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ABSTRACT

We introduce a class of Bayesian infinite mixture models first introduced by
Lo (1984) to determine the credibility premium for a non-homogeneous insur-
ance portfolio. The Bayesian infinite mixture models provide us with much
flexibility in the specification of the claim distribution. We employ the sampling
scheme based on a weighted Chinese restaurant process introduced in Lo et al.
(1996) to estimate a Bayesian infinite mixture model from the claim data.
The Bayesian sampling scheme also provides a systematic way to cluster the
claim data. This can provide some insights into the risk characteristics of the
policyholders. The estimated credibility premium from the Bayesian infinite
mixture model can be written as a linear combination of the prior estimate and
the sample mean of the claim data. Estimation results for the Bayesian mixture
credibility premiums will be presented.
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1. INTRODUCTION

Credibility theory provides a method to determine the premium of an insurance
contract by combining two different sources of information, namely, the
collective risk and the individual risk. More specifically, the pure premium of
an insurance contract is determined by analyzing how much weight is given to
the experience from the individual risk, which can be obtained from the claim
history of the individual. It also provides the basic set up for the valuation of
an insurance contract and has widely been used by actuaries to determine the
premium of an insurance contract. Credibility theory has a long history in
actuarial science. The origin of credibility theory goes back to the earlier works
by Mowbray (1914) and Whitney (1918), in which the basic ideas of credibility
and experience rating have been laid down. The idea of credibility theory has
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then been formulated using the statistical ideas in an important paper by Bai-
ley (1950). In particular, the problem of premium rating has been formulated
by utilizing the language of parametric Bayesian statistics. The concept of the
Bayes premium has been introduced as an estimator for the pure premium.
Under some conjugate-prior assumptions on the distributions of the aggregate
claim amounts and the risk parameters, a closed-form expression for the Bayes
premium can be obtained. Beyond the class of conjugate-prior distributions,
closed-form expressions for the Bayes premium rarely exist. In this case, one
may need to resort to some numerical procedures for approximating the Bayes
premium in order to estimate the pure premium.

The seminal works of Bühlmann (1967, 1970) provide a solid mathematical
foundation for credibility and establish a model-based Bayesian approach for
credibility by using the least-square approach. The Bühlmann credibility model
employs a linear Bayes estimator, which also calls the credibility estimators,
to approximate the pure premium. The linear Bayes estimator is optimal in
the sense of minimizing the quadratic loss function in the Bayesian decision
theory. It provides actuaries with a convenient and flexible method to approxi-
mate the pure premium without recourse some complicated numerical procedures.
The Bühlmann credibility estimator for the pure premium can be expressed as
a linear combination of the collective premium and the sample mean of the
individual claim data. This is very easy to interpret and makes the intuition of
calculating premiums by experience rating more appealing. The Bühlmann
credibility model has become very popular in the actuarial community and
is the milestone of the development of credibility theory. For a comprehensive
discussion on various developments and methodologies on credibility, see
Waters (1993) and Bühlmann and Gisler (2005).

There has been an explosive growth in the development of statistical
methods and computation in the past few decades. This facilitates the use of
some more computationally intensive statistical models for providing a more
flexible way to model the claim data and the risk parameters. Young (1997) devel-
ops a semi-parametric credibility model by utilizing a semi-parametric mix-
ture model to represent the insurance losses of a portfolio of risks. She explores
the use of the techniques from nonparametric density estimation to estimate
the prior means from the loss data and adopts the estimated model to evalu-
ate the predictive mean of the future claims given past claims. This approach
provides practitioners with flexibility in specifying the parametric distribution
for each risk with unknown mean that varies across the risks. Young (1998)
investigates the uncertainty in the estimated prior obtained in Young (1997)
due to the randomness in the claim data and calculates the intervals for the cor-
responding predictive means.

In this article, we introduce a class of Bayesian infinite mixture models
developed by Lo (1984) to determine the credibility premium for a non-homo-
geneous insurance portfolio. The class of Bayesian infinite mixture models
can provide a great deal of flexibility in modelling the distributions of the
aggregate claim amounts and the risk parameters without imposing stringent
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parametric assumption on the distributions. The main idea of the Bayesian
infinite mixture models is to represent the distribution of the observations or
data as an infinite mixture of kernel density over a random distribution function
with prior distribution given by a Dirichlet process. Given that the kernel den-
sity is a proper density, for example, a normal density, the mixture represen-
tation has the advantage of representing any density function. It also provides
a Bayesian non-parametric specification for the distribution of the unknown
model parameters. In the context of credibility theory, the class of Bayesian
infinite mixture models can provide the flexibility in modelling any shape of
the distribution of the aggregate claim amounts. It also provides much flexi-
bility in modelling the prior distribution of the unknown risk parameters.
In particular, the prior distribution of the unknown risk parameters is assumed
to be random and follows a Dirichlet process. This is in contrast with the para-
metric Bayesian credibility in which the prior distribution is assumed to be
known and specified by a parametric distribution. Due to the generality of the
class of the Bayesian infinite mixture models, the computation of the poste-
rior quantities poses a challenging problem. Lo (1984) is the first to provide a
compact representation of a posterior quantity as a finite sum over partitions
of the data. This greatly simplifies the computation of the posterior quantities
and makes the Bayesian infinite mixture models more easy to implement in
practical situations.

In the context of credibility theory, one can adopt the Lo approach to
compute some posterior quantities by grouping the claim data associated with
the same kernel density corresponding to a particular set of risk parameters
to form partitions. In practical situations, one needs to sample a large number
of partitions when evaluating posterior quantities. We employ a sampling pro-
cedure, which calls the weighted Chinese restaurant (WCR) process named
by Lo et al. (1996) [see also Ishwaran and James (2001), MacEachern (1994),
Neal (2000) and West et al. (1994)], to provide an efficient way to sample par-
titions. This is a natural procedure to sample partitions sequentially. Since one
of the key steps for Bayesian inference is to calculate the posterior quantities,
the WCR can also be used to estimate the Bayesian infinite mixture models.
Lo et al. (1996) investigate the performance of the sampling procedure in den-
sity estimation and find that it performs very well. The clustering of the claim
data via the sampling scheme can also provide some insights into the risk char-
acteristics of the policyholders. The estimated credibility premium can be writ-
ten as a linear combination of the prior estimate and the sample mean of the
claim data. The class of Bayesian infinite mixture models provides actuaries
with a convenient and flexible way to model the loss (or claim) distribution and
estimate the credibility premium as the predictive mean of future claims given
past claims. We shall provide both simulation and empirical studies for the
Bayesian mixture credibility model and compare its performance with the
Bühlmann credibility model.

The rest of this article is structured as follows: The next section presents
the Bayesian infinite mixture model and the corresponding credibility premium
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formula. Section 3 discusses the WCR for sampling the partitions for the claim
data and the associated estimation method. We shall conduct simulation
studies on the Bayesian mixture credibility model in Section 4. We shall com-
pare the simulation results for the Bayesian mixture credibility model with
those for the Bühlmann credibility model. Estimation results for the Bayesian
mixture credibility premiums will be presented and discussed in Section 5.
The final section summarizes the paper.

2. BAYESIAN INFINITE MIXTURE MODEL FOR CREDIBILITY PREMIUM

In this section, we present a Bayesian infinite mixture model for modelling the
distribution of the aggregate claim amount of a policyholder over different years
and the uncertainty of the risk characteristic of the policyholder. Then, we
present the credibility premium for a non-homogeneous insurance portfolio.

2.1. Bayesian infinite mixture model for the aggregate claim amounts

First, we fix a complete probability space (W, F, P ), where P is a real-world
probability. Let Xk denote a random variable on (W, F, P ), which represents the
aggregate claim amount of a policyholder during the kth policy period (usu-
ally one year), for k = 1,2, …, n + 1. Let F X

k denote the s-algebra (information
set) generated by the process of the aggregate claim amounts X up to and
including time k. Following the exposition in Lo (1984), we present the Bayesian
infinite mixture model for the probability density function of the aggregate
claim amounts in the sequel.

Let U denote a Borel subset of R m and B (U ) the s-algebra generated by
the open sets relative to U. Note that U represents the space of the risk para-
meters. In the context of Bayesian infinite mixture model, the letters u and l
are often used to represent the unknown parameters, which are random vari-
ables, and their realizations in order to simplify the notations. Here, we shall
follow the convention of the Bayesian infinite mixture model to define the
notations of the risk parameters and their realizations as small letters. Write
a for a finite measure on (U,B (U )). Let K (x,u) denote a non-negative-valued
kernel defined on the product space (R+ ≈ U, B (R+) 7 B (U )), where B (R+) is
the s-algebra generated by the open sets relative to the non-negative real line
R+. We suppose that for each u !U,

+
, ,K x u dx 1

R
=# ] g (2.1)

and for each x !R+,

, < .aK x u du
U

3# ] ]g g (2.2)
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Some typical examples of the kernel K (x,u) with the support R+ for each u !U
are a Poisson probability mass function with mixing intensity parameter u = l
and a Gamma density function with a given shape parameter a and a mixing
scale parameter u = b.

Suppose A denotes the space of distributions on (U, B (U )) and A is the
s-algebra on A generated by weak convergence. Note that A represents the space
of distributions for the risk parameters. For each G ! A, we define a random
probability density function f (x|G ), where x ! R+, as follows:

, .f x G K x u G du
U

= #] ] ]g g g (2.3)

For a given G !A, f (x|G ) is a well-defined probability density function by
Fubini’s theorem. Also, f (x|G) is A-measurable. This means that f (x|G) is known
when the random probability distribution G is given. For more details, see Lo
(1984). Since K ( ·, u ) is defined on the non-negative real line, so does f (x|G ).

Let DK := { f (x|G) |G !A}, which represents the space of probability den-
sity functions generated by the random probability distributions in A and the
kernel K ( ·, ·). Any continuous probability density function can be generated
from the space DK by suitable choices of the kernel density K (·, ·) (see Lo, 1984).
Now, we are going to specify the prior probability for the random distribution
function G as a Dirichlet process. First, we give a precise definition of a Dirichlet
process. Recall that a represents a finite measure on the space of distributions
(A,A ). A probability measure pa defined on (A,A ) is said to be a Dirichlet
process with a shape measure a if for each measurable partition (A1, …, AM)
on A (i.e. Ai ! A , for each i = 1, 2, …, M ),

A
A

AM, ..., ,�
a

a
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G
a a a
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ii
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ii
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i
i

M

1

1

1 1

1

=

=

= -

=
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%^ ^^
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^a

^
]

h hh
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h
g (2.4)

where Ai 1= a i
M p! ^ h = 1 and G(·) is the Gamma function. In other words, the

vector (pa(A1), …, pa(AM)) is a Dirichlet random vector with parameter vector
(a (A1), …, a (AM)).

Without any data, the Bayes estimate of the unknown density f (x |G ) is
given by the weighted average of f (x|G) over A with weights given by the prior
probability pa. The Bayes estimate is the ‘‘best’’ in the sense of minimizing the
quadratic loss function in the Bayesian decision theory. It is shown in Lo (1984)
that the Bayes estimate can be written as:

A
, .

a
a

E f x G f x G dG K x u U
du

a
U

= =p# #] ] ] ]
]

]
g g g g

g

g
6 @ (2.5)

where a(U) is a finite positive real number and
a
a

U
du
]

]

g

g is a probability measure.
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2.2. Credibility premium

In the context of Bayesian mixture credibility, we suppose that conditional on
the distribution G of risk parameters, the aggregate claim amounts X1, X2, …,
Xn, Xn + 1 are independent and identically distributed with a common proba-
bility density function f (x|G). Without given knowledge of G, X1, X2, …, Xn,
Xn + 1 are not independent. In the sequel, we shall first present the predictive
density function of the future aggregate claim amount Xn + 1 given informa-
tion F X

n generated by past and current aggregate claim amounts. We shall then
evaluate the credibility premium using the predictive density function.

Following Lo (1984), we adopt the representation of the posterior distribu-
tion of G as a finite sum over partitions of the claim amount data {X1, X2, …,
Xn} to evaluate the predictive density function of Xn + 1 given F X

n . First, we pre-
sent some important notations. Let n denote a positive integer and P denote
a partition of {1, 2, …, n}. Write n (P) for the number of cells in the parti-
tion P. Then, P := {C1, C2, …, Cn (P)}, where Ci is the i th cell in the partition.
Let ei denote the number of elements in Ci. Then, it is noted in Lo (1984) that
both Ci and ei , i = 1, 2, …, n (P), depend on P. Now, we define the weighted
function W (P), which plays an important role for the evaluation of the pre-
dictive density function and is defined as:

W (P) := ,
z

z

P
P

P! ]

]

g

g

where the function z(P) is given as follows:

,

i

, .z
a

a
aU n

U
e K u duP

G
G

G
,

i
i

n

CU

P

1

=
+

!=

X#% %]
]^

]^
^

]

^ ]g
g h
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Then, by Lo (1984), the predictive density function of Xn + 1 given F X
n is:

n

i
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for i = 1, …, n (P) , (2.6)

0 ,
a
a

du C U
du

=p^
]

]
h

g

g (2.7)

and e0 = a (U ). The credibility premium under the Bayesian infinite mixture
model is evaluated as the predictive mean of Xn + 1 given F X

n , which is a Bayes
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estimator for the pure premium. Let Zn denote 
a

a

U n
U

+]

]

g

g . Then, the credibility
premium is evaluated as:

n n1 1+ +n nc
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** 4 4 (2.8)

which is a weighted average of the collective premium given by the prior mean
of Xk and the sample average of the aggregate claim amounts with weight Zn

given on the collective premium. This is consistent with the Bayesian parametric
credibility premium formula for the pure premium.

Example 2.2.1. When the kernel function K(x,u) is a Gamma density function
with a given shape parameter g > 0 and mixing scale parameter u = q, let q be
Gamma(a,b). Then, the predictive density function K

U
# (x,u)p(du|Ci) becomes

an inverse Beta density. That is,

,
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The credibility premium is given by:

n 1+ nc
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(2.10)

where a > 1, g > 0 and b > 0.

Example 2.2.2. When the kernel function K(x,u) is a Poisson probability mass
function with mixing intensity parameter u = l, we let l be Gamma(a,b), a
Gamma distribution with shape parameter a > 0 and scale parameter b > 0.
Then, the predictive density function K

U
# (x,u) p(du |Ci) becomes a negative

binomial density with parameters ( , ,a
, b e

b e

C 1i

i

i
+

! + +

+X! ) . That is,
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In this case, the credibility premium is given by:

n 1+ nc
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n n
X i .P X Z b
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(2.12)

Note that we shall adopt the Bayesian infinite mixture model with a Gamma
density function in the simulation experiment and empirical study in Section 4
and Section 5, respectively.

3. ESTIMATION PROCEDURE BY WEIGHTED CHINESE RESTAURANT

(WCR) PROCESS

In this section, we shall present the WCR process for sampling partitions and
estimate the Bayesian infinite mixture credibility model. We shall employ a
numerical scheme for the WCR process developed by Lo et al. (1996) to sam-
ple partitions. In particular, a Gibbs version of the WCR process is employed
to generate samples from the posterior distribution of partitions W (P). In the
sequel, we first describe the Gibbs version of the WCR process.

In the context of the WCR process, we call the kth-element of the set S :=
{1, 2, …, n} the kth customer. We shall present the algorithm for the Gibbs ver-
sion of the WCR process as follows:

Step I: Set an initial partition P(0) of the set S .

Step II: Determine P(1) from the following procedures

1. For each k = 1, ..., n, consider a partition P(i)
–k of {1, 2, …, n } \ {k} by remov-

ing customer k from P(0)

2. For each k = 1,2, …, n, re-seat customer k in a new table or an occupied
table Cj , – k of P(i )

–k , for each j = 1, 2, …, n (P(i )
–k ), where n (P(i )

–k ) represents the
number of cells in the partition P(i )

–k according to a predictive seating rule.
Customer k is assigned to a new table with a probability proportional to

,k ,a
a
a

U K u U
du

U
# X#] ^

]

]
g h

g

g

or to the table Cj , – k with a probability proportional to

ej , – k ≈ K
U
# (Xk,u) p(du |Cj , – k)  for j = 1, …, n (P(i )

–k )

where ej , – k is the number of customers in Cj , – k and

p(du |Cj , – k) =
,

,

j

j

,

,

a

a

K u du

K u du

,

,
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C

,

,
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!
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%

^ ]

^ ]

h g

h g
for j = 1, …, n (P(i )

–k ).
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3. Obtain P(1) by repeating (i) and (ii) for each k = 1, 2, …, n.

Step III: Setting with P(1), repeat the procedures in Step I and Step II iteratively
and obtain a sequence of partitions P(1), P(2), ….

In Step II of the above algorithm, K
U
# (x,u) p(du |Cj , – k) plays the role of the

weight of the predictive density. Customer k is likely to be seated to a table with a
large predictive density and a large number of existing customers ej , – k. In Step III
of the above algorithm, we repeat the above reseating procedure and obtain a
sequence of partitions. Then, one can obtain a Bayesian estimate by calculating
the average of the posterior quantity (i.e. the posterior expectation) evaluated
at the partitions obtained from the Gibbs version of the WCR process.

4. A SIMULATION EXPERIMENT

In this section, we shall conduct a simulation experiment on the credibility pre-
mium from the Bayesian infinite mixture model with a Gamma kernel function.
We shall compare the estimated credibility premium obtained from the Bayesian
infinite mixture model with a Gamma kernel function with that obtained from
the Bühlmann credibility model using simulated data. We consider two para-
metric cases of the Bühlmann credibility model, namely, the Poisson-Gamma
case and the Pareto-Uniform case, in the comparison. First, we compare the
estimated credibility premiums from the Bayesian infinite mixture model and
the two cases of the Bühlmann credibility model using the full data set for the
aggregate claim amounts. Then, we provide the comparison on the robustness
and the rate of convergence of the estimated credibility premiums as the aggre-
gate claim amounts data emerge.

First, we suppose that the prior distribution of the risk parameter q is an
uniform distribution, Uni [0, 10], on the interval [0,10], and conditional on the
risk parameter q, the distribution of the aggregate claim amounts data is a
Pareto distribution, Pareto(3,q), with a given shape parameter a0 = 3 and mode
parameter q. Then, we simulate 10 realizations of the risk parameter q from
Uni [0, 10]. Given a realization q of the risk parameter, we simulate 500 aggre-
gate claim amounts data X1, X2, ..., X500 from Pareto (3,q ). We consider the
assumed models for the simulation as if they were the ‘‘true’’ models and the sim-
ulated aggregate claim amounts data as if there were the ‘‘true’’ observations in
our simulation experiment. In this case, the ‘‘true’’ pure premium is given by:

i q, . .E X a q q3 3 1
3 1 50 #= =
-

=^ h

Now, we shall calculate the estimated credibility premium Pc from the Bayesian
infinite mixture model with a Gamma kernel function using the simulated
data with 500 observations. We shall also compare the Bühlmann credibility
premium and the Bayesian mixture credibility premium with the ‘‘true’’ pure
premium.
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We suppose that the parameter of the Dirichlet process a (dt ) is the prob-
ability distribution function of a Gamma distribution with shape parameter
a = 10 and scale parameter b = 2. This implies that a(3) = 1 and that 

a

a dt

3]

]

g

g is
also a Gamma distribution. We further assume that g = 1. Then, we run the sam-
pler with 20,000 cycles in the Gibbs version of the WCR process. The first
10,000 samples will be considered the warm-up period while the last 10,000
samples will be taken to evaluate the credibility premium using the formula
(2.13).

Then, we shall evaluate the estimated credibility premiums BPG and BPU

from the Poisson-Gamma case and the Pareto-Uniform case of the Bühlmann
credibility model, respectively, using the simulated data. We employ the formula
in Example 16.26 of Klugman et al. (2004) to compute the Bühlmann credibil-
ity premium in the Poisson-Gamma case. We assume that the prior parameters
of the Gamma distribution are (a, b) = (10, 2). Then, the Bühlmann credibility
premium in the Poisson-Gamma case is given by:

n 1+ nP n
X

G ,B X n b
b

b
a

n b
n XF =

+
+

+
` c cj m m (4.1)

where Xn := i 1= i
n X! is the sample average of the aggregate claim amounts data.

Now, we consider the Bühlmann credibility model in the Pareto-Uniform case.
In this case, we suppose that the prior parameters of the uniform distribution
are (L, U ) = (1,10) and that the shape parameter of a Pareto distribution is
given as a0 = 3. Then, the Bühlmann credibility premium in the Pareto-Uniform
case is given by:

n 1+ nP n
X

U ,B X n k
k L U

n k
n XF 2=

+
+

+
+

` c cj m m (4.2)

where the constant factor k is:

2 .k a a U L
UL

1 2
4 1 3=

- -
+

-] ] ]
d

g g g
n (4.3)

Table 4.1 presents the ‘‘true’’ pure premium, the Bühlmann credibility premi-
ums in both the Poisson-Gamma and Pareto-Uniform cases, and the Bayesian
infinite mixture credibility premium evaluated using the full simulated data, with
500 observations for each simulated path and each risk parameter.

Figure 4.2 presents the plots of the ‘‘true’’ pure premium, the Bühlmann
credibility premiums in both the Poisson-Gamma and Pareto-Uniform cases,
and the Bayesian mixture credibility premium using the simulated data in suc-
cessive periods for each of the 10 risk parameters.

Based on the simulation results, the Bayesian mixture credibility premium
seems to be more close to the ‘‘true’’ pure premium than the Bühlmann one
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FIGURE 4.2.
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TABLE 4.1

CREDIBILITY PREMIUMS V.S. THE ‘‘TRUE’’ PURE PREMIUM

Case 1 2 3 4 5 6 7 8 9 10 

q 2.8842 7.4075 1.9461 6.5859 5.3743 3.028 3.1345 9.7325 8.6013 4.0759 

True 4.3262 11.1113 2.9191 9.8789 8.0614 4.5419 4.7017 14.5988 12.9019 6.1139 

Premium Principles Estimated Premiums

BPG (Xn + 1 |F X
n ) 4.4317 11.4788 2.8907 9.804 8.0933 4.6033 4.7797 14.774 13.2637 6.1848 

BPU (Xn + 1 |F X
n ) 4.4353 11.4719 2.8966 9.7997 8.0914 4.6066 4.7828 14.7623 13.2543 6.1858 

Pc (Xn + 1 |F X
n ) 4.3468 11.2831 2.83 9.6347 7.9508 4.5157 4.6893 14.5265 13.04 6.0724
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in most of the cases. In addition, the Bayesian mixture credibility premium is
more robust than the Bühlmann credibility premium. Even though we choose
a set of prior parameters, which gives a very different estimate to the ‘‘true’’ pure
premium, the predictive estimate will converge quickly to the corresponding
‘‘true’’ pure premium.

5. A REAL-DATA EXAMPLE AND COMPARISON

In this section, we shall provide a real-data example for the Bayesian mixture
credibility premium and compare it with the Bühlmann credibility premium using
the Danish fire insurance loss data from years 1988 to 1990. The data consist of
663 fire insurance losses in Danish Krone (DKK) and were downloaded from 

http://www.math.ethz.ch/ mcneil/ftp/DanishData.txt

First, we shall provide a comparison between the the credibility premium from
the Bayesian infinite mixture model with a Gamma kernel function and those
obtained from the Poisson-Gamma and Pareto-Uniform cases of the Bühlmann
credibility model using the full set of the aggregate claim amounts data. Then,
we shall make a comparsion between the Bayesian mixture credibility premiums
with a Gamma kernel function and the Bühlmann credibility premiums in the
Poisson-Gamma and Pareto-Uniform cases in successive periods. In the para-
metric Bayesian case, Waters (1993) provides a study on the credibility factors
in successive periods. Here, following a similar analysis with Waters (1993), we
investigate the credibility factors of the Bayesian mixture credibility model
and those of the Bühlmann credibility model in successive periods. We shall
compute the credibility premium from the Bayesian infinite mixture model using
the Gibbs version of the WCR process in Section 3. All the computations were
done by C.

For evaluating the Bayesian mixture credibility premium with a Gamma
kernel and the Bühlmann credibility premiums in both the Poisson-Gamma
and Pareto-Uniform cases, we assume the same parameter values as those in
Section 4 and adopt the corresponding methods there. Table 5.1 presents the
estimated credibility premiums from the Bayesian infinite mixture model and
the Bühlmann credibility models using full set of the aggregate claim amounts
data with 663 observations.

584 J.W. LAU, T.K. SIU AND H. YANG

TABLE 5.1

CREDIBILITY PREMIUMS USING FULL DATA

Premium Principles Estimated Premiums (in Millions)

BPG (Xn + 1 |F X
n ) 3.7091

BPU (Xn + 1 |F X
n ) 3.7126

Pc (Xn + 1 |F X
n ) 3.3404
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FIGURE 5.2.

From Table 5.1, we see that the Bayesian mixture credibility premium are
lower than the Bühlmann credibility premiums while the Bühlmann credibility
premiums in both the Poisson-Gamma and Pareto-Uniform cases are very
similar.

Figure 5.2 presents the plots of the Bayesian mixture credibility premiums
and the Bühlmann credibility premiums in successive periods.

In Figure 5.2, the same as in Table 5.1, we observe that the Bayesian mixture
credibility premiums are systematically lower than the Bühlmann credibility pre-
miums in successive periods while the Bühlmann credibility premiums in both
the Poisson-Gamma and Pareto-Uniform cases are very close to each other in
successive periods.

Figure 5.3 displays the plots of the credibility factors from the Bayesian
infinite mixture model and those from the Bühlmann credibility models in
successive periods.

From Figure 5.3, we observe that the Bayesian mixture credibility factor con-
verges more quicker to the level one compared with the Bühlmann credibility
factors in both the Poisson-Gamma and Pareto-Uniform cases as data emerge.
The convergence of the Bühlmann credibility factors to the level one in the two
cases are very similar.
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FIGURE 5.3.

6. FUTURE RESEARCH

Comparing with the parametric Bayesian credibility theory, the Bayesian
mixture credibility theory is a more flexible and general approach for deter-
mining the credibility premium of a non-homogeneous insurance portfolio.
The robustness analysis with respect to the prior processes and the method for
choosing the shape parameter of the Dirichlet prior process when the sample
size is small also represent interesting research problems. It seems that the clas-
sical density estimation can be applied to estimate the shape parameter of the
Dirichlet prior process. Some techniques in neural network may provide some
insights in developing efficient estimation methods for the shape parameter of
the Dirichlet prior process. Formulas for the credibility premiums involving the
median, quantiles and higher moments of the predictive distribution can be
obtained in the Bayesian infinite mixture model. This provides us with a
convenient and flexible way to investigate and develop other credibility pre-
mium principles, such as the premium principle involving the first four cumu-
lations by Ramsay (1994), the risk-adjusted credibility premiums with distorted
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probabilities by Wang and Young (1998), the scenario-based premiums in Siu
and Yang (1999), and others.
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