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Abstract

The square-root fixed-interval discrete-time smoother has been used extensively
in discrete recursive estimation since it was first developed by Rauch, Tung and
Streibel [10]. Various people, for example Bierman [2], [3], have recognized the
inherent instability in employing this kind of smoother in its original form; they
have investigated implementing the recursion more stably. Bierman's paper [3]
is one such contribution. In this paper we plan to present a more comprehensive
development of Bierman's approach, and to show that this algorithm can be
implemented more stably as a square-root smoother. Throughout this paper the
fixed-interval discrete-time smoother will be referred to as the RTS smoother.
Numerical results are given for the usual form of the RTS smoother, Bierman's
algorithm and our square-root formulation of his algorithm. These confirm that
the square-root formulation is more desirable than Bierman's algorithm, which
performs better than the usual implementation of the RTS smoother.

1. Introduction

Reports of computational experience with the RTS smoother suggest that on oc-
casions numerical problems can occur. Bierman [3] identifies these problems as
being caused by computations involving the differences of positive definite matri-
ces which can cause loss of significance due to cancellation, and to a lesser extent
by the inversion of covariance matrices which can be ill conditioned. In addi-
tion, these explicit inversions can be computationally expensive. He suggested
an alternative formulation which avoided these problems.
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58 Tania Prvan and M. R. Osborne [2]

In this paper we plan to give a more comprehensive development of Bierman's
embedded smoother approach and to show how the equations can be rearranged
to exploit the inherent structure. It will be shown that his algorithm can be
implemented in a numerically stable way as a square-root smoother. This is
desirable because the positive definiteness of the smoothed covariances can be
preserved. Numerical results are given for the usual form of the RTS smoother,
Bierman's algorithm and our square-root formulation of his algorithm. These
confirm the expected advantages.

An appropriate background reference for the filtering and smoothing algo-
rithms to [1]. An accessible account of the Kalman filter is given in [6].

2. Preliminaries

The following signal model is considered

xi = TjXj-1+vr'i (2.1)

Vi = hj*j + VJ (2.2)

j = l , . . . ,n ,

where xjt w£, h, € W, yjf v, E 9* and Tj eWxp. An initial estimate of the
first state xx, say xi, is assumed to be known and likewise an estimate of its
covariance Si. The following assumptions are made:

£(W;.) = 0, £ ( w > f ) = *& (2.3)

E(Vj) = 0, E(vjVk) = 6jka] (2.4)

£((xi - X l )wf ) = 0, £?((x, - xjvj) = 0 (2.5)

where vk, w'fc and xx are uncorrelated.
The Kalman filter recursion for the signal model (2.1) and (2.2) under as-

sumptions (2.3), (2.4) and (2.5) is

XJ|J_I = TjXj_nj_x (one step prediction estimate) (2.6a)

Sj\j-i = TjSj_i\j-iTf + f2 (estimate prediction error covariance)(2.6b)

£j — yj — hjxj|j_x (innovations residual) (2.6c)

d3• = hJSj\j-\h3 -V a1 (innovations residual covariance) (2.6d)

XJ\J = x-j\j-i + Sj\j-ihj£j/dj (estimate update) (2.6e)

and

Sjy = S J | J - I — Sj\j-ihjhJSj\j-i/dj (estimate update error covariance)

(2.6f)

j = l , . . . ,n .

https://doi.org/10.1017/S0334270000006032 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006032


[3] Square-root discrete-time smoother 59

The RTS smoother is

Xj|n = x,-|y + Aj(xj+i\n - Xj+1y) (smoothed estimate) (2.7a)

and

Sj\n — Sj\j + Aj(Sj+x\n — Sj+i\j)Aj (smoothed estimate error covariance),
(2.7b)

where

Aj = SjbTf+1(Sj+Mj)-1 (smoother gain) (2.7c)

j = n,..., 1.

The quantities Xn|n and Sn\n which initiate this backward recursion are obtained
from the Kalman filter. It is in (2.7b) that the possibility of losing the property
of positive definiteness for the smoothed covariance may arise because of the
differencing of the positive definite matrices. Our algorithm exploits Bierman's
equations for the RTS smoother by arranging it as a square-root smoother which
ensures that the smoothed covariances remain positive definite. In some contexts
it is desirable to maintain the positive definiteness of the smoothed covariances.
Another distinct advantage of using a square-root implementation of the RTS
smoother is that it is numerically stable for the covariance calculations. This was
supported experimental by numerical results obtained from running the usual
form of the RTS smoother, Bierman's formulation of the RTS smoother, and
our square-root implementation of Bierman's formulation of the RTS smoother
in both single and double precision to obtain estimates of the accuracy of the
smoothed estimates and covariances for the three algorithms. The results are
given in Section 5 for two examples.

3. Bierman's algorithm

In this section, a modified version of Bierman's approach to obtaining

smoothed estimates and their respective covariances will be given.

As a preliminary the following signal model will be considered

x.j = -x.j-i+bwj j = l,...,n, (3.1)

which has no associated observation equation. The vectors x^ and b are of
dimension p, and Wj is a scalar with zero mean and unit variance. In this special
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60 Tania Prvan and M. R. Osborne [4j

case the Kalman filter collapses to the following equations

(3-2a)

(3-2b)
T (3.2c)

(3-2d)

The RTS smoother becomes

xi |n = xj\j + ^ i ( x j+ i |n - *i+i | j+i) (3-3a)

Sj\n = Sj\j + Aj(Sj+i\n - Sj+i\j+i)Aj , (3.3b)

where

Aj = % ( S J + i b + 1 r 1 (3.3c)
j = n - 1, . . . , 1.

Rearranging (3.2c) as an expression for 5 ^ and substituting this into (3.3c), we
have that Aj is given by the rank / matrix

where

Substituting this expression for Aj into (3.3a) and (3.3b), using (3.2c) and sim-
plifying gives

X>|n = x J + l|n + bv T (x y + 1 | J + 1 - XJ + 1 | n) (3.4a)

and
Sjln = (/ - bvr)S3 + 1 | n (7 - bv T ) T + (1 - vTb)bbT. (3.4b)

From (3.2a) and (3.2b) the term x J + 1 | J + 1 is equivalent to xi|i . The formula
for the smoothed covariance is a rank II matrix plus a correction term. This
formulation is desirable because it lends itself to numerically stable implemen-
tation. The model (3.1), and recursion (3.2) and (3.4) are pivotal to Bierman's
development of his algorithm.

To make use of (3.4), it is necessary to organise (2.1) into a series of steps,
each of which has the form (3.1) with uncorrelated noise terms. Here this is done
by rewriting the state equation (2.1) as

where L3- is the Cholesky factor of the covariance fij which for the present is
assumed to be positive definite. The quantity L~x is never evaluated. It is
worthwhile noting here that any square-root factorization of the covariance fij
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[5] Square-root discrete-time smoother 61

will suffice to make Wj have identity covariance which is equivalent to the ele-
ments of wy being uncorrelated. We choose the Cholesky decomposition because
it is readily calculated. Let Wj(k) denote the fcth element of the vector Wj. The
state equation (2.1) can be expressed in terms of w} (k) by considering operating
on the columns of

where Bjk G JHP, fc = 1,. . . , p. This gives

x,- = T j - x , - ! + BjiWjil) + ••• + BjpWj{p), (3.6)

which can be written recursively as

Xf = Tyx,-., (3.7a)

X,-i+i = Xj{ + BjiWj(l), (3.7b)

where
X,-! = Xf. (3.7c)

This gives a deterministic update (3.7a) and a noise process update (3.7b). The
state equation (2.1) can now be replaced with (3.7a), (3.7b) and (3.7c). The
recursion (3.7) considered as a state space formulation does not contain an ob-
servation equation.

To obtain the solution for one step prediction the special case Kalman Filter
(3.2) is applied to (3.7) which gives

Xf = T ^ - n , - ! , §P = TjSj-^Tj (3.8a,b)
= Sji + BjtBji (3.8c,d)

where

X,-! = X f (3.8e)

and
Sn = Sf. (3.8f)

Note that X,j is being used to represent X ^ and Sji to represent Sij\j. The
recursion (3.8) gives

Xjp+i =xJ-| i_1 (3.8g)

and

Sjp+i = S>|j—l- (3.8h)

Upper case bold letters are used to denote embedded recursions. The subscript j
indicates that the j'th state equation is of interest, while the subscript i indicates
that the ith embedded recursion is of interest.
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The special case RTS smoother (3.3a) is applied to (3.7) to obtain

(3.9a)

(3.9b)

i = p , . . . , l ,

x J _ 1 | n = T - r X j l | n (3.9c)

j = n , . . . , l ,

as the recursion for the smoothed estimate where

Vji = (Sji+i)~ Bjj.

To obtain Vji, i = 1,... , p, a forward pass of the recursion (3.8) for the covari-
ances is required. If a Cholesky decomposition is applied to Sji+i then

can be solved for the VJt by a forward and backward substitution, thus avoiding
inverting Sji+i. The special case RTS smoother (3.3b) is applied to (3.7) to
obtain

SJ P + 1 | n = Sj\n (3.10a)

8ji\n = (I - BjiV$)8ji+n{n{I - BjiVlF + VjiBjiBji (3.10b)

i = P, •••,!.

s,-_1|B = r y 5 J - 1 | n r r r (3.ioc)

j = n,...,l,

as the backward recursion for the smoothed covariance where

r,ji = (1 - BfiVj-i).

To identify (3.9) and (3.10) with the recursions obtained by Bierman, we make
a LDLT decomposition on the state covariances fij where the lower triangular
matrix L has unit entries along its principal diagonal and D is a diagonal matrix
with elements (qji,..., qjp), and make the replacement

where
Xji = {l+V$

As mentioned earlier, LJ1 is never evaluated. Bierman's algorithm will now
be modified to handle Clj being positive semi-definite, as follows. Recollect that,
since by definition Qj is a covariance matrix, it must be symmetric. Thus there
exists a nonsingular matrix Gj such that

https://doi.org/10.1017/S0334270000006032 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006032


[7] Square-root discrete-time smoother 63

where Aj is a diagonal matrix. Furthermore, Qj being positive semi-definite
restricts the entries of Aj to being non-negative which means that Qj possesses
the square root GJ1 A1-'2. Since square roots of matrices are determined up to
an orthogonal matrix we can convert GJ1 A*' to a lower triangular matrix L3

by appropriate multiplications by orthogonal transformations. If Qj is not of full
rank, neither will Lj be of full rank. Let

We are now in the position to use the formulation of the Kalman filter and RTS
smoother given in this section. The crucial step is that Wj given in (3.5), even
when Qj is positive semi definite, still has a covariance which is diagonal, albeit
one, which may have some entries that have to be interpreted as approaching
infinity (although we never need evaluate it), so the elements of wy are still
equivalent to being uncorrelated. Bierman did not consider using his algorithm
for the state transition covariance Qj being positive semi definite; he argued
that if this occurred then it served as a warning that the state space formulation
needed reformulation.

4. A square-root algorithm

As noted in the preceding section, the V,», i = 1,... ,p, are required to apply
the recursions (3.9) and (3.10) for given j which in turn requires the quantities
Sji+i, i = 1,... ,p. First of all a square-root algorithm for updating Sji will be
developed. To do this the recursion (3.8b), (3.8d) and (3.8f) will be exploited.

A square-root Kalman filter is used initially to obtain the square roots of the
covariances {Sj\j)T- The matrix (S*/?)T is kept in upper triangular form. The

quantity (Sji)T initiates the forward recursion for (S1
j
/
i
2)T (c.f. (3.8f)). The

result

miy=(sy.^n (4.i)
when computed is not necessarily an upper triangular matrix but it is determined
up to an orthogonal matrix which can be chosen to restore upper triangular
form. Thus (4.1) is premultiplied by orthogonal transformations to restore it
to the required form. Using a similar approach orthogonal transformations are
used to obtain (S*t(

2_1)
r by reducing

M* to [<*&>'], (4,,
for i = l , . . . ,p , where (S*/2 )T and (S*-^1)T are constrained to be upper tri-
angular matrices. The following notation will be useful. Let H(au,a.ji) be the
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elementary reflector which uses the (i, i)th element of the matrix A to zero out
the (j, i)th element of A. Let A be the matrix being reduced in (4.2); then the
reduction of this matrix to an upper triangular matrix can be done efficiently as
follows:

t=i

More details about this can be found in Golub and Van Loan [5]. Then the
following equation

TJ.._qi/2 (£1/2 \TV..

is solved for Vjj by a backward and forward substitution thus avoiding inverting
£1/2

To downdate (S1j{+1)
T, which is kept as an upper triangular matrix in the

embedded recursion for the square root of the smoothed covariance, the square
root of the leading term in (3.10b) is first formed. The quantity

initializes this backward recursion, where (Sj/*)T is kept in upper triangular
form. By inspection of (3.10b), the square root of the first term is

The term (5'1/+i|n)rV_;t can be transformed to a2ei by a series of orthogonal

transformations, QT, in such a way that QT{Sj(+1\n)
T is upper Hessenberg.

This is achieved by choosing QT such that

Subtracting (QT(5V+1|n)TVji)Bji from Q T (SJ^ 1 | n ) T only alters the first row

of <9T(SJ
1,/+1|n)

T, and so the quantity

is also upper Hessenberg. It only requires O(n) operations to reduce an upper
Hessenberg matrix R to an upper triangular matrix R by a series of elementary
reflectors PT; that is,

PTR = R. (4.6)

For more details see Golub and Van Loan [5]. Once the square root of the leading
term in (3.10b) is evaluated the square root of the smoothed covariance can be
formed by reducing
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by a series of elementary reflectors as outlined for (4.2). After going through (4.5)
to (4.7) which implements (3.10b) p times, the quantity {S^n)

T is obtained. The
final step computes

which is not necessarily in upper triangular form. This must be restored by
orthogonal transformation. Note that both this reduction and that required
following (4.1) are relatively expensive (of the same order as the internal recur-
sion).

5. Examples

The RTS smoother, Bierman's [3] implementation of the RTS smoother and
the square root formulation of the RTS smoother in Section 4 were run in single
and double precision to obtain estimates of the precision of the smoothed esti-
mates and covariances for two data sets. The data sets were from Gallant [4]
(here n = 72) and the sunspot data in Pandit and Wu [9] (here n = 176).

The following covariance was used for the transition equation (2.1):

n«fc = A ( ( 2 P + 1 - k - Z)(P - I)KP - fc)!)"1

for j = 2 , . . . , n, where the algorithms were used for p = 1, . . . , 5. This covariance
structure was chosen because we were interested in fitting to the data a poly-
nomial smoothing spline employing a method which made use of the Kalman
filter and RTS smoother. For more details refer to Wecker and Ansley [11] and
Osborne and Prvan [7], [8] and references contained therein. The results in Table
1 and Table 2 are for values of A which straddle the optimal A for the smoothing
spline. The smoothed estimates do not vary with the mode of calculation and
we believe they reflect the attainable accuracy. Thus they provide a standard
by which to judge the covariance calculations. From the results in Table 1 and
Table 2 it is apparent that Bierman's algorithm is more accurate than the stan-
dard implementation of the RTS smoother, and that the square-root formulation
of the RTS smoother is more accurate than either algorithm for p > 3. Thus
our formulation of the RTS smoother has two distinct advantages over its com-
petitors by being more accurate for large p, and by ensuring that the smoothed
covariances are positive definite.
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TABLE 1. Error estimates for smoothed estimates and smoothed covariances for the Gallant
data.

p

1

2

3

4

5

A

0.1

0.01

0.001

0.0001

0.1

0.01

0.001

0.0001

0.1

0.01

0.001

0.0001

0.1

0.01

0.001

0.0001

0.1

0.01

0.001

0.0001

est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov

RTS

0.36
0.25
0.88
0.18
0.19
0.93
0.70
0.11
0.16
0.99
0 1 7
0.93
0.18
0.41
0.25
0.63
0.13
0.41
0.91
0.17
0.60
0.16
0.26
0.16
0.24
0.51
0.42
0.25
0.30
0.12
0.56
0.74
0.21
0.78
0.75
0.45
0.94
0.32
0.56
0.18

Smoother
XlO-9

x 10-*
XlO-9

x 10"*
x 10"*
XlO-9

x 10~9
XlO-9

x 10-1°
xlO-9

x 10-1°
x lO-9

xl0-i°
XlO-9

x 10-i°
XlO-9

xl0- i°
x 10-*
x IO-11

X10-*
xlO-u
x 10-*
x IO-12
xl0~*
xl0-i°
xlO~7

xlO-u
xlO~7

xlO-u
xlO-7

x IO-12
X10-*
xlO-1 0

xlO"6

x IO-11

xl0~6

X I O - "

x 10-6

X 10-12

x l O - 6

Bierman
0.36 x lO-9

0.36 x 10"9
0.88 x lO-9

0.29 x lO-9

0.19 x lO-9

0.28 x lO-9

0.70 x 10~9
0.12 x 10-1°
0.16 x l O - 1 0

0.10 x 10-*
0.17 x 10-1 0

0.30 x lO-9

0.18 x 10-1°
0.40 x 10"9
0.25 x 10-1 0

0.41 x lO-9

0.13 x 10-1°
0.30 x 10-*
0.91 x IO-11

0.16 x 10"*
0.60 x IO-11

0.20 x 10-*
0.26 x 10-12
0.58 x IO-9

0.24 x 10-1 0

0.70 x 10-*
0.42 x 10-u
0.67 X 10-*
0.30 x 10 u

0.46 x 10-*
0.56 x 10"12

0.24 x 10-*
0.21 x 10-1°
0.45 x 10-7

0.75 x 10-n
0.51 x IO-7

0.94 x 10-12
0.30 x 10"7

0.56 x 10-12
0.13 X 10"7

Square root algorithm
0.36 x
0.38 x
0.88 x
0.43 x
0.19 x
0.39 x
0.70 x
0.27 x
0.16 x
0.16 x
0.17 x
0.15 x
0.18 x
0.19 x
0.25 x
0.16 x
0.13 x
0.15 x
0.91 x
0.74 x
0.60 x
0.77 x
0.26 x
0.42 x
0.24 x
0.26 x
0.42 x
0.25 x
0.30 x
0.11 x
0.56 x
0.13 x
0.21 x
0.57 x
0.75 x
0.35 x
0.94 x
0.31 x
0.56 x
0.32 x

lO-9

lO-9

lO-9

lO-9

IO-9

lO-9

lO-9

lO-io
lO-io
io-*
io-i°
10~*
I0-io
10~*
lO-io
lO-io
io-1 0

10"*
10-u
lO-9

10-u
lO-9

10-12
lO-9

lO-io
io-*
I O - 1 1

io-*
I O - 1 1

io-*
10-12
io-*
io-i°
io-*
10-u
10-*
10-12
io-*
10-12

io-*
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TABLE 2. Error estimates for smoothed estimates and smoothed covariances for the sunspot
data.

p

1

2

3

4

5

A

100

10

1

0.1

100

10

1

0.1

100

10

1

0.1

100

10

1

0.1

100

10

1

0.1

est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov
est
cov

RTS

0.89
0.16
0.17
0.79
0.29
0.11
0.73
0.14
0.32
0.38
0.14
0.11
0.27
0.26
0.95
0.57
0.18
0.45
0.17
0.87
0.14
0.12
0.54
0.29
0.27
0.68
0.22
0.79
0.20
0.10
0.10
0.27
0.27
0.10
0.27
0.10
0.23
0.23
0.10
0.50

Smoother

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

10-9

io-7

io-*
io-*
io-*
io-7

io-*
io-*
io-*
io-7

io-*
io-7

10-9
10"*
10-9
10-9

io-*
io-6

io-*
io-7

io-*
io-7

10-9

io-*
10-9

io-5

io-8

io-6

10-9

io-6

io-8

io-7

IO-9

10~5

io-*
io-4

io-*
io-5

10"*

io-6

Bierman

0.89 x
0.15 x
0.17 x
0.71 x
0.29 x
0.56 x
0.73 x
0.18 x
0.32 x
0.31 x
0.14 x
0.56 x
0.27 x
0.87 x
0.95 x
0.65 x
0.18 x
0.24 x
0.17 x
0.15 x
0.14 x
0.47 x
0.54 x
0.19 x
0.27 x
0.97 x
0.22 x
0.11 x
0.20 x
0.18 x
0.10 x
0.36 x
0.27 x
0.23 x
0.27 x
0.33 x
0.23 x
0.21 x
0.10 x
0.23 x

10-9

io-7

io-*
io-*
io-*
io-*
10~*
10-9

io-«
io-7

io-8

io-*
10-9
IO-9

10-9
IO-9

io-8

io-6

io-*
io-7

io-*
10""*
10-9

io-8

10-9

io-6

io-*
io-6

10-9

io-7

io-*
io-8

10-9

io-4

io-*
io-5

10"8

io-6

io-8

io-7

Square

0.89 x
0.79 x
0.17 x
0.12 x
0.29 x
0.63 x
0.73 x
0.19 x
0.32 x
0.92 x
0.14 x
0.63 x
0.27 x
0.13 x
0.95 x
0.13 x
0.18 x
0.43 x
0.17 x
0.74 x
0.14 x
0.22 x
0.54 x
0.85 x
0.27 x
0.80 X
0.22 x
0.16 x
0.20 x
0.48 x
0.10 X
0.16 x
0.27 X
0.14 x
0.27 x
0.22 x
0.23 x
0.53 x
0.10 X
0.37 x

; root algorithm

10-9

io-7

io-*
io-7

io-*
io-8

io-«
10-9

io-*
io-7

io-*
io-*
IO-9

io-*
10-9

io-*
io-8

io-7

io-7

io-*
10~*
10"*
10-9
10-9
10-9

io-7

io-*
io-7

10-9
10~8

io-*
io-*
10-9
10~6

10~8

io-7

io-*
io-»
io-*
io-*
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