
Can. J. Math., Vol. XXIV, No. 3, 1972, pp. 520-529 

POSITIVE LINEAR MAPS ON C*-ALGEBRAS 

MAN-DUEN CHOI 

The objective of this paper is to give some concrete distinctions between 
positive linear maps and completely positive linear maps on C*-algebras of 
operators. 

Herein, C*-algebras possess an identity and are written in German type 
21, 93, S. Capital letters A, B, C stand for operators, script l e t t e r s ^ , J ^ for 
vector spaces, small letters x, y, z for vectors. Capital Greek letters $>, ^ stand 
for linear maps on C*-algebras, small Greek letters a, /3, y for complex numbers. 

We denote by Wln the collection of all n X n complex matrices. SDÎw(2l) = 
SI (x) 9Jtn is the C*-algebra of n X n matrices over 31. A linear map $: 21 —» 93 
is positive if $(A) is positive for all positive A in 21. We define $ (x) ln: 
aWn(8)-*9W»(»)by 

$ ® l „ ( G 4 # ) i ^ , ^ n ) = ($G4#))l^,A^n. 

We say $ is n-positive if $ (g) lw: 3Kn(2l) —> 2)tw(S3) is positive; the set of all 
such <i> is denoted PJ2I, 93]. <£ is completely positive if $ G Pw[Sl, 93] for all 
positive integers w; the set of all such $ is denoted Pco[2l, 93]. 

It is evident that 

P i t» , S3] 3 P2[2l, 93] 2 P3[2I, 93] 2 . . . 2 P J 2 I , 93]. 

Stinespring [4] and Arveson [1] have given examples of positive linear maps 
that fail to be completely positive. However, all these examples fail to be 
2-positive. In Theorem 1, we construct examples of n — 1-positive maps that 
fail to be ^-positive. 

If 21 or 93 is commutative, then Pi[2T, 93] = PJ2 Ï , 93] (see [4, 5; 1, p. 148]). 
We establish the converse in Theorem 4, thus giving a characterization of the 
commutativity of C*-algebras by means of the 'completeness' of positive 
linear maps. (The result can be strengthened in the finite-dimensional case, as 
we explain in the remarks which conclude the paper.) 

An extension of the work of Stinespring and St^rmer leads to a further 
generalization, Theorems 7 and 8: If £ is commutative, then 

pn[9w„(6), s] = pjame), m, p»ra, »ue)] = PJ», aw)]. 
Hence, we get a simplification of the structure of completely positive linear 
maps on a matrix algebra. 
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POSITIVE LINEAR MAPS 521 

improvements in the paper. Thanks are also due to the referee for simplifying 
the proof of Theorem 1. 

First we show that w-positivity is different from (n — l)-positivity for the 
linear maps on Wn. Let (ajk) Ç 9J?n; we recall that trace (ajk) = I]/*^-. The 
map 

*(A) = {(n - 1) (trace A)}In - A 

serves as the simplest example we can manage for 

THEOREM 1. Pn_i[m>, 2 R J D PntSK», 2KJ. 

It is convenient to regard the elements of Wlm(W;n) as in X m block matrices 
with n X n matrices as entries; then each is also regarded as an mn X mn 
matrix with numerical entries. Let Ejk be the n X n matrix with 1 at the j , k 
component and zeros elsewhere. Then (Ejk)i^jtk^n £ %Jln(%Jln) is the block 
matrix having the matrix Ejk as its j , k entry, for each j , k. Now we investigate 
the magnitude of (Ejk)jk in the following 

LEMMA (i) in — l)/n2 — (Ejk)i^jjk^n is not positive. 
(ii) For any rank-(n — 1)-positive projection P in $D?n, 

P * { ( r c - 1)/B, - (Ejk)lûj<kûn}P* 

is positivey where Pn = In (x) P. 

Proof. A straight-forward computation shows that 

\Ejk)jjc
2 = n(Ejk)jk, 

and more generally 

(Ejk)jk • A # • (Ejk)jk = (tmceA)(Ejk)jk 

where A is arbitrary in 9Kn and A ** = In ® A. Now (i) is immediate, since 
l/n(Ejk)jk is a projection and 

\\(Ejk)jk\\ = n > n - 1. 

For (ii) we look at 

\\PHEjk)jkP*\\ = \lp*(Ejk)jk. (Ejk)jkP* 

(Ejk)jkP*-P*(Ejk)jk 

(Ejk)jk-P*-(Ejk)jk 

(trace P) \ \ (E^jk \ 

= trace P = n — 1 

as rank P 
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Thus we have derived that 

P*(n- 1)J»2P* ^ P # ( £ f l ) / » 

Proof of Theorem 1. $ (x) 1„ ( (£#)#) = ($(EJk))Jk = (n - l)7n2 - ( £ # ) # is 
not positive (Lemma (i)). So we conclude that <ï> is not ^-positive. 

The proof that $ is (w — 1)-positive will be written out only in the case 
n — 3; i.e., we will show that 

$(A) = 2(trace.4)/3 - A 

is 2-positive on 9ft3. 
It suffices to prove that for any rank-1 positive 6 X 6 matrix X, $ (g) I2PO 

is positive when regarding X in 9ft2(9fts). Let X = x*x where x is a row matrix 
(«i, a2, «3, j8i, 02,183), and let 

z„ = X °1 
io € 2J?3(9ft3). 

_o 0 ; o_ 

Then X„ = L»* (£^ ) 1 i J , ^ 3 L# where L is 

«i /3i 0 
a2 j82 0 

_a3 08 0_ 

and L » = I3 (g)L. Thus 

* ®1 3 (Z 0 ) = L**- * (J <>] U(-E;A:)j * • £ « = Z,«*{2i» - (£,*)#}£*• 

Since rank L ^ 2, there exist a positive projection P of rank 2 and a matrix N 
in Sft3 such that L = PN. By Lemma (ii) P « ( 2 / 9 - (£#)#)-? # is positive, so 

$ ® 18(Z0) = iV#*P*(2J9 - (Ejk)jk)P*N* 

is positive. It is equivalent that 3> (g) I2PO is positive. 
In the general case, the proof is similar; we start with X = x*x where 

x = (ai*1*, a2
(1), • • • , a ^ ; . . . ; ai**-», . . . , a „ ^ « ) and obtain 

L = 

« i ( i ) a i («-D 0 

(1) . . . . a » ^ " OJ 

which is of rank at most w — 1. This proves Theorem 1. 

From the above theorem, we may perceive that, in general, a positive linear 
map will usually not be completely positive. However, Stinespring and 
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St^rmer prove, in the special case that 21 or 33 is commutative, that Pif 21, 33] = 
Poo[3l, S3]. We will show that this can never happen in non-commutative 
C*-algebras. In other words, if and only if 21 or S3 is commutative, will posi-
tivity be the same thing as complete positivity. 

We shall adopt Berberian's extension (see [2] for details) in our proof. 
Let ^ be the space of all bounded sequences of complex numbers endowed 

with supremum norm. Let glim be a generalized Banach limit defined on 
<Jé\ i.e., glim is a linear functional defined on ^ # such that for any real 
sequence («_,), 

lim inf iaf) :§ glim (af) ^ lim sup iaf). 

For a fixed Hilbert s p a c e d , we define a positive Hermitian bilinear form on 
tf?œ, the space of all bounded sequences i n ^ , by 

<(**), (JJ)) = glim ((Xj,y3)) 

where (xjf y j) is the inner-product of Xj and y, \x\ffl. 
The quotient space of J^700 modulo the subspace of all {xf) such that 

((Xj), (Xj)) = 0 is an inner-product space. Let^f° be the completion. Denote 
the coset containing (xj) by [(xf)].^f can be imbedded in J^f° by identifying 
each x with [(*)]. For each A £ 38(3tf), we assign A° G 3è\^f°) such that 

^ ° [ ( ^ ) ] = OAx,)]. 

We can see this determines a *-isomorphism of 31 {$?) into 3ê{$*°). Further
more, 

11(A) = U(A°) = U0(A°) 

where n 0 is the point spectrum and II is the approximate point spectrum. 

LEMMA 2. If 21 is not commutative, then 

Pi[2I, 9W2] D P2[2I, 2»2]. 

Proof. If 21 is not commutative, there exist Hermitian operators Ai, A2j Az 
in 21 such that 

Ax = i(A2Az - AZA2) 7* 0. 

LetJ^7 be the underlying space of 21. By Berberian's extension, we can extend 
each A Ç 3ë {$?) to A° £ £$C%?°). Thus A i° is a Hermitian operator and has a 
non-tri vial eigenspace ¥ corresponding to a non-zero eigenvalue X. A\ re
stricted to J^7 is a non-zero scalar operator, and hence cannot be of the form 
XY - YX for X, Y G &(&) [3, p. 126]. From A? = i(A2°Az° - Ad°A2°) 
we derive that S^ is not a common invariant subspace under A2° and Az°. 
Without loss of generality, we assume A2^ <2 j ^ ; i.e., there exist non-zero 
vectors x, y in J^° , such that 

(Ai° - \)x = 0, (Ai° - X)A2°x = y. 
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Define * : 21 -»• 99?2 by 

*(A) 

Let 0 be the transpose map: 9ft 2 

2-positive because 

(A°x, x)(A°y, x)~ 
(A°x,yKA°y,y)_ 

> 50?2- Obviously, G o SF is positive. It is not 

( G o * ) ® 1 , 
[A,(Ài 

- x)2 j U i - XM2" 

xj'i I 2
2  

0 
0 

0 
* 

o IHI2 

o * 
0 

IHI2 
0 
* 

* * 
* * 

of which the associated quadratic form applied to the column vector 
a = [1,0,0, - € ] , 

<• (a), a) = -2e | | ;y | | 2 + e2*, 

is non-positive if e is a sufficiently small positive number. 

LEMMA 3. / / 33 is not commutative, then 

Pi[2«2, 33] D P2[2K2, » ] . 

Proof. Let JT be the underlying space of S3. By Berberian's extension, we can 
extend each B <E &(&) to B° g f ( / ° ) . 

By the same manner as in the first paragraph of the proof of Lemma 2, we 
get Hermitian operators B\, B2 in 93, non-zero vectors u, v in J^° , and a real 
number fx such that 

(B2° - n)u = 0, (B2° - M)^i°^ = ». 

Define $: 9K2 -> 33 by 

$ • [ ; aBJ + jSBiCBa - M) + 7 ^ 2 - M)^ I + S(52 - M)2-

B?2. Then It is evident that $ is positive. Let 6 be the transpose map: 9J?2 

$ o 9 is not 2-positive because 

(3>o 0 ) (x) 1 2 • 

[~1 0 0 1~1 
0 0 0 0 
0 0 0 0 

_1 0 o i_ 

B{ j (Bt - a)B1 

B'Ï(B'Ï -M) TJBT-'ÏÏ J 

which is not positive, since 

/ r (^i°)2 (S,° - M)-BI° 

M) (B,° - M)2 
(—ez; © « ) , — e!» © « 

) 
| 5 i °» | | * -2e |H 

is not positive when e is a sufficiently small positive number. 

THEOREM 4. 7/ Pi[2I, 93] = P2[2I, 93], then either 21 or 93 is commutative. 

Proof. Assume 21, 93 are not commutative. We use the same notations as in 
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( $ 0 Go ¥ ) (x) 12 

Lemma 2 and Lemma 3. It is evident that $ o 0 o \F is positive. It is not 
2-positive because 

[A2(A1 - A) A2
2 J 

M ) 2 f ( 5 2 - M ) 2 - l b l l 2 ^ i ( ^ 2 - M ) 1 
| 2 ( £ 2 - n)B1 T J 

(7" is an operator in S3, p is a real number, f is a complex number) which is not 
positive, since Berberian's extension applied to 

P(B2 

r*(^2-M)2 + 

( • 0 © - ev), u® - ev) = —2e| M|2 + e2(T°v, v) 

is not positive if e is a sufficiently small positive number. 
Therefore P^H, S3] D P2[8tf S3]. This leads to a contradiction. 

From Theorem 1, we see that for linear maps on $Rn, (n — l)-positivity is 
different from complete positivity. It will not be surprising that w-positivity 
coincides with complete positivity. 

THEOREM 5. P n [» , 3HJ = PJ3 I , 2KJ. 

Proof. We will first establish that 

p»[a, aw»] = Pn+ira, a»j. 
Assume $ G Pwf 21, SOU- Let C4Pff) be a positive element in 9K„+i(3I). We wish 
to prove that if Xi, . . . xw+i are vectors in ^-dimensional complex space, then 

Y,l^V,QÛn+l($(Avi)xq, Xp) ^ 0. 

Since {xi, . . . xn+i} are vectors in ^-dimensional complex space, they are 
linearly dependent. We may assume that xn+i is linearly dependent on 
Xif . . . xn\ i .e., 

xn+i = aiXi + . . . + anxn 

for some complex numbers aj. From 

a i 

I a*I 

Ai,n. ,n+l 

L^n+l . l A, (+i,«+U ail 
I 

aj 0 
"Cn Ci« 0" 

Cnl • 

0 . 
U « i 
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where 

Cjk = Ajk + a*An+itk + akAjtn+i + a*akAn+itn+h 

we know (Cjk)i^jtk^n is positive. As <ï> is ^-positive, 

T,l£j,k£n(&(Cjk)xkXj) ^ 0. 

Subst i tu te the definition of Cjk and rearrange terms. W e get 

T,l£p,q£n+l($(Apq)xq, Xv) ^ 0 

as required. So Pn[8l, Win] = P»+i[2t, 2H»]. 
Replacing n by w + 1, Pw+i[Sl, 9ftw+i] = PW+2[SI, 2WW+J. Now, we regard 

Tin as a subalgebra of 9J£n+i natural ly and obtain Pw+i[Sl, 2)?w] = Pw+2[2l, 9WJ. 
Repeat ing the argument , Pw+W 

[a, aw.] [ « , 2RJ (m = 0, 1, 2, . . . ) 
and we conclude t h a t P J S l , 2WW] = P J 9 1 , 2Rn]. 

T H E O R E M 6. P„[9ïïn, » ] = PJ2K», » ] . 

Proof. W e will establish Pn[2Rn, » ] = P»+i[2R», » ] first. 
Le t $ G Pn[9Jîn> 53]; we wish to prove t h a t for any positive 

(APq) e SDUi(SKn), 

($(Apq))i^ptq£n+i is positive. W e may assume t h a t (Apq) is a rank-1 positive 
w(n + 1) X n(n + 1) matr ix. Hence, Qp = (Api, Ap2, . 
w X n(n + 1) matr ix with pairwise dependent rows. So {Qi, 
linearly dependent . W i t h o u t loss of generality, we let 

Ap>n+i) is an 
. Qn+i) mus t be 

Qn+1 = aiQi + 

for certain complex numbers a ; ; i.e., 

for all q. Consequently, 

for all p. Therefore 

(HAVi)) 

I 

ln+l,i 

i p . n + l 

= aiAit + 

<Xl*Apl + 

« 1 * 1 . *I 0 

• * U n ) • 

o 

+ ««(?« 

+ oinA„ 

+ an*A3 

${Ain) 0" 

• *U«) 
0 

« i / 

/ « J 
0 

T h e middle matr ix is positive since $ is «-positive. Therefore ($(^4P3))igP,js re+i 
is positive. So PK[9W„, ©] = P»+i[9W», » ] . 
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Replacing n by n + 1, Pn+i[9Kw+1, 93] = Pw+2[2Rft+i, 53]. Now, we regard 
Tin as a quotient space of 9Ww+i naturally and obtain 

Repeating the argument, Pw+m[9Wn, 23] = Pn+m+i[Wln, 95] O = 0, 1, 2, . . .) 
and we conclude that Pn[Wln, 93] = Pœ[Wln, 93]. 

The generalizations of the above theorems are valid for matrices over a 
commutative C*-algebra. These can also be viewed as direct generalizations of 
Stinespring and Stunner's results. 

THEOREM 7. / / 6 is commutative, then Pn[ 21, 2ttn(S)] = PJ21 , 2W„ ((£)]. 

Proof. We may take S as the set of all continuous functions defined on a 
compact Hausdorff s p a c e d . Let <i> G Pw[2l, 9ft»(S)]. If (Apq)i^Vtq^m\§ positive 
in 2RW(») and 

$G4p<z) = {fpQik)\u?,Tcuny 

we wish to prove that 

\JpQjk)l^p, g^m 
l^j.k^n 

is positive. For any s ^ y , define S£v 3)ÎW(Ë) —» SDÎ» by 

Obviously, \f% is completely positive. Hence ^ s o <i>: §1 —•> 9WW is ^-positive, 
and thus completely positive by Theorem 5. So 

(fpQjk(s))p,Q;J,k = 0 * 0 $ ) (X) 1W(( ,4P ( Z)^) 

is positive. Since 5 is arbitrary in ^ , (fpgjk)p,q,-j,k is positive as required. 

THEOREM 8. / / S is commutative, then Pn[2K„(S), 93] = PjattnCS), 93]. 

We may assume w â 2, and Ê = C(S^) = the set of all continuous functions 
defined on a compact Hausdorff s p a c e d . Denote by Ejk(f) £ 2Wn(C(^)) the 
matrix with / £ C(S?) at the j , & component and zeros elsewhere, and by 
In(f) £ Ttn{C(6^)) the diagonal matrix w i t h / along the diagonal. As in the 
special case proved by Stinespring, we must use integral representations. 

LEMMA. If \£ £ Pn[3Jîn(C(5^)), 9KW], JAew /Aère exi's/ a regular positive Borel 
measure mon S^ and m-measurable matrix-valued functions Gjk £ ç8Rm(txi(£f)) 
(1 <^ j , k ^ n), such that 

(i) for all fin CCS?), 

*E*(f) = SyfG* dm, 

(ii) (Gjk(s))jk is positive in 9Ww(9Wm) a.e. (m). 

Proof. Let {#i, . . . xm} be the canonical orthonormal basis of the under
lying space of %Jlm. By the Riesz-Markoff theorem, there exists a regular positive 
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Borel measure m o n y such that for all / in C(S^) 

Xpj OCpJ — J Q>J Q I H . 

Since 

£«(l/l) E*V) 
[Ek](f*) £ „ ( | / | ) 

is positive, its image under ^ (x) 12 is positive, too; thus 

r <*E„(i/1) 
Xpi Xp) {WHtjic^j )Xq, Xp) 

l{*EkJU*)xp,xq) (^Ekk(\f\)xq,xq) 
is positive. From the elementary tact 

positive in 9ft2 => |j8| ^ è(«i + «2), «1 0 

we derive that 

\{<aEjk{f)xqxP)\ Û i{<*£„(|/|)*p,**> + <*£**(!/1)*,,*,)} 

= JVl/|dm. 
By the Riesz and Radon-Nikodym theorems, there exists an m-measurable 
function gjkpa such that for a l l / in C{Sf) 

(VEjk(f )xqt Xp) = / ^ / • gjkpq dm. 
Let 

£;* = (gjjcpQ)vQ e 9K m (m(^) ) . 

Then it is immediate that 

Let h G C ( y ) be positive. Then (EJk(h))jk is positive in $D?»(2)tn(E)), so its 
image under SF (g) ln is positive; i.e., 

(*Ejk(h))Jk = (jyhGjk dm) j k ^ 0. 

By varying the positive function h, we get 

(Gjk(s))jk ^ 0 a.e. (m) 
Proo/ of Theorem 8. Assume $ £ Pre[9Ww(E), 33]- We wish to prove that for 

any positive integer w, if 3>i, . . . ym are vectors in the underlying space of 33 and 

l=:PtQ=Tn 

is positive in 9Kro(9Kn(E)), then 

Let JT be the space spanned by {;yi, . . . ^ m } . Let ^ be the effect of $ followed 
by the compression of 23 into 3) P O and then the imbedding into 9Wm. It is 
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evident t ha t ^ is ^-positive. By the Lemma, there exist m and GjJc with the 
prescribed properties. Let 

Gjkva = Gjk (1 ^ P,q ^ m). 
Then 

(Gjkpq(s))jkpg è 0 a.e. (m) . 
Hence 

\JjJcpq\S) ' & jk\$) ) jkpq ~ \J jkpq\$ ) ' & jkpq\$ ) ) jkpq 

^ 0 a.e. ( m ) . 
So 

(Ejkfjkpq(s) • Gjk(s))PQ ^ 0 a.e. ( m ) . 

Therefore 

V^Ujkpq) jkjpq = (J ^2_, jk jjkpq ' G jJc dtTl)pq ^ 0. 

I t follows tha t 

Hpq($(fjkpq)jkyq,yp) = Hpqi^ ( f jkpq) jkj q, Jp) ^ 0 

as required. T h u s Theorem 8 is established. 

Referring to Theorems 5-8, Pn = Pn+i => Pw = Poo natural ly. In the general 
case, we pose 

Conjecture 1. P n [ » , SB] = Pn+1[2t, 93] => P„[3t, 93] = P J » , 93]. 

Hopefully, the above conjecture will be a corollary of a 'generalization of 
Theorem 4' which we state as 

Conjecture 2. If PW[3I, 93] = Pw+i[2l, 93], then, either 21 is a quot ient space 
or 93 is a subalgebra of SDÎW(S) for certain commutat ive (S. 

W e remark t ha t in the finite-dimensional case, every C*-algebra is of the 
form SDtni ©9WW2 © • • • ©SKnmî hence Conjecture 2 in this case is valid by 
vi r tue of Theorem 1. 
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