
chapter 1

Methods

In this chapter, we outline our principles of text selection and preparation
and then describe the statistical and computational methods we employ
throughout this book. Each description includes a working example to
demonstrate the method.

Text Selection and Preparation

Appendix A lists the full-text corpus of plays we use throughout this book,
along with their authors (where known), dates of first performance, the
source text we use, its date of publication, and its genre. We depart from
our main bibliographical source, the second edition of the Annals of English
Drama, 975–1700 (hereafter ‘Annals’), only where new research is persuasive
and sound, as with the attribution of Soliman and Perseda to Thomas Kyd.1
To construct our corpus of machine-readable (that is, electronic) texts,

we have relied upon base transcriptions from Literature Online, checked
and corrected against facsimiles from Early English Books Online. Since our
analysis concerns word frequency and distribution, and not orthography,
spelling was regularised and modernised. For the sub-set of plays used in
Chapter 6, this was done using VARD, a software tool developed by Alistair
Baron for regularising variant spelling in historical corpora.2 Spelling was

1 Alfred Harbage and Samuel Schoenbaum, Annals of English Drama, 975–1700, 2nd edn (Philadelphia:
University of Pennsylvania Press, 1964). The authors also consulted available volumes of Martin
Wiggins’s (in association with Catherine Richardson) British Drama, 1533–1642: A Catalogue, 10 vols.
(Oxford University Press, 2011–), and Alan B. Farmer and Zachary Lesser (eds.), DEEP: Database of
Early English Playbooks (2007–). On Kyd’s authorship of Soliman and Perseda, see Lukas Erne, Beyond
‘The Spanish Tragedy’: A Study of the Works of Thomas Kyd (Manchester University Press, 2001), 157–
67, as well as his Introduction to the Malone Society Reprints edition of the play (Thomas Kyd,
Soliman and Perseda, ed. Lukas Erne (Manchester University Press, 2014)).

2 See Alistair Baron, Paul Rayson, and Dawn Archer, ‘Word Frequency and Key Word Statistics in
Historical Corpus Linguistics’, Anglistik 20.1 (2009), 41–67. While VARD can be trained to regu-
larise words algorithmically (i.e., when a given certainty threshold is met) with little to no human
supervision or intervention, we instead used VARD as a tool to generate a list of variant word types
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30 Methods

modernised, but early modern English word forms with present tense -eth
and -est verb-endings (e.g. liveth and farest) were retained. For the larger
sets of plays utilised in Chapters 2 and 7, we regularised spelling using
a function in the Intelligent Archive software to combine variant forms
with their headwords.3 In all texts used, function words with homograph
forms – such as the noun and verb form of will – were tagged to enable
distinct counts for each. Appendix E lists the function words used in our
analysis. Contractions were also expanded, such that where appropriate ‘Ile’
was expanded as an instance of I and one of willverb, ‘thats’ as an instance
of thatdemonstrative and one of is, and so on.
Unless otherwise specified, texts are segmented into non-overlapping

blocks of words – typically 2,000 words – with the last block, if incomplete,
discarded to ensure consistent proportions. Proper names, passages in for-
eign languages, and stage directions are also discarded.4 It is standard prac-
tice in authorship attribution testing to exclude proper names and foreign-
language words from the analysis, because these are more closely related to
local, play-specific contexts rather than indicative of any consistent stylistic
pattern. As for stage directions, Paul Werstine has demonstrated that their
status as authorial or non-authorial cannot be assumed, but varies from
text to text.5 We deemed it safer to exclude stage directions as a general
rule rather than attempt to assess every instance.

Principal Components Analysis

Principal Components Analysis, or PCA, is a statistical procedure used to
explain as much of the total variation in a dataset with as few variables
as possible. This is accomplished by condensing multiple variables that
are correlated with one another,6 but largely independent of others, into a

and provide a list of possible modern equivalents. We chose equivalents on a case-by-case basis in
light of the context in which the variant spelling forms appeared.

3 For a fuller discussion of this functionality, see Hugh Craig and R. Whipp, ‘Old Spellings, New
Methods: Automated Procedures for Indeterminate Linguistic Data’, Literary and Linguistic Com-
puting 25.1 (2010), 37–52.

4 That is, single words in languages other than English are included, but passages with two or more
consecutive words in a foreign language are excluded.

5 Paul Werstine, Early Modern Playhouse Manuscripts and the Editing of Shakespeare (Cambridge Uni-
versity Press, 2013), esp. 123–30, 157–84.

6 As mentioned in the previous chapter, the term ‘correlation’ is used in statistics to describe and
measure the strength (low to high) and direction (positive or negative) of the association between
two sets of counts. Counts increasing or decreasing in parallel with one another are said to have a
positive correlation; by contrast, a negative correlation arises where one count increases while the
other decreases (and vice versa).
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Principal Components Analysis 31

smaller number of composite ‘factors’.7 The strongest factor or ‘principal
component’ is the one that accounts for the largest proportion of the total
variance in the data. PCA produces the strongest factor (the ‘first principal
component’), and then the factor that accounts for the greatest propor-
tion of the remaining variance while also satisfying the condition that it
is uncorrelated with the first principal component – a property which we
can visualise in a two-dimensional example as being at right-angles to it.
Since each principal component only ever represents a proportion of the
underlying relationships between the variables, PCA is a data reduction
method. The method is also considered ‘unsupervised’, because it does not
rely upon any human pre-processing of the data – the algorithm treats all
of the samples equally and indifferently.8
A classic example of how PCA is used to reduce the dimensions of mul-

tivariate data involves taking a table of the heights and weights of a group
of people from which a new composite factor – which we might call ‘size’ –
is generated as the sum of the two variables.9 ‘Size’ will represent the pat-
terns of variation within the two original variables with a high proportion
of accuracy – shorter people will tend to be lighter, and taller people heav-
ier – but it will not account for all the possible variations in height and
weight, since some short people will be heavy and some taller people light.
As a principal component, ‘size’ still captures a basic fact about the relation-
ship between height and weight, one that, in a sense, is the most important.
If we add two variables, say, waist size and muscle mass, a new first princi-
pal component may be calculated to account for the strongest correlation
between all four variables, on the same principle of accounting for most of
the variation by weighing the best-coordinated variables similarly. In this
scenario, waist size and weight together may represent a proxy for ‘obesity’,
and muscle mass and weight together may represent a proxy for ‘muscular-
ity’, and so on.

7 Christopher Chatfield and Alexander J. Collins, Introduction to Multivariate Analysis (New York:
Chapman &Hall, 1980), 57–79; and I. T. Jolliffe, Principal Component Analysis (New York: Springer,
1986). For a gentler introduction to the procedure, see Mick Alt, Exploring Hyperspace: A Non-
Mathematical Explanation of Multivariate Analysis (Maidenhead: McGraw-Hill, 1990), 48–80.

8 This is not to conflate ‘unsupervised’ with ‘objective’, as James E. Dobson rightly cautions in ‘Can
an Algorithm Be Disturbed?: Machine Learning, Intrinsic Criticism, and the Digital Humanities’,
College Literature 42.4 (2015), 543–64. However principled they may be, the processes of selecting
and preparing the underlying corpus (outlined earlier in this chapter) are not free of subjectivity, just
as all so-called ‘unsupervised’ methods contain human elements.

9 As the name suggests, ‘multivariate’ data involves two or more variables, as opposed to ‘univariate’
data, which involves only a single variable.
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Table 1.1 A select corpus of plays

Author Play Date

Lyly, John Campaspe 1583
Lyly, John Endymion 1588
Lyly, John Galatea 1585
Lyly, John Mother Bombie 1591
Marlowe, Christopher 1 Tamburlaine the Great 1587
Marlowe, Christopher 2 Tamburlaine the Great 1587
Marlowe, Christopher Edward the Second 1592
Marlowe, Christopher; others (?) The Jew of Malta 1589
Middleton, Thomas A Chaste Maid in Cheapside 1613
Middleton, Thomas A Mad World, My Masters 1605
Middleton, Thomas A Trick to Catch the Old One 1605
Middleton, Thomas Your Five Gallants 1607
Shakespeare, William The Comedy of Errors 1594
Shakespeare, William Richard the Third 1592
Shakespeare, William The Taming of the Shrew 1591
Shakespeare, William The Two Gentlemen of Verona 1590

As noted in the Introduction, PCA has been widely adopted as a method
for stylistic investigation.10 Its use in authorship attribution relies on the
fact that, when analysing word-frequency counts across a mixed corpus of
texts known to be of different authorship, the strongest factor that emerges
in the relationship between the texts is generally authorial in nature. Other
stylistic signals may also be present, such as the effect of genre, period of
composition, gender of the author, and so on, but these are usually demon-
strably weaker. For example, Table 1.1 lists a selection of plays by John Lyly,
Christopher Marlowe, Thomas Middleton, andWilliam Shakespeare, rep-
resenting a range of genres and dates of first performance.11
With this corpus of machine-readable texts, prepared as outlined above,

we use Intelligent Archive, a software tool developed by the Centre
for Literary and Linguistic Computing at the University of Newcas-
tle, to generate word-frequency counts for the 500 most frequent words
across the corpus, segmented into 2,000-word non-overlapping blocks and
discarding any smaller blocks that remain. Proper nouns, foreign-language

10 See José Nilo G. Binongo and M. W. A. Smith, ‘The Application of Principal Component Analysis
to Stylometry’, Literary and Linguistic Computing 14.4 (1999), 445–65.

11 Appendix A provides further bibliographical details for these plays, including the source texts used
and date of publication. The text of The Jew of Malta we used excludes the prologues and epilogues
attributed to Thomas Heywood. On the possibility of further non-Marlovian revision, see D. J.
Lake, ‘Three Seventeenth-Century Revisions: Thomas of Woodstock, The Jew of Malta, and Faustus
B ’, Notes & Queries 30.2 (1983), 133–43.
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Figure 1.1 PCA scatterplot of 2,000-word non-overlapping segments of plays listed in
Table 1.1, using the 500 most frequent words.

words, and stage directions are excluded from the procedure. The result
is a large table, with 138 rows (one for each 2,000-word block) and 500
columns (one each for the total of each block’s occurrences of each word
counted). As one might expect, words such as the, and, I, to, and a – that
is, function words – are among the most frequent.
If it were possible to visualise, and effectively comprehend, every 2,000-

word segment could be plotted as a point on a graph along 500 separate axes
or dimensions in space. With PCA, we can reduce the dimensionality of
the data while preserving as much of the variance as possible. If we use PCA
to reduce the data to the two strongest factors, we can then project each
2,000-word segment into a two-dimensional space as a data-point, treating
the scores for each segment on the first and second principal components
as Cartesian coordinates (Figure 1.1).12

12 Coordinates are a set of numbers that define position in space relative to an origin. In the Cartesian
coordinate system, the origin is a fixed point from which two or more axes or ‘dimensions’ are
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34 Methods

The first principal component (the x-axis) is the most important latent
factor in the various correlations between the word-variables in the seg-
ments, and the second principal component (the y-axis) is the second most
important (independent) latent factor. The relative distances between the
points or ‘observations’ within this space represent degrees of affinity, so
that segments of similar stylistic traits – specifically, similar rates of occur-
rence of our 500 words – cluster tightly together, whereas dissimilar seg-
ments are plotted further apart.
Tomake it easier to read the scatterplot, we use different symbols to label

segments belonging to different authors. Although the separation between
them is not perfect, segments belonging to the same author tend to cluster
together, with Marlowe’s segments (plotted as grey squares) typically scor-
ing low on the first principal component and high on the second principal
component. The PCA algorithm determines a weighting for each word,
negative or positive, to give the best single combination to express the col-
lective variability of all 138 segments’ word uses. Marlowe’s low score for
the first principal component means that the Marlowe segments relatively
rarely use the words with a high positive weighting on this component and
relatively frequently use the words with a high negative weighting. The
algorithm then identifies a second set of weightings for the words, to best
account for the remaining collective variability of the 138 segments’ word
uses after the first principal component has accounted for its fraction of the
collective variability. The Marlowe segments use the words with high pos-
itive weightings on this second principal component relatively often and
the words with high negative ratings relatively rarely. We could, in the-
ory, go on to calculate further principal components (a third, a fourth, and
so on) until we run out of variance in the data – which must in any case
happen for this experiment when we calculate the 500th principal compo-
nent and so exhaust our 500 variables’ capacity to differ from one another.
The most important consideration here is that this method demonstra-
bly captures the affinity of segments by single authors, with Middleton’s
segments (plotted as black circles) typically scoring high on both axes.
Lyly’s segments cluster away from the others, scoring comparatively low on
the second principal component, whereas Shakespeare’s segments gravitate
towards the centre of the scatterplot, forming a stylistic ‘bridge’ between
the other authors.
We have plotted the first and second principal components – those

which account for the greatest and second greatest proportion of the

defined, with each axis perpendicular to the other. Readers may recall charting plots on graph paper
in school mathematics in this same way.We use a Cartesian coordinate system throughout this book
to generate scatterplots along two axes – the horizontal or x axis, and the vertical or y axis.
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variance – and what emerge there are separations by author. This is evi-
dence that authorship is a more important factor in stylistic differentiation
than other groupings, such as genre or date, as we show below. However,
there may be times when we may not be interested in the most important
factors, whatever they may be. Since PCA can create as many components
as there are variables, it is possible to target a particular factor. If we were
interested in date, for example, we could work through the other compo-
nents to find one which differentiates the sample by date – that is, which
single set of weightings given to the 500 words will separate those favoured
early in the period from those favoured late in the period – and then either
use that component to classify a sample of unknown date, or explore the
stylistics of the date-based groupings by examining the patterns of word-
variables that create the component.
A different pattern in the data of the first two principal components

emerges if we simply re-label the points on the scatterplot according to
genre (Figure 1.2). The underlying data has not changed, only the labels of
the points. Along the first principal component, segments appear to cluster
in generic groups from ‘heroical romance’ (plotted as black circles) through
to ‘history’ (grey plus symbols), ‘tragedy’ (unfilled triangles), and ‘comedy’
(unfilled squares). This perhaps explains some of the internal variation evi-
dent within the authorial clusters identified in Figure 1.1. For example, seg-
ments from Marlowe’s ‘heroical romance’ plays, 1 and 2 Tamburlaine the
Great, cluster tightly together, whereas segments from his Edward the Sec-
ond are plotted closer to – sharing stylistic traits with – segments from
Shakespeare’s play of the same genre, Richard the Third. Similarly, Lyly’s
‘comedy’Mother Bombie is plotted higher on the second principal compo-
nent than segments from his other ‘classical legend’ comedies.13
PCA works by finding weightings for the variables to establish new com-

posite variables – the components. We can examine these weightings to
find out which variables contribute the most to a given component. To
visualise the weightings, we can plot them in a separate biaxial chart, show
them as a column or bar chart, or display them on the same chart as the
segments in the form of a ‘biplot’. The biplot allows us to visualise the con-
tributions of each word-variable in the same two-dimensional space as the
play segments (Figure 1.3).14 It shows the segment scores (as in Figures 1.1

13 We also re-labelled the data-points by decade of first production. There were some clusters, but a
far less clear-cut division than by author or genre. Plays of the 1590s occupied the middle part of
the first principal component, but 1580s plays overlapped them substantially, and 1610s plays were
all within the range of the 1600s plays. Plays of the 1580s were spread over almost the full range of
the second principal component.

14 Michael Greenacre, Biplots in Practice (Bilbao: Fundación BBVA, 2010), 15–24, 59–68; Alt, Exploring
Hyperspace, 92–7.

https://doi.org/10.1017/9781108120456.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108120456.002


36 Methods

10

5

0

5

15 10 5 0 5 10

First Principal Component score

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt
 s

co
re

Comedy

Comedy (Classical Legend)

Heroical Romance

History

Tragedy

Figure 1.2 PCA scatterplot of 2,000-word non-overlapping segments of plays listed in
Table 1.1, labelled by genre, using the 500 most frequent words.

and 1.2), but also overlays on these the weightings for the word-variables. In
a biplot, the word-variables are generally represented by an arrow or ‘vec-
tor’ drawn from the origin – the point where the x and y axes intersect, i.e.,
0,0 – rather than as points. This is a reminder that each variable is an axis,
and the length and direction of the vector is also a convenient indication
of the importance of that variable for a given component.
The positions of the ends of the vectors in the biplot are determined by

the weightings of the variables for the two components, re-scaled to fit into
the chart space.15 Since the vectors are scaled to fit the biplot, the distance
between the end or ‘head’ of a vector and a play segment is unimportant;
what matter are the directions and relative lengths of the vectors.

15 The biplots in this book were produced with the R statistical computing package, using the default
scaling factors.
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Figure 1.3 PCA biplot of 2,000-word non-overlapping segments of plays listed in Table 1.1,
labelled by genre, using the 500 most frequent words.

The direction of a vector indicates how a word-variable contributes to
each of the principal components. A segment with many instances of the
word-variables strongly positively weighted in one of the principal compo-
nents will have been ‘driven’ in that direction, whereas a segment domi-
nated by word-variables weak in both components will be plotted towards
the origin.16 The relative length of a vector corresponds to the magnitude
of the contribution. In Figure 1.3, a long vector extending in an easterly
direction shows that the corresponding word-variable has a heavy positive

16 To increase legibility, PCA biplots often omit the vectors and plot only the word-variable labels,
projected as points. The result is the same: the word-variables are plotted by their weightings on the
two principal components, so that word-variables appearing to the extremes of the axes are those
that make the most difference in the scatter of the segments along the axes. In our book, we have
sometimes created a separate chart of the variables or a selection of variables for increased legibility.

https://doi.org/10.1017/9781108120456.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108120456.002


38 Methods

ii

yououyououy

my

it

meyoury

heehhhisshihh

thouuuu

herhh

himm

thy

weeeeweeweewew

shes

theeeeeee
our

theyeyhthhth
theirrrr

themmmmeeee

uswwwww

mineii

yeyee

thinein

yoursyooursyyooyoyyyouoyooyyyyyyyyyyyyyyyyyyyyyyyyyyyyooyoyyouooooooou

10

5

0

5

15 10 5 0 5 10

First Principal Component score

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt
 s

co
re

Comedy

Comedy (Classical Legend)

Heroical Romance

History

Tragedy

Figure 1.4 PCA biplot of 2,000-word non-overlapping segments of plays listed in Table 1.1,
labelled by genre, using the 500 most frequent words and highlighting personal pronouns.

weighting on the first principal component, while a short vector extending
in a southerly direction shows that the corresponding word-variable has a
weak negative weighting on the second principal component.
If, as in Figure 1.3, all 500 of the word-variable vectors are drawn, the

biplot becomes too difficult to analyse. Instead, we can redraw the biplot
highlighting only word-variables of thematic interest or those belonging
to a particular grammatical class. For example, Figure 1.4 gives the same
biplot with only vectors for word-variables of personal pronouns drawn.
Inspection of the biplot reveals that ‘comedy’ segments plotted to the east

of the origin are dominated by singular personal pronouns, such as the first-
person I, me, and mine, the second-person formal you, your, and yours, and
the third-person he, she, it, him, and her. By contrast, the ‘heroical romance’
and ‘history’ segments plotted west of the origin are dominated by plural
personal nouns, such as the first-person we, us, and our, the second-person
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ye, and the third-person their, while ‘classical legend’ comedy segments,
plotted south-west of the origin, favour the second-person informal sin-
gular thou and thine forms. Speeches in heroical romances, tragedies, and
history plays are evidently cast more in terms of collectives, as we might
expect with a focus on armies in battle and political factions. Comedies, on
the other hand, tend to include more one-on-one interpersonal exchanges,
so that the singular pronouns figure more strongly in their dialogue.

Random Forests

The decision-making process is often characterised as a series of ques-
tions: answers to one question may lead to a decision being reached, or
prompt a further question – or series of questions – until a decision is
made. For example, a doctor asks a patient to describe their symptoms and
they respond that they have a runny nose. Among other conditions, rhinor-
rhea – the technical term for a runny nose – is a symptom common to both
allergy (e.g. hayfever) and certain infections (e.g. the common cold). To
reach a diagnosis, the doctor may ask further questions of the patient: how
long have the symptoms persisted? Is the nasal discharge clear or coloured?
Does the patient suffer from itchy eyes, aches, or fever?
While the common cold often causes a runny nose and may sometimes

occasion aches, it rarely results in fever or itchy eyes and typically does
not last longer than a fortnight. By contrast, rhinorrhea and itchy eyes are
frequent allergic reactions and may last as long as the patient is in contact
with the allergy trigger – minutes, hours, days, weeks, even months and
seasons. (The term ‘hayfever’ is somewhat misleading, because fever and
aches are not typical allergic responses.) Our hypothetical doctor’s decision-
making process may be visualised as a decision tree (Figure 1.5).
Of course, this is a simplified example (and correspondingly simple visu-

alisation) of a complex consideration of multiple variables, some of which
are ‘weighted’ – or more important to the decision-making process than
others.
Random Forests is a supervised machine-learning procedure for clas-

sifying data using a large number of decision trees.17 Whereas our hypo-
thetical doctor relied upon centuries of accumulated knowledge to identify

17 Leo Breiman, ‘Random Forests’,Machine Learning 45.1 (2001), 5–32. Much of the description that
follows appeared in an earlier form as part of Jack Elliott and Brett Greatley-Hirsch, ‘Arden of
Faversham, Shakespeare, and “the print of many”’, in Gary Taylor and Gabriel Egan (eds.), The
New Oxford Shakespeare: Authorship Companion (Oxford University Press, 2017), 139–81. We thank
the editors for their permission to reproduce and adapt those passages here.
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Figure 1.5 Binary decision tree diagram.

attributes or features distinguishing one medical condition from another,
decision tree algorithms instead begin by testing variables in a set of data
with a known shared attribute (a so-called ‘training set’) to derive a rule –
like the series of questions posed by the doctor – that best performs the
task of splitting the data into desired categories or classes. At each succeed-
ing level of the tree, the sub-sets created by the splits are themselves split
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according to another rule, and the tree continues to grow in this fashion
until all of the data has been classified. Once a decision tree is ‘trained’ to
classify the data of the training set, it can then be employed to classify new,
unseen data.18
Random Forests combines the predictive power of hundreds of such

decision trees (hence ‘forests’). Each tree is derived using a different and
random sub-set of the training dataset and variables. To enable validation
of the technique and to avoid the problem of ‘over-fitting’,19 randomly
selected segments of the training set are withheld from the algorithm so that
they do not inform the construction of the decision trees (and thus allowing
us to determine how accurate the trees’ predictions are in classifying these
withheld segments). By default, one-third of all training-set segments are
withheld for this purpose. This testing, using segments of a known class or
category, treated as if this was unknown, gives us an expected error rate for
when the decision trees are used to classify new data. The higher the classifi-
cation error rate, the weaker the relationship between the variables and the
classes, and vice versa. Hundreds of such trees are constructed, and for each
classification to be made each tree contributes one vote to the outcome.
This aggregation of decision trees evens out any errors made by individual
trees that may arise from the construction of apparently reliable – but in
fact false – rules based on anomalous data.20
By way of example, we use Intelligent Archive to generate word-

frequency counts for the 500 most frequent words across the selection
of plays listed in Table 1.1, segmented into 2,000-word non-overlapping
blocks and discarding any smaller blocks that remain. As before, proper
nouns, foreign-language passages, and stage directions are excluded from
the procedure. This produces a large table of 138 rows and 500 columns,
which we split into two separate tables: one to serve as our training dataset

18 As such, the procedure is ‘supervised’ because the algorithm relies upon human pre-processing of
the training-set data to ensure that it is characterised by a shared attribute, such as particular med-
ical conditions, or, for our purposes, play-texts of common authorship, genre, period, or repertory
company.

19 ‘Over-fitting’ occurs when a machine-learning algorithm or statistical model performs well on the
training data, but generalises poorly to any new data. To classify training data on a two-dimensional
chart, for example, we may use a highly complex equation to generate a wavy line snaking around
each data-point to serve as a boundary between groups.While this equationmight perfectly separate
the data-points into groups, it may also ‘fit’ or reflect the exact contours of the training data too
closely. A simpler equation, producing a line with a looser fit to the training data, may better serve
as a boundary when we wish to classify newly introduced data.

20 For example, a decision tree derived from analysis of a patient suffering from a runny nose caused by
an unusually resilient and long-lasting cold might generate the rule ‘If symptoms persist for longer
than two weeks, then it is a cold’. While accurate in the case of this particular, local anomaly, this
rule does not perform well as a predictor for the majority of cases.
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(109 rows, 500 columns), and another containing all of the segments
from each author’s first-listed play to serve as a test dataset (29 rows, 500
columns). After a randomly selected one-third of segments in the train-
ing dataset are withheld by the algorithm to be tested later, 500 decision
trees are populated using the remaining two-thirds of the training dataset,
trying 22 random word-variables at each ‘split’ in the decision tree.21 A dia-
gram of one of the decision trees populated in this experiment is given in
Figure 1.6, in which the rules are expressed as the rates of occurrence of
a word-variable per 2,000 words. Thus, according to its rules, if a 2,000-
word segment contains 1 or fewer instances of the word hath and 61 or
fewer instances of the word and, then this decision tree predicts it is a Mid-
dleton segment.22 Of course, as the outcome of a single decision tree, this
prediction would count as one out of 500 votes cast by the ‘forest’ of trees.
The algorithm then uses the decision trees to classify the training dataset

as a whole, with the randomly withheld one-third of segments reintro-
duced. This produces an expected error rate for when the unseen test
dataset will be classified later. Table 1.2 gives the confusion matrix for the
109 segments of the entire training dataset, tabling four misclassifications
made by the decision trees: three segments of The Jew of Malta assigned
to Shakespeare, and one segment of Richard the Third assigned to Mar-
lowe. This produces a promisingly low expected error rate of 3.67 per cent
(= 4 ÷ 109 × 100).
The decision trees are then used to classify all of the data – i.e., the

whole training dataset, including the previously withheld segments, as well
as the newly introduced segments of the test dataset. Table 1.3 gives the
resulting confusion matrix. The decision trees classify all of the segments
in the test dataset correctly, resulting in a classification error rate of 2.89
per cent for all of the segments in both the training and test datasets – that
is, 4 misclassified segments out of the total 138.

21 A function built into the Random Forests algorithm compares estimated error rates when different
values for the number of variables are tried at each split and selects the optimal value (i.e., the
value resulting in the lowest expected error rate). By default, the first number of variables tried is
the square root of the total number of variables, rounded down to the nearest whole number – in
our case 22 (the approximate square root of 500). The algorithm then generates other values to try
by multiplying or dividing the first number by a factor – by default, this factor is 2. New values
are continuously tried so long as the expected error rate improves beyond a given threshold (by
default, 5 per cent). Here and elsewhere in this book, we use the default settings of the Random
Forests algorithm. Thus, in this example, the algorithm first tries 22 variables at each split, and then
compares the estimated error rates when 6 (or 22 ÷ 2 ÷ 2), 11 (or 22 ÷ 2), 44 (or 22 × 2), 88 (22 × 2
× 2), and 176 (or 22 × 2 × 2 × 2) variables are tried. Of these, 22 is determined the optimal value.

22 Although the actual split for hath, as per the diagram, is a rate of � 1.5 instances per 2,000 words,
our word-frequency counts are given only in whole, discrete numbers. Since we cannot have 1.5
instances of hath, in practice the rule applies to � 1 instances in a 2,000-word segment.
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Figure 1.6 Diagram of a single binary decision tree populated for Random Forests classification of 2,000-word non-overlapping
segments in a training dataset of 109 segments drawn from plays listed in Table 1.1, using the 500 most frequent words.
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Table 1.2 Confusion matrix for Random Forests classification of 2,000-word
non-overlapping segments in a training dataset of 109 segments drawn from

plays listed in Table 1.1, using the 500 most frequent words

Lyly,
John

Marlowe,
Christopher

Middleton,
Thomas

Shakespeare,
William

Misclassification
(%)

Lyly, John 23 0 0 0 0
Marlowe,
Christopher

0 24 0 3 11

Middleton,
Thomas

0 0 28 0 0

Shakespeare,
William

0 1 0 30 3

Delta

Delta is a supervised method introduced by John Burrows to establish the
stylistic difference between two or more texts by comparing the relative
frequencies of very common words.23 Although well established as a tool
for authorship attribution study, Delta is also used more broadly as a means
to describe ‘the relation between a text and other texts in the context of the
entire group of texts’.24
In its usual deployment, the procedure establishes a series of distances

between a single text of interest and a comparison set typically compris-
ing a series of authorial sub-sets of texts. The author with the lowest dis-
tance score is judged to be the ‘least unlikely’ author of the mystery text.25
There are two main steps. The procedure begins by generating counts of

23 John Burrows, ‘Delta: A Measure of Stylistic Difference and a Guide to Likely Authorship’, Lit-
erary and Linguistic Computing 17.3 (2002), 267–86, and ‘Questions of Authorship: Attribution
and Beyond’, Computers and the Humanities 37.1 (2003), 5–32. For assessments of the method, see
David L. Hoover, ‘Testing Burrows’s Delta’, Literary and Linguistic Computing 19.4 (2004), 453–75,
and Shlomo Argamon, ‘Interpreting Burrows’s Delta: Geometric and Probabilistic Foundations’,
Literary and Linguistic Computing 23.2 (2008), 131–47. A number of refinements of Delta have
been proposed for the purpose of authorship attribution; see, for example, Peter W. H. Smith and
W. Aldridge, ‘Improving Authorship Attribution: Optimizing Burrows’ Delta Method’, Journal of
Quantitative Linguistics 18.1 (2011), 63–88. However, for simplicity, we here describe the original
version as proposed by Burrows.

24 Fotis Jannidis and Gerhard Lauer, ‘Burrows’s Delta and Its Use in German Literary History’, in
Matt Erlin and Lynne Tatlock (eds.), Distant Readings (Rochester: Camden House, 2014), 32.

25 Sections of the description that follows appeared in an earlier form as part of Jack Elliott and
Greatley-Hirsch, ‘Arden of Faversham’. We thank the editors for their permission to reproduce and
adapt those passages here.
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Table 1.3 Confusion matrix for Random Forests classification of 109 training
and 29 test segments of plays listed in Table 1.1, segmented into 2,000-word

non-overlapping blocks, using the 500 most frequent words

Lyly,
John

Marlowe,
Christopher

Middleton,
Thomas

Shakespeare,
William

Misclassification
(%)

Lyly, John 29 0 0 0 0
Marlowe,
Christopher

0 32 0 3 8

Middleton,
Thomas

0 0 36 0 0

Shakespeare,
William

0 1 0 37 2

high-frequency words in the ‘test’ text and comparison set. Counts for indi-
vidual texts in the comparison set are retained, allowing Delta to derive
both a mean figure for the set as a whole, and a standard deviation – a
measure of the variation from that mean – for each variable.26 The counts
on the chosen variables – usually very common words – are transformed
into percentages to account for differing sizes of text and then into z-scores
by taking the difference between the word counts and the mean of the over-
all set and dividing that by the standard deviation for the variable. Using
z-scores has the advantage that low-scoring variables are given equal weight
with high-scoring ones, since a z-score is the number of standard deviations
of an observation from the mean, unrelated to the size of the original units.
The z-score also takes into account the amplitude of fluctuations within
the counts. Wide fluctuations result in a high standard deviation and thus
a lower z-score.
The differences between z-scores for the test text and each authorial sub-

set are then found for each variable, adding up the absolute differences –
that is, ignoring whether the figures are positive or negative – to form a

26 The four-figure sets {6, 7, 2, 9} and {8, 1, 3, 12} both have a mean of 6, since this is one-
fourth of 6 + 7 + 2 + 9 (= 24) also one-fourth of 8 + 1 + 3 + 12 (= 24) . However, the figures
in the second set differ more widely from their mean than those in the first set. To express this, the
standard deviation for each set is derived by squaring each data-point’s difference from its set’s mean,
dividing the resulting squares by (N − 1) , i.e., the number of samples less one, and then finding
the square root of that number. For the first set, this is the square root of one-third of (6 − 6)2 +
(7 − 6)2 + (2 − 6)2 + (9 − 6)2 , which comes to about 2.9. For the second set, this is the square
root of one-third of (8 − 6)2 + (1 − 6)2 + (3 − 6)2 + (12 − 6)2 , or roughly 5. These are ‘sample
standard deviations’ – i.e., the standard deviations of samples understood to be representing larger
populations. This is the version of the metric we use in the studies in this book.
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68.00

100.67

116.89 118.10

Figure 1.7 Delta distances between Galatea and four authorial sub-sets.

composite measure of difference (or ‘Delta’ distance). The procedure is
complete at this point, with a measure for the overall difference between
the test text and each of the authorial sub-sets within the comparison set.
To illustrate the method, consider an example using the set of sixteen

plays listed in Table 1.1, with four plays each by Lyly, Marlowe, Middle-
ton, and Shakespeare. We first generate frequency counts for the 100 most
common function words in all 16 plays and transform these into percent-
ages. We then choose one Lyly play at random to serve as a test text – in
this case, Galatea – and withdraw this play from the Lyly authorial sub-set.
We transform the word-frequency scores for Galatea into z-scores, using
the means and standard deviations for the whole set of sixteen plays. We
do the same for the mean scores for the Lyly, Marlowe, Middleton, and
Shakespeare plays – the Lyly set consisting of the three remaining plays,
the others retaining their full sub-set of four plays each. To arrive at a
composite distance measure, we add up the absolute differences between
the Galatea z-scores and each of the authorial sub-set z-scores for the 100
word-variables. Figure 1.7 shows the resulting Delta distances as a column
chart.
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86.22

112.22

83.66

68.08

Figure 1.8 Delta distances for The Jew of Malta and four authorial sub-sets.

When treated as a mystery text, Galatea finds its closest match in a Lyly
sub-set based on the three remaining Lyly plays, with a Delta distance of
68. Shakespeare, with a Delta distance of 100.67, is the next nearest author,
followed by Middleton (116.89) and Marlowe (118.10). We can then do the
same for the other three Lyly plays, withdrawing each in turn and testing
the resemblance between that play and each of the four authorial sub-sets.
As it turns out, and as we would expect (but could not guarantee), each
Lyly play matched the sub-set of remaining Lyly plays most closely.
We repeat the procedure for the other authors along the same lines, hold-

ing out and testing each play in turn. In every case, the known author was
the closest match, with the exception ofThe Jew ofMalta (Figure 1.8), which
matched Shakespeare most closely (with a Delta distance of 68.08), then
Middleton (at 83.65), then Lyly (at 86.22) – with Marlowe the most distant
at 112.22.27

27 It is worth noting that the Random Forests algorithm, outlined above, also classified segments of
The Jew of Malta as Shakespeare’s.
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Evidently, this play represents a radical departure from Marlowe’s typi-
cal practice in the use of very common function words (established on the
basis of the three other plays in the sub-set). As the only (potentially) incor-
rect attribution out of sixteen Delta tests, this anomalous result is certainly
worthy of further investigation. However, for the purposes of demonstra-
tion, it is enough to note that, overall, Delta is a good – but perhaps not
infallible – guide to authorship and stylistic difference, even when using
small sub-sets to represent an author.

Shannon Entropy

Shannon entropy is a measure of the repetitiveness of a set of data, and is
the key concept in information theory as developed by Claude Shannon
in the 1940s.28 Shannon entropy calculates the greatest possible compres-
sion of the information provided by a set of items considered as members
of distinct classes. A large entropy value indicates that the items fall into a
large number of classes, and thus must be represented by listing the counts
of a large number of these classes. In an ecosystem, this would correspond
to the presence of a large number of species each with relatively few mem-
bers. The maximum entropy value occurs where each item represents a
distinct class. Minimum entropy occurs where all items belong to a sin-
gle class. In terms of language, word tokens are the items and word types
the classes.29 A high-entropy text contains a large number of word types,
many with a single token. A good example would be a technical manual
for a complex machine which specifies numerous distinct small parts. A
low-entropy text contains few word types, each with many occurrences,
such as a legal document where terms are repeated in each clause to avoid
ambiguity. Entropy is a measure of a sparse and diverse distribution ver-
sus a dense and concentrated one. High-entropy texts are demanding of
the reader and dense in information – they constantly move to new mental
territories; they are taxing and impressive. Low-entropy texts are reassuring
and familiar – they are implicit in their signification, assuming common

28 C. E. Shannon, ‘A Mathematical Theory of Communication’, Bell System Technical Journal 27
(1948), 379–423, and ‘Prediction and Entropy of Printed English’, Bell System Technical Journal
30 (1951), 50–64. For a more accessible overview of entropy and information theory, see Luciano
Floridi, Information: A Very Short Introduction (Oxford University Press, 2010), 37–47; and James
Gleick, The Information: A History, a Theory, a Flood (New York: Pantheon, 2011), 204–32.

29 On the application of Shannon entropy and other measures to literary study, see Osvaldo A. Rosso,
Hugh Craig, and Pablo Moscato, ‘Shakespeare and Other English Renaissance Authors as Charac-
terized by Information Theory Complexity Quantifiers’, Physica A 388 (2009), 916–26.
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knowledge, while high-entropy texts specify and create contexts for them-
selves. High-entropy texts contain more description and narrative, while
low-entropy texts contain more dialogue.
Shannon entropy is defined as the negative of the sum of the propor-

tional counts of the variables in a dataset eachmultiplied by its logarithm.30
A line consisting of a single word-type repeated five times (e.g. ‘Never,
never, never, never, never!’ King Lear 5.3.307) has a single variable with a
proportion of 5

5 (or 1). The log of 1 is 0. The Shannon entropy of the line
is therefore:

−
(
5
5
log

5
5

)
= 0

The line ‘Tomorrow, and tomorrow, and tomorrow’ from Macbeth
(5.5.18) has three instances of tomorrow and two of and. The proportional
count for tomorrow is 3

5 (or 0.6) and for and is 2
5 (or 0.4), thus the Shannon

entropy for the line is

−
[(

3
5
log

3
5

)
+

(
2
5
log

2
5

)]
≈ 0.673

For a final comparison, consider the line: ‘If music be the food of love,
play on’ (Twelfth Night 1.1.1). This time, each of the nine words making
up the line occurs only once. Since each word-variable has a proportional
score of 1

9 (or ≈ 0.111), the Shannon entropy for this line is:

−
⎡
⎣

( 1
9 log

1
9

) + ( 1
9 log

1
9

) + ( 1
9 log

1
9

) + ( 1
9 log

1
9

) + ( 1
9 log

1
9

)
+ ( 1

9 log
1
9

) + ( 1
9 log

1
9

) + ( 1
9 log

1
9

) + ( 1
9 log

1
9

)
⎤
⎦ ≈ 2.197

– a higher score than for our two previous examples, reflecting compara-
tively greater variability in word use.31

30 The formula to derive the Shannon entropy (H) for X is:

H (X ) = − ∑
xi∈X

xi log xi

A logarithm represents the power to which a fixed number or base must be raised to produce a given
number. In all of our Shannon entropy calculations, we use natural logarithms, where the base is e,
approximately 2.718. Because the logarithm of a fraction (as all proportions are) is always negative,
the Shannon entropy formula calls for the negative of the sum (−� ) of these proportional counts
multiplied by their logarithms (xi log xi ) to ensure that the result is positive.

31 Shannon entropy is sensitive to text length – the maximum possible entropy increases as text length
increases. To account for this, we work with samples of the same length when we go beyond the
illustrative examples given here.

https://doi.org/10.1017/9781108120456.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108120456.002


50 Methods

t-tests

Consider the following experiment. We compile a set of Shakespeare’s
comedies (All’s Well That Ends Well, As You Like It, The Merchant of Venice,
AMidsummer Night’s Dream,Much Ado About Nothing, and Twelfth Night)
and a set of Shakespeare’s tragedies (Antony and Cleopatra, Hamlet, King
Lear, Othello, Romeo and Juliet, and Troilus and Cressida). Are there more
instances, on average, of the word death in the tragedies compared with the
comedies? If there is a difference in these averages, how consistent is it, in
the sense that any large group of tragedies will have more occurrences of
death overall? Our experiment calls for us to find a way to see past mere
averages to the varying counts that lie behind them.
The occurrence of death in each of these plays, expressed as a percent-

age of the total number of words, is 0.08, 0.03, 0.05, 0.08, 0.08, and 0.05
respectively for the comedies, and 0.14, 0.13, 0.08, 0.06, 0.29, and 0.06 for
the tragedies. The mean for the comedies is 0.062, and for the tragedies it
is 0.127 – more than twice as large. But how can we take the fluctuations
within the groups into account?
One way to do this is to use a t-test, a common statistical procedure

to determine whether the ‘mean’ or average of a ‘population’ – that is, all
members of a defined group or dataset from which a selection or ‘sample’
is drawn – differs significantly from a hypothetical mean or the mean of
another population. The test was first proposed in 1908 by W. S. Gosset,
writing under the pseudonym ‘Student’ while working in quality control
for the Guinness brewery in Ireland.32 Student’s t-test, as it has come to
be known, generates a simple metric called the t-value, calculated as the
difference in means between two sets divided by the combination of their
standard deviations. A high t-test score means that the average use in one
set is much higher or lower than the use in a second set, and the word
overall does not fluctuate much.
Student’s t-test assumes that the two populations under investigation fol-

low a ‘normal distribution’ and have an equal variance (i.e., the data in both
populations is ‘spread’ or ‘scattered’ equally).33 In 1947 B. L.Welch adapted
Student’s t-test to accommodate populations of unequal variance,34 and we

32 ‘Student’ [= W. S. Gosset], ‘The Probable Error of a Mean’, Biometrika 6.1 (1908), 1–25.
33 If plotted on a graph, data with a ‘normal distribution’ would resemble a symmetrical, bell-shaped

curve, with the density of the curve centred about its mean. With an equal ‘variance’, the data
in both populations is ‘spread’ or ‘scattered’ equally. (Standard deviation is the square root of the
variance.)

34 B. L. Welch, ‘The Generalization of “Student’s” Problem When Several Different Population Vari-
ances Are Involved’, Biometrika 34.1–2 (1947), 28–35. We use the two-tailed heteroscedastic version.
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use this variation in the present experiment and generally throughout this
book. For Welch’s t-test, the one we have used in this book, the formula
is:

t = x̄1 − x̄2√
s21
n1

+ s22
n2

Here x̄1 and x̄2 are the means of the first and second samples, s21 and
s22 the squared standard deviations of the first and second samples, and n1
and n2 the number of items in each respective sample. For our experiment,
we already have the means (as above, 0.062 and 0.127), and the standard
deviations are 0.021 and 0.087 for the comedies and tragedies respectively.
The sample size is 6 for both sets. Using these figures, the formula produces
a t-value of –1.778.
The other necessary piece of information is the number of degrees of

freedom in the analysis. The more degrees of freedom, the more informa-
tion the result is based on and the more confident we can be that the result
reflects an underlying truth. Degrees of freedom in the t-test depend on
the number of samples, but with Welch’s t-test we are allowing for the pos-
sibility of different variances for the two groups, and estimating the true
number of degrees of freedom requires taking into account the distribution
of the data using the Welch-Satterthwaite formula.35
The result in this case is 5.6. Given this number, we can find a t-test prob-

ability by consulting a table or using a t-test probability calculator.36 This
t-test probability (or ‘p-value’) indicates how often a difference like this
would come about merely by chance, even when the two sets in fact belong
to the same overall population, given the sample size. For this experiment,
using a figure of 5.6 for the relevant degrees of freedom results in a p-value of
0.129. This is the probability (given that the data is normally distributed)
that the two samples come from the same parent population – that the
difference is a matter of local variation rather than something underly-
ing and consistent. That is, 13 per cent of the time (one time in seven or

See George W. Snedecor and William G. Cochran, Statistical Methods, 8th edn (Ames: Iowa State
College Press, 1989), 53–8.

35 This is a complicated formula, and researchers normally use a statistics package to find the degrees
of freedom in a particular case. Here we use SPSS. For the background, see Welch, ‘The Generaliza-
tion’, and F. E. Satterthwaite, ‘An Approximate Distribution of Estimates of Variance Components’,
Biometric Bulletin 2.6 (1946), 110–14. See also Les Kirkup and Bob Frenkel, ‘The t-distribution and
Welch-Satterthwaite Formula’, in An Introduction to Uncertainty andMeasurement (Cambridge Uni-
versity Press, 2006), 162–90.

36 Here and elsewhere in this book, we use the TTEST function in Microsoft Excel. Figures will vary
when using different t-test calculators as a result of how values are rounded.

https://doi.org/10.1017/9781108120456.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108120456.002


52 Methods

eight) we should expect to see this apparent difference between the come-
dies and tragedies purely by chance alone, even if comedies and tragedies
have no underlying preference for or against using the word death. This
suggests that although the tragedies in our sample on average have twice
the instances of the word, the fluctuations within the sets and the small
number of samples mean that we should not base any broad conclusions
on this result.
Glancing at the proportional scores for death in these texts might have

indicated the same thing. There is one aberrant high score, for Romeo and
Juliet, which accounts for a great deal of the high average for the set of
tragedies overall, and there are three comedies at 0.8, which are all higher
than the two lowest-scoring tragedies at 0.6. The t-test offers a way to
treat these fluctuations systematically, a summary statistic which can be
carried over from one comparison to another, and a broad indication about
the inferences we can safely make about wider populations (such as about
Shakespeare comedy and tragedy in general) from the current sample.
PCA, Random Forests, Delta, Shannon entropy, and the t-test are all

well-established tools that we have found useful in making sense of the
abundant, multi-layered data which can be retrieved from literary texts.
They take us beyond what we can readily see with the naked eye, as it were –
a count that stands out as high or low, or an obvious pattern of association
between variables or samples – to larger-scale, more precise summaries that
have some in-built protections from bias. PCA is a data reduction method;
Random Forests a classification tool; Delta a distance measure; Shannon
entropy a density metric; and the t-test takes us back to single variables and
the question of whether two sets of counts have an underlying difference, or
only an apparent one. They are just five of the numerousmethods available,
and by no means the most complex, but they are all tried and tested and
offer a useful range. They come from different eras and were developed for
different purposes – only Delta was devised specifically for computational
stylistics. All five can be used both to test a hypothesis and to explore data
more inductively, as we demonstrate in the chapters that follow.
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