,

we obtain

fk,l(s) =
∑

n≡l mod k

Λ(n)

ns
=

1

ϕ(k)

∞∑
n=1

Λ(n)

ns

∑
χmod k

χ(n)χ(l)

= −
1

ϕ(k)

∑
χmod k

χ(l)
L ′(s, χ)

L(s, χ)
.

On the other hand, Lemma 6 shows that for σ > 1 and x > 0

log P̂k,l(x) =
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)ζ(1 + s) fk,l(s)x−s ds(6.5)

= −
1

2πiϕ(k)

∑
χmod k

χ(l)

∫ σ+i∞

σ−i∞
Γ(s)ζ(1 + s)

L ′(s, χ)

L(s, χ)
x−s ds.

We then move the path of integration in the last integral to the vertical line with
Re s = θ + ε. This is possible by the assumption that L(s, χ) has no zeros for Re s > θ
and by the bounds

(6.6) |ζ(1 + σ + it)| 	 1, |Γ(σ + it)| 	 |t|2e−π|t|/2 (θ + ε ≤ σ ≤ 2),

and

(6.7)

∣∣∣∣ L ′(σ + it, χ)

L(σ + it, χ)
−

c(χ)

1− s

∣∣∣∣ 	ε log
(

k(|t| + 2)
)

(θ + ε ≤ σ ≤ 2).

The latter bound follows easily from the partial fraction decomposition ([17, p. 225])

L ′(s, χ)

L(s, χ)
=

∑
ρ:L(ρ,χ)=0
| Im ρ−Im s|≤1

1

s− ρ
−

c(χ)

s− 1
+

c1(χ)

s
+

c2(χ)

s + 1
+ O
(

log
(

k(|t| + 2)
))
,

where c1(χ) and c2(χ) are suitable constants, and from the zero density estimate ([17,
p. 220])

#{ρ : L(ρ, χ) = 0, 0 < Re ρ < 1, | Im ρ− t| ≤ 1} 	 log
(

k(|t| + 2)
)
.
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The residue of the pole of of the integrand at s = 1 contributes ζ(2)x−1/ϕ(k) to
(6.5). Taking into account bounds (6.6) and (6.7), we obtain, as x→ 0,

log P̂k,l(x) =
ζ(2)

ϕ(k)
x−1 −

1

2πiϕ(k)

∑
χmod k

χ(l)

∫ θ+ε+i∞

θ+ε−i∞
Γ(s)ζ(1 + s)

L ′(s, χ)

L(s, χ)
x−s ds

=
ζ(2)

ϕ(k)
x−1 + O(x−(θ+ε)).

Hence condition (6.1) in Proposition 4 is satisfied. A similar argument shows that
for σ > 1, as x→ 0,

d

dx
log P̂k,l(x) =

1

2πiϕ(k)

∑
χmod k

χ(l)

∫ σ+i∞

σ−i∞
Γ(s + 1)ζ(s + 1)

L ′(s, χ)

L(s, χ)
x−s−1 ds

= −
ζ(2)

ϕ(k)
x−2 + O(x−(θ+1+ε))

and

d2

dx2
log P̂k,l(x) = −

1

2πiϕ(k)

∑
χmod k

χ(l)

∫ σ+i∞

σ−i∞
Γ(s + 2)ζ(s + 1)

L ′(s, χ)

L(s, χ)
x−s−2 ds

=
2ζ(2)

ϕ(k)
x−3 + O(x−(θ+2+ε))

Thus conditions (6.2) and (6.3) are satisfied, and the proposition gives, as u→∞,

log Pk,l(u) = Aua + O(u(θ+ε)/(1+b)) = Aua + O(u(θ+ε)/2),

where

a =
b

1 + b
=

1

2
, A =

(
1 +

1

b

)
(Db)1/(1+b) = 2

√
ζ(2)

ϕ(k)
.

This establishes the desired relation (1.19) and completes the proof of Corollary 1.

Proof of Corollary 2 Let w(n) be the characteristic function of the set of positive
integers with an even number of prime factors. Suppose first that (1. 20) holds for
every ε > 0. In the half-plane {s : Re s > 1} we have

fw(s) =
1

2

∞∑
n=1

1 + (−1)Ω(n)

ns
=

1

2

(∏
p

(1− p−s)−1 +
∏

p

(1 + p−s)−1
)

(6.8)

=
1

2

(
ζ(s) +

ζ(2s)

ζ(s)

)
,
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where as usual Ω(n) is the number of prime factors of n, counted with multiplicities.
Applying part (i) of Theorem 3 with A =

√
2ζ(2), a = 1/2, a1 = θ/2 + ε, b =

a/(1− a) = 1 and D = A1/(1−a)aa/(1−a)(1− a) = ζ(2)/2, we obtain

fw(s) =
1

Γ(s)ζ(1 + s)

{
ζ(2)

2(s− 1)
+ hw(s)

}
,

where hw(s) is a complex function having an analytic continuation to the half-plane
{s : Re s > θ + 2ε}. Combining this and (6.8) yields

1

2

(
ζ(s) +

ζ(2s)

ζ(s)

)
−

1

2(s− 1)
=

1

Γ(s)ζ(1 + s)

ζ(2)

2(s− 1)
−

1

2(s− 1)
+

hw(s)

Γ(s)ζ(1 + s)
.

Since the expression on the right-hand side has no poles with Re s > θ + 2ε and ε
can be taken arbitrarily small, we conclude that ζ(s) has no zeros in the half-plane
{s : Re s > θ}.

Conversely, suppose that θ ∈ [1/2, 1) is a positive constant such that ζ(s) has no
zeros in the half-plane {s : Re s > θ}. Let 0 < δ ≤ ε < 1 − θ be given. We apply
Proposition 4 with P(u) = Pw(u), b = 1, D = ζ(2)/2 and R(u) = uθ+ε. It is obvious
that R(u) satisfies conditions (R1) and (R2). We show that conditions (6.1)–(6.3)
hold as well. Arguing as in the proof of Corollary 1, we first deduce from Lemma 6
that, for σ > 1 and x > 0,

log P̂w(x) =
1

2πi

∫ σ+i∞

σ−i∞

Γ(s)ζ(1 + s)

2

(
ζ(s) +

ζ(2s)

ζ(s)

)
x−s ds.

We then move the path of integration to the line {s : Re s = θ + δ}. Noting that the
residue of the integrand at s = 1 is ζ(2)x−1/2 and using the bounds (6.5),

(6.9)
∣∣ζ(2(σ + it)

) ∣∣ 	 log |t| (σ ≥ θ, |t| → ∞),

and

(6.10) |ζ(σ + it)|, 1/|ζ(σ + it)| 	ε,δ tε (σ ≥ θ + δ, |t| → ∞),

we obtain, as x→ 0,

log P̂w(x) =
ζ(2)

2
x−1 + Oε(x−(θ+ε)).

(For a proof of (6.9), see [24, p. 49]. A proof of (6.10) for the case when θ = 1/2
can be found in [24, p. 337]; the proof for the general case is similar.) Hence (6.1)
in Proposition 4 is satisfied. A similar argument shows that (6.2) and (6.3) are also
satisfied. Hence the conclusion of Proposition 4 holds, and we have, as u→∞,

log Pw(u) = Aua + Oε(u(θ+ε)/(1+b)) = Aua + Oε(u(θ+ε)/2),
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where

a =
b

1 + b
=

1

2
, A =

(
1 +

1

b

)
(Db)1/(1+b) =

√
2ζ(2).

This completes the proof of Corollary 2.

Proof of Corollary 3 The proof of Corollary 3 is very similar to that of Corollaries 1
and 2. We therefore give a brief sketch of the argument.

Let w(n) be given as in the statement of Corollary 3. We first observe that the
Dirichlet series generated by w(n) is

(6.11) fw(s) =
∞∑

n=1

Λ(nk)

nks
= −

ζ ′(ks)

ζ(ks)
.

Suppose that the Riemann Hypothesis is true. Applying Lemma 6 and using standard
contour integration arguments, we obtain

log P̂w(x) =
1

k
Γ
( 1

k

)
ζ
(

1 +
1

k

)
x−1/k + Oε(x−(1/(2k)+ε)).

We then apply Proposition 4 with b = 1/k and obtain, as u→∞,

log Pw(u) = Aua + Oε(ua/2+ε),

where a = b/(1 + b) = 1/(k + 1) and

A = (k + 1)
{ 1

k
Γ
(

1 +
1

k

)
ζ
(

1 +
1

k

)}
.

Conversely, suppose that (1.21) holds as u →∞. We apply part (i) of Theorem 3
and obtain

fw(s) =
1

Γ(s)ζ(1 + s)

{ D

s− b
+ hw(s)

}
,

where b = a/(1− a) = 1/k,

D = A1/(1−a)aa/(1−a)(1− a) = Γ
(

1 +
1

k

)
ζ
(

1 +
1

k

)
,

and hw(s) is a complex function having an analytic continuation to the half-plane
{s : Re s > 1/(2k)}. Hence fw(s) is analytic in this half-plane except for a pole at
s = b = 1/k with residue Γ(1 + 1/k)/Γ(1/k) = 1/k. In view of the representation
(6.11) this implies that ζ(s) has no zeros in the half-plane {s : Re s > 1/2}, that is,
that the Riemann Hypothesis holds.
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[3] P. Erdős, On an elementary proof of some asymptotic formulas in the theory of partitions. Ann. of

Math. (2) 43(1942), 437–450.
[4] G. A. Freiman, Inverse problems of the additive theory of numbers. Izv. Akad. SSSR. Ser. Mat.

19(1955), 275–284.
[5] J. L. Geluk, Asymptotically balanced functions and the asymptotic behavior of the complementary

function and the Laplace transform. J. Math. Anal. Appl. 139(1989), 226–242.
[6] , An Abel-Tauber theorem for partitions. Proc. Amer. Math. Soc. 82(1981), 571–575.
[7] , An Abel-Tauber theorem for partitions. II. J. Number Theory 33(1989), 170–181.
[8] G. H. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types.

Proc. London Math. Soc. 16(1917), 112–132.
[9] , Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. 17(1918), 75–115.
[10] A. E. Ingham, A Tauberian theorem for partitions. Ann. of Math. 42(1941), 1075–1090.
[11] , The distribution of prime numbers. Cambridge University Press, Cambridge, 1990.
[12] E. E. Kohlbecker, Weak asymptotic properties of partitions. Trans. Amer. Math. Soc. 88(1958),

346–365.
[13] G. Meinardus, Asymptotische Aussagen über Partitionen. Math. Z. 59(1954), 388–398.
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