POSITIVE LINEAR MAPS ON C*-ALGEBRAS

MAN-DUEN CHOI

The objective of this paper is to give some concrete distinctions between positive linear maps and completely positive linear maps on C^{*}-algebras of operators.

Herein, C^{*}-algebras possess an identity and are written in German type $\mathfrak{A}, \mathfrak{B}$, \mathfrak{C}. Capital letters A, B, C stand for operators, script letters \mathscr{H}, \mathscr{K} for vector spaces, small letters x, y, z for vectors. Capital Greek letters Φ, Ψ stand for linear maps on C^{*}-algebras, small Greek letters α, β, γ for complex numbers.

We denote by \mathfrak{M}_{n} the collection of all $n \times n$ complex matrices. $\mathfrak{M}_{n}(\mathfrak{H})=$ $\mathfrak{H} \otimes \mathfrak{M}_{n}$ is the C^{*}-algebra of $n \times n$ matrices over \mathfrak{A}. A linear map $\Phi: \mathfrak{N} \rightarrow \mathfrak{B}$ is positive if $\Phi(A)$ is positive for all positive A in \mathfrak{N}. We define $\Phi \otimes 1_{n}$: $\mathfrak{M}_{n}(\mathfrak{A}) \rightarrow \mathfrak{M}_{n}(\mathfrak{B})$ by

$$
\Phi \otimes 1_{n}\left(\left(A_{j k}\right)_{1 \leqq j, k \leqq n}\right)=\left(\Phi\left(A_{j k}\right)\right)_{1 \leqq j, k \leqq n} .
$$

We say Φ is n-positive if $\Phi \otimes 1_{n}: \mathfrak{M}_{n}(\mathfrak{H}) \rightarrow \mathfrak{M}_{n}(\mathfrak{B})$ is positive; the set of all such Φ is denoted $\mathbf{P}_{n}[\mathfrak{A}, \mathfrak{B}]$. Φ is completely positive if $\Phi \in \mathbf{P}_{n}[\mathfrak{N}, \mathfrak{B}]$ for all positive integers n; the set of all such Φ is denoted $\mathbf{P}_{\infty}[\mathfrak{A}, \mathfrak{B}]$.

It is evident that

$$
\mathbf{P}_{1}[\mathfrak{A}, \mathfrak{B}] \supseteq \mathbf{P}_{2}[\mathfrak{A}, \mathfrak{B}] \supseteq \mathbf{P}_{3}[\mathfrak{A}, \mathfrak{B}] \supseteq \ldots \supseteq \mathbf{P}_{\infty}[\mathfrak{A}, \mathfrak{B}] .
$$

Stinespring [4] and Arveson [1] have given examples of positive linear maps that fail to be completely positive. However, all these examples fail to be 2 -positive. In Theorem 1, we construct examples of $n-1$-positive maps that fail to be n-positive.

If \mathfrak{A} or \mathfrak{B} is commutative, then $\mathbf{P}_{1}[\mathfrak{A}, \mathfrak{B}]=\mathbf{P}_{\infty}[\mathfrak{A}, \mathfrak{B}]$ (see $[\mathbf{4}, \mathbf{5} ; \mathbf{1}, \mathrm{p} .148]$). We establish the converse in Theorem 4, thus giving a characterization of the commutativity of C^{*}-algebras by means of the 'completeness' of positive linear maps. (The result can be strengthened in the finite-dimensional case, as we explain in the remarks which conclude the paper.)

An extension of the work of Stinespring and Størmer leads to a further generalization, Theorems 7 and 8: If \mathfrak{C} is commutative, then

$$
\mathbf{P}_{n}\left[\mathfrak{M}_{n}(\mathfrak{C}), \mathfrak{B}\right]=\mathbf{P}_{\infty}\left[\mathfrak{M}_{n}(\mathfrak{C}), \mathfrak{B}\right], \mathbf{P}_{n}\left[\mathfrak{N}, \mathfrak{M}_{n}(\mathfrak{C})\right]=\mathbf{P}_{\infty}\left[\mathfrak{N}, \mathfrak{M}_{n}(\mathfrak{C})\right] .
$$

Hence, we get a simplification of the structure of completely positive linear maps on a matrix algebra.

Acknowledgement. The author would like to express his thanks to Professor Chandler Davis for many stimulating discussions which led to significant

Received June 3, 1971 and in revised form, January 26, 1972.
improvements in the paper. Thanks are also due to the referee for simplifying the proof of Theorem 1.

First we show that n-positivity is different from $(n-1)$-positivity for the linear maps on \mathfrak{M}_{n}. Let $\left(\alpha_{j k}\right) \in \mathfrak{M}_{n}$; we recall that trace $\left(\alpha_{j k}\right)=\sum_{j} \alpha_{j j}$. The map

$$
\Phi(A)=\{(n-1)(\operatorname{trace} A)\} I_{n}-A
$$

serves as the simplest example we can manage for
Theorem 1. $\mathbf{P}_{n-1}\left[\mathfrak{M}_{n}, \mathfrak{M}_{n}\right] \underset{\neq}{\supset} \mathbf{P}_{n}\left[\mathfrak{M}_{n}, \mathfrak{M}_{n}\right]$.
It is convenient to regard the elements of $\mathfrak{M}_{m}\left(\mathfrak{M}_{n}\right)$ as $m \times m$ block matrices with $n \times n$ matrices as entries; then each is also regarded as an $m n \times m n$ matrix with numerical entries. Let $E_{j k}$ be the $n \times n$ matrix with 1 at the j, k component and zeros elsewhere. Then $\left(E_{j k}\right)_{1 \leqq j, k \leqq n} \in \mathfrak{M}_{n}\left(\mathfrak{M}_{n}\right)$ is the block matrix having the matrix $E_{j k}$ as its j, k entry, for each j, k. Now we investigate the magnitude of $\left(E_{j k}\right)_{j k}$ in the following

Lemma (i) $(n-1) I_{n^{2}}-\left(E_{j k}\right)_{1 \leqq j, k \leqq n}$ is not positive.
(ii) For any rank- $(n-1)$-positive projection P in \mathfrak{M}_{n},

$$
P \#\left\{(n-1) I_{n^{2}}-\left(E_{j k}\right)_{1 \leqq j, k \leqq n}\right\} P \text { \# }
$$

is positive, where $P \#=I_{n} \otimes P$.
Proof. A straight-forward computation shows that

$$
\left(E_{j k}\right)_{j k}^{2}=n\left(E_{j k}\right)_{j k},
$$

and more generally

$$
\left(E_{j k}\right)_{j k} \cdot A \# \cdot\left(E_{j k}\right)_{j k}=(\operatorname{trace} A)\left(E_{j k}\right)_{j k}
$$

where A is arbitrary in \mathfrak{M}_{n} and $A \#=I_{n} \otimes A$. Now (i) is immediate, since $1 / n\left(E_{j k}\right)_{j k}$ is a projection and

$$
\left\|\left(E_{j k}\right)_{j k}\right\|=n>n-1
$$

For (ii) we look at

$$
\begin{aligned}
\left\|P^{\#}\left(E_{j k}\right)_{j k} P \#\right\| & =\frac{1}{n}\left\|P^{\#}\left(E_{j k}\right)_{j k} \cdot\left(E_{j k}\right)_{j k} P^{\#}\right\| \\
& =\frac{1}{n}\left\|\left(E_{j k}\right)_{j k} P \# \cdot P \#\left(E_{j k}\right)_{j k}\right\| \\
& =\frac{1}{n}\left\|\left(E_{j k}\right)_{j k} \cdot P^{\#} \cdot\left(E_{j k}\right)_{j k}\right\| \\
& =\frac{1}{n}(\operatorname{trace} P)\left\|\left(E_{j k}\right)_{j k}\right\| \\
& =\operatorname{trace} P=n-1
\end{aligned}
$$

as rank $P=n-1$.

Thus we have derived that

$$
P \#(n-1) I_{n^{2}} P \# \geqq P \#\left(E_{j k}\right)_{j k} P \# .
$$

Proof of Theorem 1. $\Phi \otimes 1_{n}\left(\left(E_{j k}\right)_{j k}\right)=\left(\Phi\left(E_{j k}\right)\right)_{j k}=(n-1) I_{n^{2}}-\left(E_{j k}\right)_{j k}$ is not positive (Lemma (i)). So we conclude that Φ is not n-positive.

The proof that Φ is ($n-1$)-positive will be written out only in the case $n=3$; i.e., we will show that

$$
\Phi(A)=2(\operatorname{trace} A) I_{3}-A
$$

is 2-positive on \mathfrak{M}_{3}.
It suffices to prove that for any rank- 1 positive 6×6 matrix $X, \Phi \otimes 1_{2}(X)$ is positive when regarding X in $\mathfrak{M}_{2}\left(\mathfrak{M}_{3}\right)$. Let $X=x^{*} x$ where x is a row matrix ($\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$), and let

$$
X_{0}=\left[\begin{array}{c:c}
X & 0 \\
\hdashline 0 & 0 \\
\hdashline 0
\end{array}\right] \in \mathfrak{M}_{3}\left(\mathfrak{M}_{3}\right) .
$$

Then $X_{0}=L^{\# *}\left(E_{j k}\right)_{1 \leqq j, k \leqq 3} L^{\#}$ where L is

$$
\left[\begin{array}{lll}
\alpha_{1} & \beta_{1} & 0 \\
\alpha_{2} & \beta_{2} & 0 \\
\alpha_{3} & \beta_{3} & 0
\end{array}\right]
$$

and $L \#=I_{3} \otimes L$. Thus

$$
\Phi \otimes 1_{3}\left(X_{0}\right)=L^{\# *} \cdot \Phi \otimes 1_{3}\left(E_{j k}\right)_{j k} \cdot L^{\#}=L^{\# *}\left\{2 I_{9}-\left(E_{j k}\right)_{j k}\right\} L^{\#} .
$$

Since rank $L \leqq 2$, there exist a positive projection P of rank 2 and a matrix N in \mathfrak{M}_{3} such that $L=P N$. By Lemma (ii) $P \#\left(2 I_{9}-\left(E_{j k}\right)_{j k}\right) P \#$ is positive, so

$$
\Phi \otimes 1_{3}\left(X_{0}\right)=N^{\# *} P \#\left(2 I_{9}-\left(E_{j k}\right)_{j k}\right) P \# N^{\#}
$$

is positive. It is equivalent that $\Phi \otimes 1_{2}(X)$ is positive.
In the general case, the proof is similar; we start with $X=x^{*} x$ where $x=\left(\alpha_{1}{ }^{(1)}, \alpha_{2}{ }^{(1)}, \ldots, \alpha_{n}{ }^{(1)} ; \ldots ; \alpha_{1}{ }^{(n-1)}, \ldots, \alpha_{n}{ }^{(n-1)}\right)$ and obtain

$$
L=\left[\begin{array}{cccccccc}
\alpha_{1}{ }^{(1)} & \cdot & \cdot & \cdot & \cdot & \cdot & \alpha_{1}{ }^{(n-1)} & 0 \\
\cdot & & & & & \cdot & \cdot \\
\cdot & & & & & \cdot & \cdot \\
\cdot & & & & & \cdot & \cdot \\
\cdot & & & & & \cdot & \cdot \\
\cdot & & & & & \cdot & \cdot \\
\alpha_{n}{ }^{(1)} & \cdot & \cdot & \cdot & \cdot & \cdot & \alpha_{n}^{(n-1)} & 0
\end{array}\right]
$$

which is of rank at most $n-1$. This proves Theorem 1 .
From the above theorem, we may perceive that, in general, a positive linear map will usually not be completely positive. However, Stinespring and

Størmer prove, in the special case that \mathfrak{A} or \mathfrak{B} is commutative, that $\mathbf{P}_{1}[\mathfrak{A}, \mathfrak{B}]=$ $\mathbf{P}_{\infty}[\mathfrak{A}, \mathfrak{B}]$. We will show that this can never happen in non-commutative C^{*}-algebras. In other words, if and only if \mathfrak{A} or \mathfrak{B} is commutative, will positivity be the same thing as complete positivity.

We shall adopt Berberian's extension (see [2] for details) in our proof.
Let \mathscr{M} be the space of all bounded sequences of complex numbers endowed with supremum norm. Let glim be a generalized Banach limit defined on \mathscr{M}; i.e., glim is a linear functional defined on \mathscr{M} such that for any real sequence (α_{j}),

$$
\lim \inf \left(\alpha_{j}\right) \leqq \operatorname{glim}\left(\alpha_{j}\right) \leqq \lim \sup \left(\alpha_{j}\right)
$$

For a fixed Hilbert space \mathscr{H}, we define a positive Hermitian bilinear form on \mathscr{H}^{∞}, the space of all bounded sequences in \mathscr{H}, by

$$
\left\langle\left(x_{j}\right),\left(y_{j}\right)\right\rangle=g \lim \left(\left\langle x_{j}, y_{j}\right\rangle\right)
$$

where $\left\langle x_{j}, y_{j}\right\rangle$ is the inner-product of x_{j} and y_{j} in \mathscr{H}.
The quotient space of \mathscr{H}^{∞} modulo the subspace of all $\left(x_{j}\right)$ such that $\left\langle\left(x_{j}\right),\left(x_{j}\right)\right\rangle=0$ is an inner-product space. Let \mathscr{H}° be the completion. Denote the coset containing $\left(x_{j}\right)$ by $\left[\left(x_{j}\right)\right] . \mathscr{H}$ can be imbedded in \mathscr{H}° by identifying each x with $[(x)]$. For each $A \in \mathscr{B}(\mathscr{H})$, we assign $A^{\circ} \in \mathscr{B}\left(\mathscr{H}^{\circ}\right)$ such that

$$
A^{\circ}\left[\left(x_{j}\right)\right]=\left[\left(A x_{j}\right)\right] .
$$

We can see this determines a $*$-isomorphism of $\mathscr{B}(\mathscr{H})$ into $\mathscr{B}\left(\mathscr{H}^{\circ}\right)$. Furthermore,

$$
\Pi(A)=\Pi\left(A^{\circ}\right)=\Pi_{0}\left(A^{\circ}\right)
$$

where Π_{0} is the point spectrum and Π is the approximate point spectrum.
Lemma 2. If \mathfrak{A} is not commutative, then

$$
\mathbf{P}_{1}\left[\mathfrak{A}, \mathfrak{M}_{2}\right] \underset{\neq}{\supsetneq} \mathbf{P}_{2}\left[\mathfrak{A}, \mathfrak{M}_{2}\right] .
$$

Proof. If \mathfrak{A} is not commutative, there exist Hermitian operators A_{1}, A_{2}, A_{3} in \mathfrak{H} such that

$$
A_{1}=i\left(A_{2} A_{3}-A_{3} A_{2}\right) \neq 0
$$

Let \mathscr{H} be the underlying space of \mathfrak{N}. By Berberian's extension, we can extend each $A \in \mathscr{B}(\mathscr{H})$ to $A^{\circ} \in \mathscr{B}\left(\mathscr{H}^{\circ}\right)$. Thus $A_{1}{ }^{\circ}$ is a Hermitian operator and has a non-trivial eigenspace \mathscr{S} corresponding to a non-zero eigenvalue $\lambda . A_{1}{ }^{\circ}$ restricted to \mathscr{S} is a non-zero scalar operator, and hence cannot be of the form $X Y-Y X$ for $X, Y \in \mathscr{B}(\mathscr{S})$ [3, p. 126]. From $A_{1}{ }^{\circ}=i\left(A_{2}{ }^{\circ} A_{3}{ }^{\circ}-A_{3}{ }^{\circ} A_{2}{ }^{\circ}\right)$ we derive that \mathscr{S} is not a common invariant subspace under $A_{2}{ }^{\circ}$ and $A_{3}{ }^{\circ}$. Without loss of generality, we assume $A_{2}{ }^{\circ} \mathscr{S} \nsubseteq \mathscr{S}$; i.e., there exist non-zero vectors x, y in \mathscr{H}°, such that

$$
\left(A_{1}^{\circ}-\lambda\right) x=0, \quad\left(A_{1}^{\circ}-\lambda\right) A_{2}^{\circ} x=y .
$$

Define $\Psi: \mathfrak{A} \rightarrow \mathfrak{M}_{2}$ by

$$
\Psi(A)=\left[\begin{array}{l}
\left\langle A^{\circ} x, x\right\rangle\left\langle A^{\circ} y, x\right\rangle \\
\left\langle A^{\circ} x, y\right\rangle\left\langle A^{\circ} y, y\right\rangle
\end{array}\right]
$$

Let θ be the transpose map: $\mathfrak{M}_{2} \rightarrow \mathfrak{M}_{2}$. Obviously, $\theta \circ \Psi$ is positive. It is not 2-positive because

$$
(\Theta \circ \Psi) \otimes 1_{2} \cdot\left[\begin{array}{c:c}
\left(A_{1}-\lambda\right)^{2} & \left(A_{1}-\lambda\right) A_{2} \\
\hdashline A_{2}\left(A_{1}-\lambda\right) & A_{2}{ }^{2}
\end{array}\right]=\left[\begin{array}{cc:c}
0 & 0 & 0 \\
0 & * & \|y\|^{2} \\
\hdashline 0 & 0 & * \\
\hdashline\|y\|^{2} & * & *
\end{array}\right],
$$

of which the associated quadratic form applied to the column vector $a=[1,0,0,-\epsilon]$,

$$
\langle\cdot(a), a\rangle=-2 \epsilon\|y\|^{2}+\epsilon^{2} *,
$$

is non-positive if ϵ is a sufficiently small positive number.
Lemma 3. If \mathfrak{B} is not commutative, then

$$
\mathbf{P}_{1}\left[\mathfrak{M}_{2}, \mathfrak{B}\right] \underset{\neq}{\longrightarrow} \mathbf{P}_{2}\left[\mathfrak{M}_{2}, \mathfrak{B}\right] .
$$

Proof. Let \mathscr{K} be the underlying space of \mathfrak{B}. By Berberian's extension, we can extend each $B \in \mathscr{B}(\mathscr{K})$ to $B^{\circ} \in \mathscr{B}\left(\mathscr{K}^{\circ}\right)$.

By the same manner as in the first paragraph of the proof of Lemma 2, we get Hermitian operators B_{1}, B_{2} in \mathfrak{B}, non-zero vectors u, v in \mathscr{K}°, and a real number μ such that

$$
\left(B_{2}{ }^{\circ}-\mu\right) u=0, \quad\left(B_{2}{ }^{\circ}-\mu\right) B_{1}{ }^{\circ} u=v .
$$

Define $\Phi: \mathfrak{M}_{2} \rightarrow \mathfrak{B}$ by

$$
\Phi \cdot\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]=\alpha B_{1}^{2}+\beta B_{1}\left(B_{2}-\mu\right)+\gamma\left(B_{2}-\mu\right) B_{1}+\delta\left(B_{2}-\mu\right)^{2} .
$$

It is evident that Φ is positive. Let θ be the transpose map: $\mathfrak{M}_{2} \rightarrow \mathfrak{M}_{2}$. Then $\Phi \circ \theta$ is not 2-positive because

$$
(\Phi \circ \theta) \otimes 1_{2} \cdot\left[\begin{array}{cc:cc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{c:c}
B_{1}{ }^{2} & \left(B_{2}-\mu\right) B_{1} \\
\hdashline B_{1}\left(B_{2}-\mu\right) & \left(B_{2}-\mu\right)^{2}
\end{array}\right]
$$

which is not positive, since

$$
\left\langle\left[\begin{array}{cc}
\left(B_{1}{ }^{\circ}\right)^{2} & \left(B_{2}{ }^{\circ}-\mu\right) B_{1}{ }^{\circ} \\
B_{1}{ }^{\circ}\left(B_{2}^{\circ}-\mu\right) & \left(B_{2}^{\circ}-\mu\right)^{2}
\end{array}\right](-\epsilon v \oplus u),-\epsilon v \oplus u\right\rangle=\epsilon^{2}\left\|B_{1}{ }^{\circ} v\right\|^{2}-2 \epsilon\|v\|^{2}
$$

is not positive when ϵ is a sufficiently small positive number.
Theorem 4. If $\mathbf{P}_{1}[\mathfrak{Y}, \mathfrak{B}]=\mathbf{P}_{2}[\mathfrak{A}, \mathfrak{B}]$, then either \mathfrak{A} or \mathfrak{B} is commutative.
Proof. Assume $\mathfrak{A}, \mathfrak{B}$ are not commutative. We use the same notations as in

Lemma 2 and Lemma 3. It is evident that $\Phi \circ \theta \circ \Psi$ is positive. It is not 2-positive because

$$
\begin{aligned}
& (\Phi \circ \theta \circ \Psi) \otimes 1_{2} \cdot\left[\begin{array}{cc}
\left(A_{1}-\lambda\right)^{2} & \left(A_{1}-\lambda\right) A_{2} \\
A_{2}\left(A_{1}-\lambda\right) & A_{2^{2}}
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
\rho\left(B_{2}-\mu\right)^{2} & \zeta\left(B_{2}-\mu\right)^{2}-\|y\|^{2} B_{1}\left(B_{2}-\mu\right) \\
\zeta^{*}\left(B_{2}-\mu\right)^{2}+\|y\|^{2}\left(B_{2}-\mu\right) B_{1} & T
\end{array}\right]
\end{aligned}
$$

(T is an operator in \mathfrak{B}, ρ is a real number, ζ is a complex number) which is not positive, since Berberian's extension applied to

$$
\langle\cdot(u \oplus-\epsilon v), u \oplus-\epsilon v\rangle=-2 \epsilon\|y\|^{2}\|v\|^{2}+\epsilon^{2}\left\langle T^{\circ} v, v\right\rangle
$$

is not positive if ϵ is a sufficiently small positive number.
Therefore $\mathbf{P}_{1}[\mathfrak{A}, \mathfrak{B}] \supsetneqq \mathbf{P}_{2}[\mathfrak{N}, \mathfrak{B}]$. This leads to a contradiction.
From Theorem 1, we see that for linear maps on $\mathfrak{M}_{n},(n-1)$-positivity is different from complete positivity. It will not be surprising that n-positivity coincides with complete positivity.

Theorem 5. $\mathbf{P}_{n}\left[\mathfrak{A}, \mathfrak{M}_{n}\right]=\mathbf{P}_{\infty}\left[\mathfrak{N}, \mathfrak{M}_{n}\right]$.
Proof. We will first establish that

$$
\mathbf{P}_{n}\left[\mathfrak{N}, \mathfrak{M}_{n}\right]=\mathbf{P}_{n+1}\left[\mathfrak{N}, \mathfrak{M}_{n}\right] .
$$

Assume $\Phi \in \mathbf{P}_{n}\left[\mathfrak{N}, \mathfrak{M}_{n}\right]$. Let $\left(A_{p q}\right)$ be a positive element in $\mathfrak{M}_{n+1}(\mathfrak{H})$. We wish to prove that if $x_{1}, \ldots x_{n+1}$ are vectors in n-dimensional complex space, then

$$
\sum_{1 \leqq p, q \leqq n+1}\left\langle\Phi\left(A_{p q}\right) x_{q}, x_{p}\right\rangle \geqq 0 .
$$

Since $\left\{x_{1}, \ldots x_{n+1}\right\}$ are vectors in n-dimensional complex space, they are linearly dependent. We may assume that x_{n+1} is linearly dependent on $x_{1}, \ldots x_{n}$; i.e.,

$$
x_{n+1}=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}
$$

for some complex numbers α_{j}. From

$$
\begin{aligned}
& =\left[\begin{array}{llllll}
C_{11} & \cdot & \cdot & \cdot & C_{1 n} & 0 \\
\cdot & & & & \cdot & \cdot \\
\cdot & & & & \cdot & \cdot \\
\cdot & & & & \cdot & \cdot \\
\cdot & & & & \cdot & \cdot \\
C_{n 1} & . & . & & C_{n n} & \cdot \\
0 & . & . & . & \cdot & \cdot \\
& & & & & \\
& &
\end{array}\right]
\end{aligned}
$$

where

$$
C_{j k}=A_{j k}+\alpha_{j}{ }^{*} A_{n+1, k}+\alpha_{k} A_{j, n+1}+\alpha_{j}{ }^{*} \alpha_{k} A_{n+1, n+1},
$$

we know $\left(C_{j k}\right)_{1 \leqq j, k \leqq n}$ is positive. As Φ is n-positive,

$$
\sum_{1 \leqq j, k \leqq n}\left\langle\Phi\left(C_{j k}\right) x_{k}, x_{j}\right\rangle \geqq 0 .
$$

Substitute the definition of $C_{j k}$ and rearrange terms. We get

$$
\sum_{1 \leqq p, q \leqq n+1}\left\langle\Phi\left(A_{p q}\right) x_{q}, x_{p}\right\rangle \geqq 0
$$

as required. So $\mathbf{P}_{n}\left[\mathfrak{A}, \mathfrak{M}_{n}\right]=\mathbf{P}_{n+1}\left[\mathfrak{N}, \mathfrak{M}_{n}\right]$.
Replacing n by $n+1, \mathbf{P}_{n+1}\left[\mathfrak{N}, \mathfrak{M}_{n+1}\right]=\mathbf{P}_{n+2}\left[\mathfrak{N}, \mathfrak{M}_{n+1}\right]$. Now, we regard \mathfrak{M}_{n} as a subalgebra of \mathfrak{M}_{n+1} naturally and obtain $\mathbf{P}_{n+1}\left[\mathfrak{N}, \mathfrak{M}_{n}\right]=\mathbf{P}_{n+2}\left[\mathfrak{N}, \mathfrak{M}_{n}\right]$. Repeating the argument, $\mathbf{P}_{n+m}\left[\mathfrak{N}, \mathfrak{M}_{n}\right]=\mathbf{P}_{n+m+1}\left[\mathfrak{N}, \mathfrak{M}_{n}\right](m=0,1,2, \ldots)$ and we conclude that $\mathbf{P}_{n}\left[\mathfrak{N}, \mathfrak{M}_{n}\right]=\mathbf{P}_{\infty}\left[\mathfrak{H}, \mathfrak{M}_{n}\right]$.

Theorem 6. $\mathbf{P}_{n}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]=\mathbf{P}_{\infty}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]$.
Proof. We will establish $\mathbf{P}_{n}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]=\mathbf{P}_{n+1}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]$ first.
Let $\Phi \in \mathbf{P}_{n}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]$; we wish to prove that for any positive

$$
\left(A_{p q}\right) \in \mathfrak{M}_{n+1}\left(\mathfrak{M}_{n}\right),
$$

$\left(\Phi\left(A_{p q}\right)\right)_{1 \leq p, q \leq n+1}$ is positive. We may assume that $\left(A_{p q}\right)$ is a rank-1 positive $n(n+1) \times n(n+1)$ matrix. Hence, $Q_{p}=\left(A_{p 1}, A_{p 2}, \ldots A_{p, n+1}\right)$ is an $n \times n(n+1)$ matrix with pairwise dependent rows. So $\left\{Q_{1}, \ldots Q_{n+1}\right\}$ must be linearly dependent. Without loss of generality, we let

$$
Q_{n+1}=\alpha_{1} Q_{1}+\ldots+\alpha_{n} Q_{n}
$$

for certain complex numbers α_{j}; i.e.,

$$
A_{n+1, q}=\alpha_{1} A_{1 q}+\ldots+\alpha_{n} A_{n q}
$$

for all q. Consequently,

$$
A_{p, n+1}=\alpha_{1}^{*} A_{p 1}+\ldots+\alpha_{n}^{*} A_{p n}
$$

for all p. Therefore
$\left(\Phi\left(A_{p q}\right)\right)_{1 \leqq p, q \leqq n+1}$

The middle matrix is positive since Φ is n-positive. Therefore $\left(\Phi\left(A_{p q}\right)\right)_{1 \leq p, q \leqq n+1}$ is positive. So $\mathbf{P}_{n}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]=\mathbf{P}_{n+1}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]$.

Replacing n by $n+1, \mathbf{P}_{n+1}\left[\mathfrak{M}_{n+1}, \mathfrak{B}\right]=\mathbf{P}_{n+2}\left[\mathfrak{M}_{n+1}, \mathfrak{B}\right]$. Now, we regard \mathfrak{M}_{n} as a quotient space of \mathfrak{M}_{n+1} naturally and obtain

$$
\mathbf{P}_{n+1}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]=\mathbf{P}_{n+2}\left[\mathfrak{M}_{n}, \mathfrak{B}\right] .
$$

Repeating the argument, $\mathbf{P}_{n+m}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]=\mathbf{P}_{n+m+1}\left[\mathfrak{M}_{n}, \mathfrak{B}\right](m=0,1,2, \ldots)$ and we conclude that $\mathbf{P}_{n}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]=\mathbf{P}_{\infty}\left[\mathfrak{M}_{n}, \mathfrak{B}\right]$.

The generalizations of the above theorems are valid for matrices over a commutative C^{*}-algebra. These can also be viewed as direct generalizations of Stinespring and Størmer's results.

Theorem 7. If © \mathfrak{C} is commutative, then $\mathbf{P}_{n}\left[\mathfrak{A}, \mathfrak{M}_{n}(\mathbb{C})\right]=\mathbf{P}_{\infty}\left[\mathfrak{A}, \mathfrak{M}_{n}(\mathbb{C})\right]$.
Proof. We may take \mathfrak{C} as the set of all continuous functions defined on a compact Hausdorff space \mathscr{S}. Let $\Phi \in \mathbf{P}_{n}\left[\mathfrak{A}, \mathfrak{M}_{n}(\mathbb{C})\right]$. If $\left(A_{p q}\right)_{1 \leqq p, q \leqq m}$ is positive in $\mathfrak{M}_{m}(\mathfrak{H})$ and

$$
\Phi\left(A_{p q}\right)=\left(f_{p q j k}\right)_{1 \leqq j, k \leqq n},
$$

we wish to prove that

$$
\left(f_{p q j k}\right)_{\substack{1 \leq p, q \leq m \\ 1 \leq j \leq, k \leq n}}
$$

is positive. For any $s \in \mathscr{S}$, define $\Psi_{s}: \mathfrak{M}_{n}(\mathbb{C}) \rightarrow \mathfrak{M}_{n}$ by

$$
\Psi_{s}\left(\left(f_{j k}\right)\right)=\left(f_{j k}(s)\right)
$$

Obviously, Ψ_{s} is completely positive. Hence $\Psi_{s} \circ \Phi: \mathfrak{A} \rightarrow \mathfrak{M}_{n}$ is n-positive, and thus completely positive by Theorem 5 . So

$$
\left(f_{p q j k}(s)\right)_{p, q ; j, k}=\left(\Psi_{s} \circ \Phi\right) \otimes 1_{m}\left(\left(A_{p q}\right)_{p q}\right)
$$

is positive. Since s is arbitrary in $\mathscr{S},\left(f_{p q j k}\right)_{p, q ; j, k}$ is positive as required.
Theorem 8. If \mathfrak{C} is commutative, then $\mathbf{P}_{n}\left[\mathfrak{M}_{n}(\mathfrak{C}), \mathfrak{B}\right]=\mathbf{P}_{\infty}\left[\mathfrak{M}_{n}(\mathfrak{C})\right.$, $\left.\mathfrak{B}\right]$.
We may assume $n \geqq 2$, and $\mathbb{C}=C(\mathscr{S})=$ the set of all continuous functions defined on a compact Hausdorff space \mathscr{S}. Denote by $E_{j k}(f) \in \mathfrak{M}_{n}(C(\mathscr{S}))$ the matrix with $f \in C(\mathscr{S})$ at the j, k component and zeros elsewhere, and by $I_{n}(f) \in \mathfrak{M}_{n}(C(\mathscr{S}))$ the diagonal matrix with f along the diagonal. As in the special case proved by Stinespring, we must use integral representations.

Lemma. If $\Psi \in \mathbf{P}_{n}\left[\mathfrak{M}_{n}(C(\mathscr{S})), \mathfrak{M}_{m}\right]$, then there exist a regular positive Borel measure \mathbf{m} on \mathscr{S} and \mathbf{m}-measurable matrix-valued functions $G_{j k} \in \mathfrak{M}_{m}(\mathbf{m}(\mathscr{S}))$ $(1 \leqq j, k \leqq n)$, such that
(i) for all f in $C(\mathscr{S})$,

$$
\Psi E_{j k}(f)=\int_{\mathscr{S}} f G_{j k} \mathrm{~d} \mathbf{m}
$$

(ii) $\left(G_{j k}(s)\right)_{j k}$ is positive in $\mathfrak{M}_{n}\left(\mathfrak{M}_{m}\right)$ a.e. (m).

Proof. Let $\left\{x_{1}, \ldots x_{m}\right\}$ be the canonical orthonormal basis of the underlying space of \mathfrak{M}_{m}. By the Riesz-Markoff theorem, there exists a regular positive

Borel measure \mathbf{m} on \mathscr{S} such that for all f in $C(\mathscr{S})$

$$
\sum_{p}\left\langle\Psi I_{n}(f) x_{p}, x_{p}\right\rangle=\int_{\mathscr{L}} f \mathrm{~d} \mathbf{m}
$$

Since

$$
\left[\begin{array}{ll}
E_{j j}(|f|) & E_{j k}(f) \\
E_{k j}\left(f^{*}\right) & E_{k k}(|f|)
\end{array}\right]
$$

is positive, its image under $\Psi \otimes 1_{2}$ is positive, too; thus

$$
\left[\begin{array}{ll}
\left\langle\Psi E_{j j}(|f|) x_{p}, x_{p}\right\rangle & \left\langle\Psi E_{j k}(f) x_{q}, x_{p}\right\rangle \\
\left\langle\Psi E_{k j}\left(f^{*}\right) x_{p}, x_{q}\right\rangle & \left\langle\Psi E_{k k}(|f|) x_{q}, x_{q}\right\rangle
\end{array}\right]
$$

is positive. From the elementary fact

$$
\left[\begin{array}{ll}
\alpha_{1} & \beta \\
\beta^{*} & \alpha_{2}
\end{array}\right] \text { positive in } \mathfrak{M}_{2} \Rightarrow|\beta| \leqq \frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)
$$

we derive that

$$
\begin{aligned}
\left|\left\langle\Psi E_{j k}(f) x_{q}, x_{p}\right\rangle\right| & \leqq \frac{1}{2}\left\{\left\langle\Psi E_{j j}(|f|) x_{p}, x_{p}\right\rangle+\left\langle\Psi E_{k k}(|f|) x_{q}, x_{q}\right\rangle\right\} \\
& \leqq \sum_{p}\left\langle\Psi I_{n}(\mid f) x_{p}, x_{p}\right\rangle \\
& =\int_{\mathscr{g}}|f| \mathrm{d} \mathbf{m} .
\end{aligned}
$$

By the Riesz and Radon-Nikodym theorems, there exists an \mathbf{m}-measurable function $g_{j k p q}$ such that for all f in $C(\mathscr{S})$

$$
\left\langle\Psi E_{j k}(f) x_{q}, x_{p}\right\rangle=\int_{\mathscr{S}} f \cdot g_{j k p q} \mathrm{~d} \mathbf{m} .
$$

Let

$$
G_{j k}=\left(g_{j k p q}\right)_{p q} \in \mathfrak{M}_{m}(\mathbf{m}(\mathscr{S}))
$$

Then it is immediate that

$$
\Psi E_{j k}(f)=\int_{\mathscr{P}} f G_{j k} \mathrm{~d} \mathbf{m} .
$$

Let $h \in C(\mathscr{S})$ be positive. Then $\left(E_{j k}(h)\right)_{j k}$ is positive in $\mathfrak{M}_{n}\left(\mathfrak{M}_{n}(\mathbb{S})\right)$, so its image under $\Psi \otimes 1_{n}$ is positive; i.e.,

$$
\left(\Psi E_{j k}(h)\right)_{j k}=\left(\int_{\mathscr{g}} h G_{j k} \mathrm{~d} \mathbf{m}\right)_{j k} \geqq 0 .
$$

By varying the positive function h, we get

$$
\left(G_{j k}(s)\right)_{j k} \geqq 0 \text { a.e. (m) }
$$

Proof of Theorem 8. Assume $\Phi \in \mathbf{P}_{n}\left[\mathfrak{M}_{n}(\mathbb{C}), \mathfrak{B}\right]$. We wish to prove that for any positive integer m, if $y_{1}, \ldots y_{m}$ are vectors in the underlying space of \mathfrak{B} and

$$
\left(f_{j k p q}\right)_{\substack{1 \leq j \leq, k \leq n \\ 1 \leq p, q \leq m}}
$$

is positive in $\mathfrak{M}_{m}\left(\mathfrak{M}_{n}(\mathbb{C})\right)$, then

$$
\sum_{p q}\left\langle\Phi\left(f_{j k p q}\right)_{j k} y_{q}, y_{p}\right\rangle \geqq 0 .
$$

Let \mathscr{K} be the space spanned by $\left\{y_{1}, \ldots y_{m}\right\}$. Let Ψ be the effect of Φ followed by the compression of \mathfrak{B} into $\mathscr{B}(\mathscr{K})$ and then the imbedding into \mathfrak{M}_{m}. It is
evident that Ψ is n-positive. By the Lemma, there exist \mathbf{m} and $G_{j k}$ with the prescribed properties. Let

$$
G_{j k p q}=G_{j k} \quad(1 \leqq p, q \leqq m)
$$

Then

$$
\left(G_{j k p q}(s)\right)_{j k p q} \geqq 0 \quad \text { a.e. }(\mathbf{m}) .
$$

Hence

$$
\begin{aligned}
\left(f_{j k p q}(s) \cdot G_{j k}(s)\right)_{j k p q} & =\left(f_{j k p q}(s) \cdot G_{j k p q}(s)\right)_{j k p q} \\
& \geqq 0 \quad \text { a.e. }(\mathbf{m}) .
\end{aligned}
$$

So

$$
\left(\sum_{j k} f_{j k p q}(s) \cdot G_{j k}(s)\right)_{p q} \geqq 0 \quad \text { a.e. (m). }
$$

Therefore

$$
\left(\Psi\left(f_{j k p q}\right)_{j k}\right)_{p q}=\left(\int_{\mathscr{S}} \sum_{j k} f_{j k p q} \cdot G_{j k} \mathrm{~d} \mathbf{m}\right)_{p q} \geqq 0
$$

It follows that

$$
\sum_{p q}\left\langle\Phi\left(f_{j k p q}\right)_{j k} y_{q}, y_{p}\right\rangle=\sum_{p q}\left\langle\Psi\left(f_{j k p q}\right)_{j k} y_{q}, y_{p}\right\rangle \geqq 0
$$

as required. Thus Theorem 8 is established.
Referring to Theorems 5-8, $\mathbf{P}_{n}=\mathbf{P}_{n+1} \Rightarrow \mathbf{P}_{n}=\mathbf{P}_{\infty}$ naturally. In the general case, we pose

Conjecture 1. $\mathbf{P}_{n}[\mathfrak{A}, \mathfrak{B}]=\mathbf{P}_{n+1}[\mathfrak{N}, \mathfrak{B}] \Rightarrow \mathbf{P}_{n}[\mathfrak{N}, \mathfrak{B}]=\mathbf{P}_{\infty}[\mathfrak{A}, \mathfrak{B}]$.
Hopefully, the above conjecture will be a corollary of a 'generalization of Theorem 4' which we state as

Conjecture 2. If $\mathbf{P}_{n}[\mathfrak{A}, \mathfrak{B}]=\mathbf{P}_{n+1}[\mathfrak{A}, \mathfrak{B}]$, then, either \mathfrak{A} is a quotient space or \mathfrak{B} is a subalgebra of $\mathfrak{M}_{n}(\mathfrak{C})$ for certain commutative \mathfrak{C}.

We remark that in the finite-dimensional case, every C^{*}-algebra is of the form $\mathfrak{M}_{n_{1}} \oplus \mathfrak{M}_{n_{2}} \oplus \ldots \oplus \mathfrak{M}_{n_{m}}$; hence Conjecture 2 in this case is valid by virtue of Theorem 1.

References

1. W. B. Arveson, Subalgebras of C^{*}-algebras, Acta Math. 123 (1969), 141-224.
2. S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114.
3. P. R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, N.J., 1967).
4. W. F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
5. E. Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233-278.

University of Toronto,
Toronto, Ontario

