H_{β} PROFILES OF 25 CP STARS

REINHOLD KROLL
Institut für Astronomie und Astrophysik, Am Hubland, D-8700 Würzburg

ABSTRACT I present the H_{β} profiles of 25 CP 2 and CP4 stars, together with their equivalent widths. Surface gravities are estimated for stars with known effective temperature from the equivalent width of H_{β}.

INTRODUCTION

The Balmer lines are powerful tools to investigate the physical constitution of CP stars, since they are little influenced by the peculiar chemistry of those stars. $T_{\text {eff }}$ and $\log g$ determine the shape of the Balmer lines, other parameters, as metal abundances, magnetic fields or even rotation have little influence and show up only in the very center of the line. Because of their large span in wavelength as well as in intensity, it is absolutely necessary to use spectra with high signal to noise ratio. Photographic observations are not well suited.

Accurate theoretical line profiles are necessary to serve as comparisons with the observed lines. They have been calculated for this work with the ATLAS8 program by R.L. Kurucz and BALMER by D.M. Pyper. A tenfold solar metal abundance was assumed to represent typical CP stars.

OBSERVATIONS

All observations have been carried out by the author with the 2.2 m telescope at Calar Alto. The Coudé spectrograph was used with a dispersion of $17 \AA / \mathrm{mm}$ to feed a CCD camera. 155 spectra for 25 CP 2 and CP4 stars have been obtained. Each spectrum was carefully wavelength calibrated and continuum normalized. All spectra have then been shifted so that H_{β} is at its laboratory wavelength of $4861.33 \AA$. After this procedure all spectra for an individual star have been averaged.

RESULTS

Extraction of the H_{β} profile

From the averaged spectra an arbitrary number of representative points (intensity versus wavelength) were extracted interactively. From these points a smooth curve was constructed with a cubic spline data smoothing algorithm.

The amount of smoothing was also chosen interactively until best agreement of the extracted line with the actual spectrum was obtained. The resulting profiles and their equivalent widths are used in this work. Table I gives the extracted profiles in tabulated form.

Table I Residual intensity of H_{β} as a function of distance from line center.

$\Delta \lambda$	10783	11503	15089	18296	19832	25354	25823	27309	32783
0.00	0.220	0.261	0.224	0.210	0.453	0.198	0.284	0.300	0.248
0.25	0.252	0.268	0.238	0.248	0.456	0.244	0.327	0.310	0.287
0.50	0.299	0.288	0.266	0.326	0.458	0.335	0.393	0.331	0.353
1.00	0.360	0.353	0.337	0.420	0.472	0.421	0.492	0.406	0.442
1.50	0.384	0.400	0.380	0.468	0.490	0.453	0.534	0.465	0.492
2.00	0.411	0.427	0.407	0.504	0.521	0.479	0.569	0.501	0.531
2.50	0.434	0.447	0.427	0.531	0.555	0.500	0.597	0.529	0.565
3.00	0.459	0.469	0.449	0.554	0.590	0.520	0.621	0.554	0.594
4.00	0.519	0.511	0.492	0.606	0.649	0.567	0.669	0.600	0.643
5.00	0.577	0.553	0.529	0.658	0.696	0.620	0.714	0.646	0.691
7.50	0.693	0.656	0.618	0.763	0.786	0.726	0.804	0.748	0.797
10.00	0.777	0.740	0.694	0.838	0.851	0.805	0.868	0.821	0.858
12.50	0.835	0.803	0.750	0.885	0.896	0.860	0.909	0.870	0.898
15.00	0.878	0.853	0.793	0.916	0.927	0.896	0.937	0.906	0.926
20.00	0.935	0.919	0.865	0.962	0.964	0.952	0.968	0.952	0.961
25.00	0.960	0.952	0.907	0.983	0.981	0.978	0.983	0.973	0.980
35.00	0.987	0.981	0.963	0.995	0.993	0.990	0.997	0.988	0.998
50.00	0.997	0.991	0.988	1.000	0.998	1.000	0.999	0.997	1.000
80.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE I (continued)

$\Delta \lambda$	112185	137909	164429	170000	173650	175744	176232	177710
0.00	0.197	0.179	0.326	0.356	0.192	0.347	0.166	0.420
0.25	0.222	0.233	0.333	0.359	0.235	0.362	0.219	0.425
0.50	0.270	0.315	0.341	0.368	0.312	0.395	0.304	0.432
1.00	0.345	0.382	0.374	0.406	0.403	0.477	0.384	0.456
1.50	0.380	0.410	0.427	0.453	0.441	0.531	0.437	0.504
2.00	0.410	0.439	0.465	0.485	0.479	0.560	0.479	0.548
2.50	0.428	0.466	0.490	0.511	0.507	0.583	0.514	0.581
3.00	0.451	0.492	0.516	0.542	0.532	0.607	0.542	0.608
4.00	0.506	0.547	0.560	0.598	0.586	0.658	0.589	0.661
5.00	0.555	0.598	0.599	0.646	0.643	0.710	0.628	0.709
7.50	0.660	0.689	0.696	0.738	0.749	0.810	0.713	0.797
10.00	0.747	0.750	0.773	0.803	0.833	0.873	0.775	0.856
12.50	0.812	0.799	0.834	0.851	0.884	0.913	0.816	0.896
15.00	0.860	0.840	0.880	0.887	0.917	0.937	0.854	0.926
20.00	0.924	0.909	0.937	0.936	0.960	0.965	0.904	0.962
25.00	0.955	0.950	0.962	0.961	0.979	0.980	0.936	0.980
35.00	0.986	0.987	0.983	0.987	0.994	0.991	0.975	0.992
50.00	0.998	1.000	0.996	0.998	1.000	0.998	1.000	0.998
80.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

TABLE I (continued)

$\Delta \lambda$	193722	196502	210071	215441	219749	221394	224801	$+24^{\circ} 3675$
0.00	0.273	0.129	0.395	0.287	0.357	0.219	0.272	0.202
0.25	0.304	0.171	0.400	0.310	0.360	0.234	0.297	0.244
0.50	0.355	0.248	0.408	0.353	0.369	0.264	0.348	0.297
1.00	0.450	0.335	0.440	0.461	0.407	0.338	0.442	0.368
1.50	0.502	0.373	0.494	0.522	0.465	0.382	0.498	0.420
2.00	0.544	0.419	0.530	0.564	0.497	0.407	0.536	0.465
2.50	0.580	0.449	0.558	0.599	0.524	0.426	0.560	0.504
3.00	0.614	0.475	0.583	0.630	0.551	0.445	0.583	0.534
4.00	0.673	0.521	0.628	0.684	0.603	0.491	0.637	0.597
5.00	0.725	0.565	0.673	0.731	0.652	0.530	0.689	0.664
7.50	0.828	0.674	0.763	0.827	0.757	0.621	0.785	0.771
10.00	0.894	0.748	0.828	0.887	0.831	0.706	0.848	0.841
12.50	0.933	0.803	0.873	0.921	0.879	0.769	0.893	0.891
15.00	0.955	0.851	0.906	0.943	0.913	0.819	0.926	0.928
20.00	0.975	0.919	0.950	0.974	0.959	0.893	0.965	0.970
25.00	0.985	0.953	0.974	0.991	0.979	0.932	0.981	0.993
35.00	0.992	0.978	0.992	1.000	0.994	0.973	0.995	1.000
50.00	0.996	1.000	0.998	1.000	0.997	0.992	0.999	1.000
80.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Effective Temperatures

It is almost impossible to deduce $T_{e f f}$ and $\log g$ simultaneously. One of both parameters should be restricted by other means. I have chosen the $[u-b]$ versus $T_{\text {eff }}$ calibration from Megessier (1988) to assign effective temperatures to the program stars. The reddening free index $[\mathrm{u}-\mathrm{b}]$ is defined as

$$
[u-b]=(u-b)-1.84(b-y)
$$

(Stroemgren, 1966). $T_{e f f}$ is then found by

$$
\theta=0.2620[u-b]+0.1886
$$

The calibration is restricted to Si type stars and $0.3 \leq \theta \leq 0.48$, it was however applied to all stars in the temperature range, regardless of their peculiarity type. All ubvy photometric data for the program stars have been taken from Renson, 1991.

Surface gravities

For stars with known effective temperatures $\log g$ can be estimated by comparison with theoretical profiles. For that purpose, profiles (and equivalent widths) for a grid with $7000 \mathrm{~K} \leq T_{e f f} \leq 15000 \mathrm{~K}, \Delta\left(T_{e f f}\right)=200 \mathrm{~K}$ and $3.0 \leq \log g \leq 4.4, \Delta(\log g)=0.1$ have been calculated. In a contour plot of equivalent width of H_{β} depending on $T_{e f f}$ and $\log g$ the contour line at the equivalent width of a specific star uniquely defines possible combinations of $T_{e f f}$ and $\log g . T_{e f f}$ given, $\log g$ is simply read from the contour plot. Figure 1 shows this process for 21 Per.

Figure 1: Mean spectrum of $21 \operatorname{Per}$ (dotted line), extracted H_{β} profile (solid line) and theoretical profile with the adopted values of $T_{e f f}$ and $\log g$ (dashed line). The inset at lower right shows the contour of the equivalent width of H_{β}. The two dashed lines are at $\pm 5 \%$ of the equivalent width. With a given temperature of 11400 K it follows $\log g=3.45$.

In Table II the results for the 25 observed CP stars are summarized. It shows the HD number, HR number and common name, the number of spectra co-added, [$\mathrm{u}-\mathrm{b}$] values and $T_{\text {eff }}$ calculated from them, measured equivalent width of H_{β} and obtained $\log g$. However, these results for $\log g$ should only be considered as very preliminary. Future work has to take into account all possible information on $T_{\text {eff }}$, not only the [u-b] calibration. For stars with $T_{\text {eff }} \lesssim 10000 K$ it becomes more and more difficult to deduce $\log g$. In these cases the other way, restricting $\log g$ with other information and determining $T_{e f f}$ is favorable. For a thorough discussion on comparison between photometric $T_{\text {eff }}, \log g$ determinations with spectroscopic H_{β} results, see North \& Kroll, 1989.

TABLE II Program stars and results. $T_{e f f}$ is calculated from [u-b], $\log g$ from the measured equivalent width of H_{β}

HD	HR	Name	\#	$[\mathrm{u}-\mathrm{b}]$	Teff	Eq. w.	$\log \mathrm{g}$
10783			3	0.999	11200	12.6	3.9
11503	546	γ^{2} Ari	11	1.088	11100	14.0	4.1
15089	707	ι Cas	9	1.549		17.1	
18296	873	21 Per	5	0.966	11400	9.6	3.45
19832	954	56 Ari	8	0.610	14500	8.8	3.95
25354			3	1.194		10.9	
25823	1268	41 Tau	4	0.488	15900	8.2	
27309	1341	56 Tau	4	0.574	14900	10.5	
32633			2	0.756	13000	8.8	3.65
112185	4905	ϵ UMa	4	1.443		13.6	
137909	5747	β CrB	4	1.795		13.3	
164429	6718		7	0.922	11700	12.3	4.0
170000	6920	φ Dra	8	0.789	12700	11.2	4.05
173650	7058		4	1.333		10.1	
175744	7147		3	0.746	13100	8.4	3.6
176232	7167	10 Aql	3	1.821		13.1	
177410	7224		9	0.378		8.7	
193722	7786		11	0.841	12300	7.9	3.3
196502	7879	73 Dra	5	1.585		13.8	
210071	8434		9	0.637	14200	9.8	4.1
215441			1	0.751	13100	7.5	3.4
219749	8861		7	0.974	11400	9.9	3.5
221394	8933		7	1.447		15.8	
224801	9080		4	0.818	12500	9.0	3.6
$+24^{\circ} 3675$			3	1.118	10500	9.3	3.1

REFERENCES

Megessier,C. 1988, Astron. Astrophysics Suppl. Ser., 72, 551
North,P., Kroll,R. 1989, Astron. Astrophysics Suppl. Ser., 78, 325
Renson, P. 1991, Catalogue général des étoiles $A p$ et Am, Liège Univ, Inst. d' Astrophysique
Stroemgren,B. 1966 Ann. Rev. Astron. Astrophys., 4, 433

