THE KERNEL AND TRACE OPERATORS FOR IDEAL EXTENSIONS OF REGULAR SEMIGROUPS

by MARIO PETRICH

(Received 2 November, 1992)

Abstract. Let V be a regular semigroup and an ideal extension of a semigroup S by a semigroup Q. Congruences on V can be represented by triples of the form (σ, P, τ) , here called admissible, where σ is a congruence on S, P is an ideal of Q and τ is a 0-restricted congruence on Q/P satisfying certain conditions. We characterize the trace relation T on V in terms of admissible triples. When the extension V of S is strict, for a congruence v on V given in terms of an admissible triple, we characterize v_K , v^K , v_T and v^T again in terms of admissible triples.

1. Introduction and summary. Let S be a regular semigroup and $\mathscr{C}(S)$ be its congruence lattice. For $\rho \in \mathscr{C}(S)$, the kernel (respectively, trace) of ρ is the set of all elements of S ρ -related to idempotents (respectively, the restriction of ρ to idempotents of S). The relation on $\mathscr{C}(S)$ which identifies congruences on S with the same kernel (respectively, trace) is the kernel relation K (respectively, the trace relation T) for S. The classes of these (equivalence) relations are intervals and it is convenient to introduce the notation $\rho K = [\rho_K, \rho^K]$ and $\rho^T = [\rho_T, \rho^T]$ for the respective classes of $\rho \in \mathscr{C}(S)$. Then $\rho \to \rho_K$ and $\rho \to \rho^K$ are the kernel operators and $\rho \to \rho_T$ and $\rho \to \rho^T$ are the trace operators. The nature of these operators furnishes valuable information concerning both congruences on S and the congruence lattice $\mathscr{C}(S)$.

Now let V be a regular semigroup with an ideal S. Then V is an (ideal) extension of S by Q = V/S, where the latter is the Rees quotient semigroup. We may set $V = S \cup Q^*$ where $Q^* = Q \setminus \{0\}$. In such a case, both S and Q are regular semigroups so the above analysis can be applied to S, Q and V. The problem is to reduce this analysis for V to those for S and Q. As a first step, we must express the congruences on V in terms of S and Q, and if possible, in terms of $\mathscr{C}(S)$ and $\mathscr{C}(Q)$. In the present setting, this problem was solved in [3] as follows. Each congruence on V is expressed in terms of an (admissible) triple (σ, P, τ) , where $\sigma \in \mathscr{C}(S)$, P is an ideal of Q and τ is a 0-restricted congruence on Q/P, satisfying certain conditions.

Representing the congruences on V in terms of triples as above, we may ask whether the relations K and T on $\mathscr{C}(V)$ can be expressed by means of the same relations on $\mathscr{C}(S)$ and $\mathscr{C}(Q)$. We may go one step further by asking for v_K , v^K , v_T , v^T for a congruence v on V expressed in terms of a triple. The first task is easy: expressing the kernel and the trace. However, the problem of characterizing K on $\mathscr{C}(V)$ does not seem to admit a convenient solution, whereas T admits a simple expression. The problem with the kernel and the trace operators in this generality does not seem amenable to a successful treatment.

In order to make some progress in this context, we restrict our attention to the special case when V is a strict (or retract) extension of S and in various situations add further restrictions. For strict extensions, we are able to characterize v_K , v^K , v_T and v^T .

Section 2 contains some terminology, notation, background material and preliminary results. The relation T on $\mathscr{C}(V)$ is characterized in Section 3. In the remaining part of the

Glasgow Math. J. 36 (1994) 219-231.

paper, we assume that V is a strict extension of S. For a congruence v on V given by means of an admissible triple, we calculate v_T and v^T in Section 4 and v_K and v^K in Section 5 again in terms of admissible triples.

2. Preliminaries. In addition to the standard terminology and notation, which can be found, for example, in [1], we state explicitly the following nomenclature and symbolism.

Let X be a set. The equality relation on X is denoted by ϵ_X or simply by ϵ . The universal relation on X is denoted by ω_X . The restriction of a function or a relation θ to X is denoted by $\theta|_X$. If θ is an equivalence relation on X and $x \in X$, then $x\theta$ denotes the θ -class containing x. If also $A \subseteq X$, then

$$A\theta = \{x \in X \mid x\theta a \text{ for some } a \in A\}$$

is the saturation of A by θ ; if $A\theta = A$, then θ saturates A. If Y is also a set, then $X \setminus Y = \{x \in X \mid x \notin Y\}.$

Let R be a semigroup. If $A \subseteq R$, then E(A) denotes the set of all idempotents in A. If R has an identity, then $R^1 = R$ otherwise R^1 stands for R with an identity adjoined. The congruence lattice of R is denoted by $\mathscr{C}(R)$. Assume that R has a zero. If $A \subseteq R$, then $A^* = A \setminus \{0\}$. An equivalence relation θ on R is 0-restricted if $\{0\}$ is a θ -class; the set of all 0-restricted congruences on R is denoted by $\mathscr{C}_0(R)$. Further, R is categorical at zero if for any $a, b, c \in R$, $ab \neq 0$ and $bc \neq 0$ imply $abc \neq 0$.

If θ is a relation on R, then θ^* denotes the congruence on R generated by θ . If θ is an equivalence relation on R, then θ^0 denotes the greatest congruence on R contained in θ ; explicitly

$$a\theta^0 b$$
 if $xay\theta xby$ for all $x, y \in R^1$.

If $A \subseteq Q$, let θ be the equivalence relation on R whose classes are A and $Q \setminus A$ (whichever one is nonempty), then $\pi_A = \theta^0$ is the *principal congruence* relative to A; explicitly

$$a\pi_A b$$
 if $(xay \in A \Leftrightarrow xby \in A \text{ for all } x, y \in R^1)$.

In fact, π_A is the greatest congruence ρ on R which saturates A. We shall sometimes write π_A^R for emphasis. If R has a zero, then $\zeta_R = \pi_{\{0\}}$ is the greatest 0-restricted congruence on R. If I is an ideal of R, then R/I denotes the *Rees quotient semigroup* of R relative to I; as a set $R/I = (R \setminus I) \cup \{0\}$.

Let R be a regular semigroup, that is for every $a \in R$ there exists $x \in R$ such that a = axa. Let $\rho \in \mathscr{C}(R)$. Then

$$\ker \rho = \{a \in R \mid a\rho e \text{ for some } e \in E(R)\}, \quad \operatorname{tr} \rho = \rho|_{E(R)}.$$

are the *kernel* and the *trace* of ρ , respectively. They induce a complete \wedge -congruence K and a complete congruence T on $\mathscr{C}(R)$ by

$$\lambda K \rho$$
 if ker $\lambda = \ker \rho$, $\lambda T \rho$ if tr $\lambda = \operatorname{tr} \rho$,

respectively. The K- and T-classes are intervals, so we use the notation

$$\rho K = [\rho_K, \rho^K], \quad \rho T = [\rho_T, \rho^T].$$

LEMMA 2.1. ([2], Theorem 3.2). Let R be a regular semigroup and $\rho \in \mathscr{C}(R)$. Then

$$\rho_{K} = \{(x, x^{2}) \mid x \in \ker \rho\}^{*}, \qquad \rho^{K} = \pi_{\ker \rho}. \quad \Box$$

We say that ρ is *idempotent pure* if ker $\rho = E(S)$.

LEMMA 2.2. ([2], Theorem 3.2). Let R be a regular semigroup, $\rho \in \mathscr{C}(R)$, $\theta = \operatorname{tr} \rho$ and denote by juxtaposition the product of binary relations. Then

$$\rho_T = \theta^*, \qquad \rho^T = (\mathcal{L}\theta \mathcal{L}\theta \mathcal{L} \cap \mathcal{R}\theta \mathcal{R}\theta \mathcal{R})^0.$$

Throughout the paper we fix the following notation: V is a regular semigroup and an (ideal) extension of S by Q. Hence S is an ideal of V, the Rees quotient $V/S \cong Q$, where we set $V = S \cup Q^*$; in addition, both S and Q are regular semigroups.

From ([3, Corollary 1 to Theorem 1]) we deduce the following description of congruences on V. Let $\sigma \in \mathscr{C}(S)$, P be an ideal of Q and $\tau \in \mathscr{C}_0(Q)$ satisfy the following conditions:

(i) $a, b \in Q \setminus P$, $a\tau b, x\sigma y \Rightarrow ax\sigma by, xa\sigma yb$,

(ii) for every $a \in P^*$ there exists $a' \in S$ such that $x \in S \Rightarrow ax\sigma a'x$, $xa\sigma xa'$.

In such a case, we say that a and a' are σ -linked, call (σ, P, τ) an admissible triple and define a relation v on V by

$$avb \Leftrightarrow \begin{cases} a\tau b & \text{if } a, b \in Q \setminus P, \\ a'\sigma b' & \text{if } a, b \in P^*, \\ a'\sigma b & \text{if } a \in P^*, b \in S, \\ a\sigma b' & \text{if } a \in S, b \in P^* \\ a\sigma b & \text{if } a, b \in S, \end{cases}$$

where a, a' and b, b' are σ -linked. Then v is a congruence on V and, conversely, every congruence on V has this form. According to ([4, Corollary 3.2]), this representation is unique.

The notation $v = \mathcal{C}(\sigma, P, \tau)$ will always denote the above congruence implicitly implying that (σ, P, τ) is an admissible triple.

In fact, given $v \in \mathscr{C}(V)$, the admissible triple for v is (σ, P, τ) , where

 $\sigma = v|_S, \qquad P = \{a \in Q^* \mid avb \text{ for some } b \in S\} \cup \{0\},\$ $a\tau b \Leftrightarrow a, b \in O \setminus P, \qquad avb, \text{ and } 0\tau 0.$

Note that if a, a' are σ -linked and $\sigma \subseteq \sigma'$ for $\sigma' \in \mathscr{C}(S)$, then a, a' are also σ' -linked. We shall need the following criterion for inclusion of congruences on V.

LEMMA 2.3. ([4, Lemma 3.1]). Let $v_i = \mathscr{C}(\sigma_i, P_i, \tau_i)$ for i = 1, 2. Then $v_1 \subseteq v_2$ if and only if $\sigma_1 \subseteq \sigma_2$, $P_1 \subseteq P_2$, τ_1 saturates $P_2 \setminus P_1$ and $\tau_1|_{Q \setminus P_2} \subseteq \tau_2|_{Q \setminus P_2}$. \Box

LEMMA 2.4. Let $v = \mathscr{C}(\sigma, P, \tau)$. Then

 $\ker v = \ker \sigma \cup \{a \in P^* \mid a' \in \ker \sigma \text{ for some } a' \in S \sigma \text{-linked to } a\} \cup (\ker \tau)^*.$

Proof. Let $a \in V$. For $a \in S$, clearly $a \in \ker v$ if and only if $a \in \ker \sigma$. Similarly, for $a \in Q \setminus P$, clearly $a \in \ker v$ if and only if $a \in \ker \tau$.

Next let $a \in P^*$. Assume first that $a \in \ker v$. Then *ave* for some $e \in E(V)$ and we must have $e \in E(S \cup P^*)$. Let a' be an element of S σ -linked to a. Then a've and a'v $\cap S$ is an idempotent σ -class and thus must contain an idempotent, say f. Then a' σf so that a' $\in \ker \sigma$. Conversely, suppose that a' $\in \ker \sigma$ for some a' $\in S \sigma$ -linked to a. Then a' σe for some $e \in E(S)$ and thus ava've so that $a \in \ker v$. \Box

A mapping $\varphi: Q^* \to S$ is a *partial homomorphism* if for any $a, b \in Q^*$, $ab \neq 0$ in Q implies $(ab)\varphi = (a\varphi)(b\varphi)$. If in addition,

$$ab = \begin{cases} (a\varphi)b & \text{if } a \in Q^*, b \in S, \\ a(b\varphi) & \text{if } a \in S, b \in Q^*, \\ (a\varphi)(b\varphi) & \text{if } a, b \in Q^*, ab \in S, \end{cases}$$

then the multiplication in V is determined by φ and V is a strict extension of S.

Starting with Section 4, we assume that V is a strict extension of S, where the multiplication is determined by the partial homomorphism $\varphi: Q^* \to S$. The mapping $\psi = \varphi \cup \iota_S$ is a retraction of V onto S, where ι_S is the identity mapping on S. If $1 \in V^1$ and $1 \notin V$, we write $1\varphi = 1\psi = 1 \in S^1$.

In such a case, we have the following important simplification.

LEMMA 2.5. ([3, Proposition 2]). Let V be a strict extension of S, where the multiplication is determined by a partial homomorphism $\varphi: Q^* \to S$. Let $\sigma \in \mathcal{C}(S)$, P be an ideal of Q and $\tau \in \mathcal{C}_0(Q/P)$. Then (σ, P, τ) is an admissible triple if and only if

$$a, b \in Q \setminus P, a\tau b \Rightarrow a\varphi \sigma b\varphi. \square$$

LEMMA 2.6. Let V be a strict extension of S, where the multiplication is determined by a partial homomorphism $\varphi: Q^* \to S$. Let $v = \mathscr{C}(\sigma, P, \tau)$. Then

 $\ker v = \ker \sigma \cup \{a \in P^* \mid a\varphi \in \ker \sigma\} \cup (\ker \tau)^*.$

Proof. This is a direct consequence of Lemma 2.4.

3. The trace relation. A technical lemma is needed here in order to characterize the relation T on $\mathscr{C}(V)$ in terms of T on $\mathscr{C}(S)$ and $\mathscr{C}(Q/P)$, where P is an ideal of Q.

LEMMA 3.1. Let $v_i = \mathscr{C}(\sigma_i, Q, \epsilon)$ for $i = 1, 2, \sigma_1 T \sigma_2$, and $e \in E(Q^*)$. Then there exist $e_1, e_2 \in E(S)$ such that $e_1 v_1 e v_2 e_2$ and $e_1 \sigma_1 \wedge \sigma_2 e_2$.

Proof. Let i = 1, 2. Since $ev_i \cap S$ is an idempotent σ_i -class, it contains an idempotent, e_i say. Clearly $e_1v_1ev_2e_2$; we shall show that $e_1\sigma_1 \wedge \sigma_2e_2$. First let u_i be an inverse of ee_i and let $g_i = ee_iu_ie$. Then

$$g_i^2 = (ee_i u_i ee_i)u_i e = ee_i u_i e = g_i \in E(S),$$

$$g_i = ee_i u_i ev_i ee_i u_i ee_i = ee_i v_i e_i,$$

so that $g_i < e$ and $g_i v_i e$, i = 1, 2. Here < is the natural partial order on the idempotents. Now ev_2g_2 implies $g_1 = g_1ev_2g_1g_2$ and $g_1 = eg_1v_2g_2g_1$ so that

$$g_1 \sigma_2 g_1 g_2 \sigma_2 g_2 g_1.$$
 (1)

Interchanging the roles of g_1, g_2 and σ_1, σ_2 , we obtain

$$g_2 \sigma_1 g_2 g_1 \sigma_1 g_1 g_2. \tag{2}$$

REGULAR SEMIGROUPS

Let v be an inverse of g_1g_2 and let $h = g_1g_2vg_1$. Then $h \in E(S)$ and we get

$$h = g_1 g_2 v g_1 \sigma_2 g_1 g_2 v g_1 g_2 = g_1 g_2 \sigma_2 g_1.$$

Hence $g_1\sigma_2h$ and the hypothesis implies that $g_1\sigma_1h$. Together with (2), this gives $g_1\sigma_1g_1g_2vg_1\sigma_1g_2vg_1$ whence

$$g_1 \sigma_1 g_2 g_1. \tag{3}$$

Similarly, we let w be an inverse g_2g_1 and $t = g_1wg_2g_1$. Then $t \in E(S)$ and by (1), we obtain

$$t = g_1 w g_2 g_1 \sigma_2 g_2 g_1 w g_2 g_1 = g_2 g_1 \sigma_2 g_1$$

Hence $g_1\sigma_2 t$ and the hypothesis implies that $g_1\sigma_1 t$. Together with (2), this gives $g_1\sigma_1g_1wg_2g_1\sigma_1g_1wg_2$ whence $g_1\sigma_1g_1g_2$. This together with (1) and (3) yields

$$g_1\sigma_1 \wedge \sigma_2 g_1 g_2 \sigma_1 \wedge \sigma_2 g_2 g_1. \tag{4}$$

Now interchanging the roles of g_1 , g_2 and σ_1 , σ_2 we obtain

 $g_2\sigma_1 \wedge \sigma_2 g_2 g_1 \sigma_1 \wedge \sigma_2 g_1 g_2$

which together with (4) yields

$$g_1\sigma_1\wedge\sigma_2g_2.\tag{5}$$

We have seen above that $e_i v_i e v_i g_i$ so that $e_i \sigma_i g_i$ for i = 1, 2. The hypothesis implies that $e_1 \sigma_1 g_1$ gives $e_1 \sigma_2 g_1$ and $e_2 \sigma_2 g_2$ gives $e_2 \sigma_1 g_2$. This together with (5) finally yields

 $e_1\sigma_1 \wedge \sigma_2 g_1\sigma_1 \wedge \sigma_2 g_2\sigma_1 \wedge \sigma_2 e_2$

so that $e_1\sigma_1 \wedge \sigma_2 e_2$, as required. \Box

We are now ready for the relation T.

THEOREM 3.2. Let $v_i = \mathscr{C}(\sigma_i, P_i, \tau_i)$ for i = 1, 2. Then

$$v_1 T v_2 \Leftrightarrow \sigma_1 T \sigma_2, \quad P_1 = P_2, \quad \tau_1 T \tau_2.$$

Proof. (a) \Rightarrow . If $e, f \in E(S)$ are such that $e\sigma_1 f$, then $ev_1 f$ so by hypothesis $ev_2 f$ whence $e\sigma_2 f$. Therefore tr $\sigma_1 \subseteq$ tr σ_2 and by symmetry, $\sigma_1 T \sigma_2$.

Let $e \in E(P_1 \setminus P_2)$. Then $ev_1 \cap S$ is an idempotent σ_1 -class so it contains an idempotent, f say. Hence $ev_1 f$ which by hypothesis implies that $ev_2 f$ which is impossible since $e \notin P_2$ and v_2 saturates $S \cup P_2^*$. Therefore $E(P_1 \setminus P_2) = \emptyset$. If $a \in P_1 \setminus P_2$, then for any inverse a' of a, we have $aa' \in P_1 \setminus P_2$ which we have just seen to be impossible. Thus $P_1 \setminus P_2 = \emptyset$ that is $P_1 \subseteq P_2$. The equality $P_1 = P_2$ now follows by symmetry.

If $e, f \in E(T \setminus P)$ are such that $e\tau_1 f$, then $ev_1 f$ so by hypothesis $ev_2 f$ whence $e\tau_2 f$. Therefore tr $\tau_1 \subseteq$ tr τ_2 and by symmetry, $\tau_1 T \tau_2$.

(b) \Leftarrow . Let $e, f \in E(V)$ be such that $ev_1 f$. If $e, f \in S$, then $\sigma_1 T \sigma_2$ implies that $ev_2 f$, and if $e, f \in Q \setminus P$, then $\tau_1 T \tau_2$ implies that $ev_2 f$. Consider the case $e, f \in P_1^*$. By Lemma 3.1, there exist $e_1, e_2, f_1, f_2 \in E(S)$ such that

$$\left. \begin{array}{ccc} e_1 v_1 e v_2 e_2, & f_1 v_1 f v_2 f_2, & e v_1 f \\ e_1 \sigma_1 \wedge \sigma_2 e_2, & f_1 \sigma_1 \wedge \sigma_2 f_2. \end{array} \right\}$$
(6)

Consequently $e_1v_1ev_1fv_1f_1$ so that $e_1\sigma_1f_1$ which by hypothesis gives $e_1\sigma_2f$ whence

$$ev_2e_2\sigma_2e_1\sigma_2f_1\sigma_2f_2v_2f$$

and thus $ev_2 f$.

By symmetry, it remains to consider the case $e \in P_1^*$, $f \in S$. With the above notation, we have $e_1v_1ev_1f$ so that $e_1\sigma_1f$ which by hypothesis gives $e_1\sigma_2f$ where $ev_2e_2\sigma_2e_1f$ and thus ev_2f .

Therefore in all cases $ev_2 f$ which proves that tr $v_1 \subseteq$ tr v_2 and by symmetry equality prevails. Consequently $v_1 T v_2$. \Box

It would be natural to attempt to characterize v_T and v^T in terms of admissible triples when v itself is given in this form. In this generality, this does not seem feasible. We limit ourselves to the following special case.

COROLLARY 3.3. Let $v = \mathscr{C}(\sigma, Q, \epsilon)$. Then $v^T = (\sigma^T, Q, \epsilon)$.

Proof. Since (σ, Q, ϵ) is an admissible triple, so is (σ^T, Q, ϵ) . Let $\theta = \mathscr{C}(\sigma^T, Q, \epsilon)$. By Theorem 3.2, we have $vT\theta$. Next let $v' = \mathscr{C}(\sigma', P', \tau')$ be such that v'Tv. By Theorem 3.2, we get $\sigma'T\sigma$, P = Q and $\tau' = \epsilon$. Hence $\sigma' \subseteq \sigma^T$ which by Lemma 2.3 implies that $v' \subseteq \theta$. This proves the required maximality of θ . \Box

A similar analysis for the kernel relation is not possible because of the fact that a situation of the form $\mathscr{C}(\sigma, P, \tau)K\mathscr{C}(\sigma', P', \tau')$ with $P \neq P'$ is possible. We limit ourselves only to the analogue of Corollary 3.3 for the kernel.

PROPOSITION 3.4. Let $v = \mathscr{C}(\sigma, Q, \epsilon)$. Then $v^{\kappa} = \mathscr{C}(\sigma^{\kappa}, Q, \epsilon)$.

Proof. Since (σ, Q, ϵ) is an admissible triple so is $(\sigma^{\kappa}, Q, \epsilon)$. Let $\theta = \mathscr{C}(\sigma^{\kappa}, Q, \epsilon)$. By Lemma 2.4, we have

$$\ker v = \ker \sigma \cup \{a \in Q^* \mid a' \in \ker \sigma \text{ for some } a' \in S \sigma \text{-linked to } a\}, \tag{7}$$

$$\ker \theta = \ker \sigma^{\kappa} \cup \{a \in Q^* \mid a^{\prime\prime} \in \ker \sigma^{\kappa} \text{ for some } a^{\prime\prime} \in S \sigma^{\kappa} \text{-linked to } a\},$$
(8)

where ker $\sigma = \ker \sigma^{K}$. If $a \in Q^{*}$ and $a' \in \ker \sigma$ are σ -linked, they are also σ^{K} -linked so that (7) is contained in (8). Conversely, let $a \in Q^{*}$ and $a'' \in \ker \sigma$ be σ^{K} -linked. Then for all $x \in S$, we have $ax\sigma^{K}a''x$ and $xa\sigma^{K}xa''$. Now let $a' \in S$ be such that a, a' are σ -linked. Then for all $x \in S$, we have $ax\sigma^{K}a''x$ and $xa\sigma^{K}xa''$ which implies that also $ax\sigma^{K}a'x$ and $xa\sigma^{K}xa''$. It follows that $a'x\sigma^{K}a''x$ and $xa'\sigma^{K}xa''$ for all $x \in S$. Recall that a semigroup T is weakly reductive if for any $a, b \in T$, xa = xb and ax = bx for all $x \in T$ implies that a = b. Weak reductivity of S/σ^{K} gives that $a'\sigma^{K}a''$. Since $a'' \in \ker \sigma^{K}$, we must have that $a' \in \ker \sigma^{K} = \ker \sigma$. Therefore (8) is contained in (7) and equality prevails so that $vK\theta$.

Next let $v' = \mathscr{C}(\sigma', P', \tau')$ be such that v'Kv. By Lemma 2.4 we have an expression for ker v' analogous to that for ker v in (7) which implies that ker $\sigma' = \ker \sigma$. It follows that $\sigma'K\sigma$ and thus $\sigma' \subseteq \sigma^K$. The remaining three conditions in Lemma 2.3 are trivially satisfied which gives that $v' \subseteq \theta$ which establishes the required maximality of θ . \Box

224

4. The lower and upper ends of trace classes. We reiterate first that henceforth V is a strict extension of S, where the multiplication is determined by a partial homomorphism $\varphi: Q^* \to S$. This will not be stated explicitly. Besides characterizing the ends, we include several consequences of these results.

THEOREM 4.1. Let $v = \mathscr{C}(\sigma, P, \tau)$. Then $v_T = \mathscr{C}(\sigma_T, P, \tau_T)$.

Proof. In view of Theorem 3.2, it suffices to show that (σ_T, P, τ_T) is an admissible triple.

Let $\eta = \text{tr } \sigma$ and $\theta = \text{tr } \tau$. By Lemma 2.2, we have $\sigma_T = \eta^*$ and $\tau_T = \theta^*$, the first of these taken within S and the second one within Q/P. Let $a\tau_T b$ for $a, b \in Q \setminus P$. Then there is a sequence

$$a = x_1 e_1 y_1, \qquad x_1 f_1 y_1 = x_2 e_2 y_2, \dots, x_n f_n y_n = b$$
 (9)

for some $x_i, y_i \in (Q/P)^1$ and $e_i \theta_{f_i}, i = 1, 2, ..., n$. Since τ is 0-restricted and $\tau_T \subseteq \tau$, we have that τ_T is 0-restricted. In the above sequence, we have

 $a\tau_T x_1 f_1 y_1 \tau_T x_2 f_2 y_2 \ldots \tau_T b$

which together with $a \neq 0$ in Q/P implies that all these elements are nonzero in Q/P. We may thus apply φ to the sequence (9) thereby obtaining

$$a\varphi = (x_1\varphi)(e_1\varphi)(y_1\varphi), (x_1\varphi)(f_1\varphi)(y_1\varphi) = (x_2\varphi)(e_2\varphi)(y_2\varphi) \dots (x_n\varphi)(f_n\varphi)(y_n\varphi) = b\varphi$$

with $x_i\varphi, y_i\varphi \in S^1$. In addition $e_i\tau f_i$ implies that $e_i\varphi\sigma f_i\varphi$ by Lemma 2.5 so that $e_i\varphi\eta f_i\varphi$. Since $\sigma_T = \eta^*$ by Lemma 2.2, we get $a\varphi\sigma_Tb\varphi$. By Lemma 2.5, (σ_T, P, τ_T) is an admissible triple and therefore $\nu_T = \mathscr{C}(\sigma_T, P, \tau_T)$. \Box

THEOREM 4.2. Let
$$v = \mathscr{C}(\sigma, P, \tau)$$
. Then $v^T = \mathscr{C}(\sigma^T, P, \tau^T \cap \bar{\sigma})$ where

 $a\bar{\sigma}b$ if $a, b \in Q \setminus P$, $a\varphi\sigma^T b\varphi$, $0\bar{\sigma}0$.

Proof. Let $v^T = \mathscr{C}(\sigma', \cdot, \cdot)$ where the blanks stand for entries to be determined. By Theorem 3.2, $\sigma T \sigma'$ and thus $\sigma' \subseteq \sigma^T$. Let $a \sigma^T b$. Then for $\theta = \text{tr } \sigma$, by Lemma 2.2, we have

 $a(\mathcal{L}\theta\mathcal{L}\theta\mathcal{L}\cap\mathcal{R}\theta\mathcal{R}\theta\mathcal{R})^{0}b$

within S and thus for every $x, y \in S^1$,

 $xay \mathcal{L}\theta \mathcal{L}\theta \mathcal{L} \cap \mathcal{R}\theta \mathcal{R}\theta \mathcal{R}xby.$

Let $\theta' = \operatorname{tr} v$. Then $\theta = \theta'|_{S}$ and for any $x, y \in V^{1}$,

 $(x\psi)a(y\psi)\mathcal{L}\theta'\mathcal{L}\theta'\mathcal{L}\cap\mathcal{R}\theta'\mathcal{R}\theta'\mathcal{R}(x\psi)b(y\psi)$

and thus, for any $x, y \in V^1$,

$$xay \pounds \theta' \pounds \theta' \pounds \cap \Re \theta' \Re \theta' \Re xby$$

so that $a(\mathscr{L}\theta'\mathscr{L}\theta'\mathscr{L}\cap\mathscr{R}\theta'\mathscr{R}\theta'\mathscr{R})^0 b$ within V. Therefore $av^T b$ whence $a\sigma' b$. Consequently $\sigma^T \subseteq \sigma'$ and equality prevails. From Theorem 3.2 we get that $v^T = \mathscr{C}(\sigma^T, P, \cdot)$ where the blank stands for the entry to be determined.

Clearly $\bar{\sigma}$ is an equivalence relation on Q/P. The set $0\tau^T$ is an ideal of Q. If it contains a nonzero element, it also contains a nonzero idempotent, say e. But then $e\tau^T 0$ so that $e\tau 0$, which contradicts the hypothesis that τ is 0-restricted.

Hence also τ^T is 0-restricted. Set $\eta = \tau^T \cap \bar{\sigma}$. Next let $a, b \in Q \setminus P$ be such that $a\eta b$ and let $c \in Q \setminus P$. If $ac \neq 0$ in Q/P, then $ac\tau^T bc$ implies $bc \neq 0$ and $a\bar{\sigma}b$ gives $(ac)\varphi = (a\varphi)(c\varphi)\sigma^T(b\varphi)(c\varphi) = (bc)\varphi$ so that $ac\bar{\sigma}bc$. If ac = 0 in Q/P, then $ac\tau^T bc$ implies bc = 0. Therefore $ac\eta bc$ in all cases; similarly $ca\eta cb$ which proves that η is a congruence on Q/P. Trivially η is 0-restricted. By Lemma 2.5, we conclude that (σ^T, P, η) is an admissible triple; let $\xi = \mathscr{C}(\sigma^T, P, \eta)$.

If $e, f \in E(Q \setminus P)$ are such that $e\tau f$, then by Lemma 2.5 we have $e\varphi \sigma f\varphi$ whence $e\varphi \sigma^T f\varphi$. It follows that tr $\tau \subseteq tr(\tau^T \cap \bar{\sigma}) = tr \eta$. Conversely, trivially tr $\eta \subseteq tr \tau^T = tr \tau$ and thus tr $\tau = tr \eta$. Therefore $\tau T\eta$ which by Theorem 3.2 implies that $vT\xi$.

Finally, let $v' = \mathscr{C}(\sigma', P', \tau')$ be such that v'Tv. By Theorem 3.2, we get $\sigma'T\sigma$, P' = P and $\tau'T\tau$. Hence $\sigma' \subseteq \sigma^T$ and $\tau' \subseteq \tau^T$. If $a, b \in Q \setminus P$ are such that $a\tau'b$, then by Lemma 2.5 we have $a\varphi\sigma'b\varphi$ whence $a\varphi\sigma^Tb\varphi$ so that $a\bar{\sigma}b$. Therefore $\tau' \subseteq \bar{\sigma}$ which implies that $\tau' \subseteq \eta$. Now Lemma 2.3 implies that $v' \subseteq \xi$ which establishes the desired maximality of ξ . \Box

In the next consequence of the above theorem we have a case in which $\bar{\sigma}$ in the theorem may be omitted.

COROLLARY 4.3. Let $v = \mathscr{C}(\sigma, P, \tau)$ and assume that φ maps $Q \setminus P$ onto S. Then $v^T = \mathscr{C}(\sigma^T, P, \tau^T)$.

Proof. In view of Theorem 4.2, it suffices to prove that $\tau^T \subseteq \bar{\sigma}$. Hence let $a\tau^T b$, $\theta = \operatorname{tr} \tau$ and $\eta = \operatorname{tr} \sigma$. By Lemma 2.2, for any $x, y \in (Q/P)^1$, we have

 $xay \mathcal{L}\theta \mathcal{L}\theta \mathcal{L} \cap \mathcal{R}\theta \mathcal{R}\theta \mathcal{R}xby$

so that

$$xay \pounds \theta f \pounds g \theta h \pounds x by, \quad xay \Re e' \theta f' \Re g' \theta h' \Re x by$$
 (10)

for some $e, f, g, h, e', f', g', h' \in E(Q/P)$. Since \mathcal{L}, \mathcal{R} and θ are 0-restricted, we have $xay \neq 0$ if and only if $xby \neq 0$. Now assuming that $xay \neq 0$, we may apply φ to the sequences in (10) so that by Lemma 2.5, writing $1\varphi = 1$, we obtain

$$(x\varphi)(a\varphi)(y\varphi)\mathcal{L}e\varphi\eta f\varphi\mathcal{L}g\varphi\eta h\varphi\mathcal{L}(x\varphi)(b\varphi)(y\varphi),$$

 $(x\varphi)(a\varphi)(y\varphi)\mathcal{R}e'\varphi\eta f'\varphi\mathcal{R}g'\varphi\eta h'\varphi\mathcal{R}(x\varphi)(b\varphi)(y\varphi)$

and thus

$$(x\varphi)(a\varphi)(y\varphi)\mathcal{L}\eta\mathcal{L}\eta\mathcal{L}\cap\mathcal{R}\eta\mathcal{R}\eta\mathcal{R}(x\varphi)(b\varphi)(y\varphi).$$

Since this holds for all $x, y \in (Q \setminus P) \cup \{1\}$ and φ maps $Q \setminus P$ onto S, we conclude that $a\varphi(\mathcal{L}\eta\mathcal{L}\eta\mathcal{L}\cap\mathcal{R}\eta\mathcal{R}\eta\mathcal{R})^0 b\varphi$ so that by Lemma 2.2 $a\varphi\sigma^T b\varphi$ and thus $a\overline{\sigma}b$. \Box

The next result provides a copy of the trace class of a congruence on V expressed by means of an admissible triple.

COROLLARY 4.4. Denote by \mathcal{AT} the set of all admissible triples and, for $(\sigma, P, \tau) \in \mathcal{AT}$, let

 $(\sigma, P, \tau)T = \{(\sigma', P', \tau') \in \mathscr{AT} \mid \mathscr{C}(\sigma', P', \tau')T\mathscr{C}(\sigma, P, \tau)\}.$

Then, for any $(\sigma, P, \tau) \in \mathcal{AT}$, we have

$$(\sigma, P, \tau)T = ([\sigma_T, \sigma^T] \times \{P\} \times [\tau_T, \tau^T \cap \bar{\sigma}]) \cap \mathscr{AT}.$$
(11)

Proof. Let $(\sigma', P', \tau') \in (\sigma, P, \tau)T$. Then

$$(\mathscr{C}(\sigma, P, \tau))_T \subseteq \mathscr{C}(\sigma', P', \tau') \subseteq (\mathscr{C}(\sigma, P, \tau))^T$$

which by Theorems 4.1 and 4.2 gives

$$\mathscr{C}(\sigma_T, P, \tau_T) \subseteq \mathscr{C}(\sigma', P', \tau') \subseteq \mathscr{C}(\sigma^T, P, \tau^T \cap \bar{\sigma})$$

which in turn implies that $\sigma_T \subseteq \sigma' \subseteq \sigma^T$, P = P' and $\tau_T \subseteq \tau' \subseteq \tau^T \cap \bar{\sigma}$. It follows that (σ', P', τ') is contained in the right hand side of (11). The proof of the converse follows essentially by reversing the steps above. \Box

5. The lower and upper ends of kernel classes. We continue with the hypothesis that V is a strict extension of S and characterize these ends including some special cases.

THEOREM 5.1. Let
$$v = \mathscr{C}(\sigma, P, \tau)$$
. Then $v_K = \mathscr{C}(\sigma_K, P', \tau')$ where

$$A = \{a \in P^* \mid a\varphi \in \ker \sigma\} \cup (\ker \tau)^*$$
(12)

and P' is the set of all a in Q^* for which there exists a sequence

$$a = x_1 u_1 y_1, x_1 v_1 y_1 = x_2 u_2 y_2, \dots, x_{n-1} v_{n-1} y_{n-1} = x_n u_n y_n$$
(13)

in Q^* , $x_n v_n y_n \in S$ with $x_i, y_i \in (Q^1)^*$ and

$$\{u_i, v_i\} = \{z_i, z_i^2\}, \quad z_i \in A \text{ for } i = 1, 2, \dots, n-1,$$

and for i = n, either the same condition or $v_n = u_n^2$, $u_n \in A$, $B = [A \cap (Q \setminus P')] \cup \{0\}$ and $\tau' = (\pi_B^{Q/P'})_K$.

Proof. Let $v_{\kappa} = \mathscr{C}(\xi, R, \eta)$. By Lemma 2.6, we have

$$\ker v = \ker \sigma \cup \{a \in P^* \mid a\varphi \in \ker \sigma\} \cup (\ker \tau)^*,$$

$$\ker v_{\kappa} = \ker \xi \cup \{a \in R^* \mid a\varphi \in \ker \xi\} \cup (\ker \eta)^*$$
(14)

and vKv_{κ} implies that ker $\sigma = \ker \xi$ and

$$A = \{a \in R^* \mid a\varphi \in \ker \sigma\} \cup (\ker \eta)^* = \ker \nu_K \cap Q^*.$$
(15)

The former implies that $\sigma K \xi$ whence $\sigma_K \subseteq \xi$.

Next let $a\xi b$. Then $av_{\kappa}b$ and thus there exists a sequence of the form

$$a = x_1 u_1 y_1, x_1 v_1 y_1 = x_2 u_2 v_2, \dots, x_n v_n y_n = b \text{ for some} x_i, y_i \in V^1, \{u_i, v_i\} = \{z_i, z_i^2\}, z_i \in \ker v \text{ for } i = 1, 2, \dots, n. \}$$
(16)

Then (16) implies that

$$a = (x_1\psi)(u_1\psi)(y_1\psi), (x_1\psi)(v_1\psi)(y_1\psi) = (x_2\psi)(u_2\psi)(v_2\psi), \dots, (x_n\psi)(v_n\psi)(y_nk) = b$$

with $\{u_i\psi, v_i\psi\} = \{z_i\psi, (z_i\psi)^2\}$, and in view of (14), $z_i\psi \in \ker \sigma$. Therefore $a\sigma_K b$ which implies that $\xi \subseteq \sigma_K$ and equality prevails.

Note that

$$R = \{a \in Q^* \mid av_{\mathcal{K}}b \text{ for some } b \in S\} \cup \{0\}.$$
(17)

227

First let $a \in P'$ with the notation as in the statement of the theorem. For i = 1, 2, ..., n, in view of (12) and (14), $z_i \in A$ implies that $z_i \in \ker v$ and $u_n \in A$ implies that $u_n \in \ker v$. Hence $av_k x_n v_n y_n \in S$ and thus (17) implies that $a \in R$. Therefore $P' \subseteq R$.

Conversely, let $a \in R^*$. In view of (17), there exists a sequence of the form (16) with $b \in S$. Since $a = x_1u_1y_1 \notin S$, there exists a least positive integer j such that $x_iu_iy_i \notin S$ for all $i \leq j$. Without loss of generality, we may assume that j = n - 1. We thus have arrived at a sequence in Q^* of the form (13). It follows that $x_i, y_i \in (Q^1)^*$ for i = 1, 2, ..., n. In view of (15), we also have $z_i \in A$ for i = 1, 2, ..., n - 1. For i = n, we have $\{u_n, v_n\} = \{z_n, z_n^2\}$ with $z_n \in \ker v$ and also $x_nu_ny_n \notin S$, $x_nv_ny_n \in S$. If $z_n^2 \in Q^*$, then $z_n \in Q^*$ and thus $z_n \in A$. Otherwise $z_n^2 \in S$ and we must have $v_n = z_n^2$ so that $u_n = z_n$ whence $v_n = u_n^2$ and $u_n \in A$. Therefore $a \in P'$. Consequently $R \subseteq P'$ and equality prevails.

Now let $a, b \in Q \setminus P'$. Assume first that $a\eta b$. Then avb and we have a sequence of the form (16). Here $z_i \in \ker v$ and since $a, b \in Q \setminus P'$, we must have, in view of (15), that

$$z_i \in \ker v \cap (Q \setminus P') = A \cap (Q \setminus P') = B^*.$$

In particular, $B = \ker \eta$ which in view of ([2, Theorem 2.13]) yields that $B = \ker \pi_B^{Q/P'}$. Now the sequence (16) where $z_i \in \ker \pi_B^{Q/P'}$ gives that $a(\pi_B^{Q/P'})_K b$, that is $a\tau' b$. Since η is 0-restricted, this shows that $\eta \subseteq \tau'$. Furthermore, $\ker \eta = B = \ker \pi_B^{Q/P'} = \ker \tau'$ so that $\tau' = \tau'_K \subseteq \eta$ and equality prevails. \Box

COROLLARY 5.2. Let $v = \mathscr{C}(\sigma, \{0\}, \tau)$. Then $v_{\kappa} = \mathscr{C}(\sigma_{\kappa}, \{0\}, \tau_{\kappa})$.

Proof. For $P = \{0\}$ in Theorem 5.1, we have $A = (\ker \tau)^*$ and $P' = \{0\}$ so that $B = \ker \tau$ and thus $\tau' = (\pi_{\ker \tau})_K = (\tau^K)_K = \tau_K$. \Box

COROLLARY 5.3. Assume that Q is categorical at zero. Let $v = \mathscr{C}(\sigma, P, \tau)$ and suppose that $a \in P^*$ and $a\varphi \in \ker \sigma$ imply that $a^2 \in Q^*$. Then in the notation of Theorem 5.1, $P' = \{0\}$ and $B = A \cup \{0\}$.

Proof. We adopt the notation of Theorem 5.1. Let $a \in P'^*$ and write x_n , u_n , v_n , y_n , z_n without subscripts. Then $xuy \neq 0$ in Q. Also $\{u, v\} = \{z, z^2\}$ with $z \in A \subseteq Q^*$. If $z \in (\ker \tau)^*$, then $z^2\tau z$ so that $z^2 \in Q \setminus P$. Assume that $z \in P^*$. Then $z\varphi \in \ker \sigma$ and the hypothesis implies that $z^2 \in Q^*$. If u = z, then $v = u^2$ and thus $xu \neq 0$, $uu \neq 0$ and $uy \neq 0$ which by categoricity at zero yields $xu^2y \neq 0$, that is $xvy \neq 0$. Otherwise $u = z^2$ which gives $v^2 = u$ whence $xv^2y \neq 0$ which by categoricity at zero yields $xvy \neq 0$. Therefore $P' = \{0\}$. Hence $B = (A \cap Q^*) \cup \{0\} = A \cup \{0\}$.

For a characterization of v^{κ} we need a preliminary result. Recall that J(a) denotes the principal ideal generated by a.

LEMMA 5.4. Let $R \subseteq Q^*$. Then

 $P = \{a \in Q^* \mid J(a) \cap R = \emptyset\} \cup \{0\}$

is the union of all ideals I of Q such that $I \cap R = \emptyset$.

Proof. Since $R \subseteq Q^*$, we have $\{0\} \cap R = \emptyset$ and hence there exists at least one ideal of Q disjoint from R. Let U be the union of all such ideals.

If $a \in P$, then $J(a) \cap R = \emptyset$ and thus $J(a) \subseteq U$ so that $a \in U$. Therefore $P \subseteq U$. Conversely, let $a \in U$. Then there exists an ideal J of V such that $a \in J$ and $J \cap R = \emptyset$. Since $J(a) \subseteq J$, it follows that $J(a) \cap R = \emptyset$ and thus $a \in P$. Therefore $U \subseteq P$ and equality prevails. \Box THEOREM 5.5. Let $v = \mathscr{C}(\sigma, P, \tau)$. Then $v^{K} = \mathscr{C}(\sigma^{K}, P', \tau')$ where

$$\begin{aligned} R &= \{ a \in Q \setminus \ker \tau \mid a\varphi \in \ker \sigma \}, \\ P' &= \{ a \in Q^* \mid J(a) \cap R = \emptyset \} \cup P, \\ a\hat{\sigma}b \text{ if } a, b \in Q \setminus P', a\varphi\sigma^K b\varphi, 0\hat{\sigma}0, \\ \eta &= (\tau|_{Q \setminus P'}) \cup \{(0,0)\}, \quad \tau' = \eta^K \cap \hat{\sigma} \cap \zeta_{O/P'}. \end{aligned}$$

Proof. 1. P' is an ideal of Q by Lemma 5.4.

2. τ saturates $P' \setminus P$. Indeed, let $a\tau b$ with $a \in Q \setminus P$ and $b \in P' \setminus P$. Hence $J(b) \cap R = \emptyset$ and thus, for every $x, y \in Q^1$, $xby \notin R$. We wish to show that $xay \notin R$. If $xby \in \ker \tau$, then $xay\tau xby$ implies that $xay \in \ker \tau$ and thus $xay \notin R$. Otherwise, $xby \notin \ker \tau$. Since $xby \notin R$, we must have $(xby)\varphi \notin \ker \tau$. The hypothesis $a\tau b$ implies that $a\varphi \sigma b\varphi$ by Lemma 2.5. Hence $(xay)\varphi\sigma(xby)\varphi$ and thus $(xay)\varphi \notin \ker \sigma$. Also $xby \notin \ker \tau$ implies that $xay \notin \ker \tau$. Therefore again $xay \notin R$. Consequently $a \in P'$ and thus τ saturates $P' \setminus P$.

3. τ saturates $Q \setminus P'$ and $\eta \in \mathcal{C}_0(Q/P')$. The first assertion follows from part 2 and the fact that τ saturates $Q \setminus P$. The second assertion is a consequence of the first.

4. $\tau' \in \mathscr{C}_0(Q/P')$. Let $a, b, c \in Q \setminus P'$ be such that $a\tau'b$ and $ac \in Q \setminus P'$. Then $a\zeta_{Q/P'}b$ implies that $ac\zeta_{Q/P'}bc$ and thus $bc \neq 0$ in Q/P', that is $bc \in Q \setminus P'$, since $\zeta_{Q/P'}$ is 0-restricted. In addition $a\eta^K b$ implies that $ac\eta^K bc$. Finally, $a\varphi\sigma^K b\varphi$ implies $(ac)\varphi = (a\varphi)(c\varphi)\sigma^K(b\varphi)(c\varphi) = (bc)\varphi$. Therefore $ac\tau'bc$. By symmetry, $bc \neq 0$ in Q/P' implies $ac \neq 0$ and the same conclusion is reached. Hence τ' is a right congruence and, by duality, it is a congruence. Since $\tau' \subseteq \zeta_{Q/P'}$ (or $\tau \subseteq \hat{\sigma}$), τ' is 0-restricted.

5. $(\sigma^{\kappa}, P', \tau')$ is an admissible triple. Indeed, let $a, b \in Q \setminus P'$ be such that $a\tau'b$. Then aôb which yields $a\varphi\sigma^{\kappa}b\varphi$. The assertion now follows by Lemma 2.5. Let $\theta = \mathscr{C}(\sigma^{\kappa}, P', \tau')$.

6. $vK\theta$. By Lemma 2.6, we have

$$\ker v = \ker \sigma \cup \{a \in P^* \mid a\varphi \in \ker \sigma\} \cup (\ker \tau)^*,$$

$$\ker \theta = \ker \sigma^K \cup \{a \in P'^* \mid a\varphi \in \ker \sigma^K\} \cup (\ker \tau')^*.$$
(18)

In order to prove that ker $v = \ker \theta$, we let $a \in V$ and consider the following cases.

- (i) $a \in S : a \in \ker v \Leftrightarrow a \in \ker \sigma \Leftrightarrow a \in \ker \sigma^{\kappa} \Leftrightarrow a \in \ker \theta$.
- (ii) $a \in P \setminus S : a \in \ker v \Leftrightarrow a\varphi \in \ker \sigma \Leftrightarrow a\varphi \in \ker \sigma^{\kappa} \Leftrightarrow a \in \ker \theta$.
- (iii) $a \in P' \setminus P$: If $a \in (\ker \tau)^*$, then $a\tau e$ from $e \in E(Q \setminus P)$ which by Lemma 2.5 yields $a\varphi \sigma e\varphi$ and thus $a\varphi \in \ker \sigma$. Hence

 $a \in \ker v \Rightarrow a \in \ker \tau \Rightarrow a\varphi \in \ker \sigma \Rightarrow a\varphi \in \ker \sigma^{\kappa} \Rightarrow a \in \ker \theta.$

For the converse, we first note that $a \in P'$ implies $a \notin R$ and thus either $a \in \ker \tau$ or $a\varphi \notin \ker \sigma$. Hence the above sequence of implications can be reversed.

(iv) $a \in Q \setminus P'$: First note that

 $a \in \ker \theta \Leftrightarrow a \in \ker \tau'$ $\Leftrightarrow a \in \ker \eta^{\kappa}, a \hat{\sigma} a^{2}, a \in \ker \zeta_{Q/P'}$ $\Leftrightarrow a \in \ker \eta, a \varphi \sigma^{\kappa} a^{2} \varphi, a \in \ker \zeta_{Q/P'}$ $\Leftrightarrow a \in \ker \tau, a \varphi \sigma a^{2} \varphi, a \in \ker \zeta_{Q/P'}$ $\Leftrightarrow a \tau a^{2}, a \varphi \sigma a^{2} \varphi, a \zeta_{O/P'} a^{2}.$ (19)

Assume that $a\tau a^2$. By Lemma 2.5, we have $a\varphi\sigma a^2\varphi$. For any $x, y \in (O/P')^1$, we have xav $\tau xa^2 y$. By part 3, τ saturates $O \setminus P'$ which then implies that $xay \neq 0$ if and only if $xa^2y \neq 0$ in O/P'. Therefore $a\zeta_{O/P'}a^2$. Now (19) implies that

$$a \in \ker v \Leftrightarrow a \in \ker \tau \Leftrightarrow a \in \ker \tau' \Leftrightarrow a \in \ker \theta.$$

Therefore ker $v = \ker \theta$.

7. If $v_1 K v_2$, then $v_1 \subseteq \theta$. Let $v_1 = \mathscr{C}(\sigma_1, P_1, \tau_1)$ and assume that $v_1 K v_2$. By Lemma 2.6, we have

$$\ker v_1 = \ker \sigma_1 \cup \{a \in P_1^* \mid a\varphi \in \ker \sigma_1\} \cup (\ker \tau_1)^*$$

which, together with (18), by hypothesis gives ker $\sigma_1 = \ker \sigma$ and

$$\{a \in P_1^* \mid a\varphi \in \ker \sigma_1\} \cup (\ker \tau_1)^* = \{a \in P^* \mid a\varphi \in \ker \sigma\} \cup (\ker \tau)^*.$$
(20)

It follows that $\sigma_1 K \sigma$ and hence $\sigma_1 \subseteq \sigma^K$. In order to prove that $v_1 \subseteq \theta$, by Lemma 2.3, it remains to show that

$$P_1 \subseteq P', \quad \tau_1 \text{ saturates } P' \setminus P_1, \quad \tau_1 |_{Q \setminus P'} \subseteq \tau' |_{Q \setminus P'}.$$
 (21)

Let $a \in R \cap P_1$. Then $a \notin \ker \tau$, $a\varphi \in \ker \sigma$ and $a \in P_1^*$. The last two conditions imply that a is in the left hand side of (20). But the first two conditions imply that a is not in the right hand side of (20). This being impossible, we conclude that $R \cap P_1 = \emptyset$. By Lemma 5.4, P' is the greatest ideal of O which is disjoint from R and thus $P_1 \subset P'$. This establishes the first condition in (21).

In order to prove the second condition in (21), we let

$$A = \{a \in Q \setminus P_1 \mid a\tau_1 b \text{ for some } b \in P' \setminus P_1\} \cup P_1.$$

We show next that A is an ideal of Q. Indeed, let $a \in A^*$ and $c \in Q \setminus P_1$ be such that $ac \notin P_1$. There exists $b \in P' \setminus P_1$ such that $a\tau_1 b$ by the definition of A. Hence $ac\tau_1 bc$ whence $bc \notin P_1$ since τ_1 is 0-restricted. Thus $bc \in P' \setminus P_1$ which yields $ac \in A^*$. By duality and since P_1 is an ideal of Q, we conclude that A is an ideal of Q.

Now assume that $a \in A \cap R$. We have seen above that $P_1 \cap R = \emptyset$. Hence $a \in A \setminus P_1$ and there exists $b \in P' \setminus P_1$ such that $a\tau_1 b$. Further, $a \in R$ implies that $a \notin \ker \tau$ and $a\varphi \in \ker \sigma$. Since $a\tau_1 b$, by Lemma 2.5 we get $a\varphi \sigma_1 b\varphi$; also $a\varphi \in \ker \sigma$ implies $a\varphi \in \ker \sigma_1$ whence $b\varphi \in \ker \sigma_1$. Hence $b\varphi \in \ker \sigma$ and since $b \in P'$, we also have that $b \notin R$. But then $b \in \ker \tau$ by the definition of R. By (20), $a \notin \ker \tau$ implies $a \notin \ker \tau_1$, and $b \in \ker \tau$ implies that $b \in \ker \tau_1$. This is incompatible with $a\tau_1 b$. Therefore $A \cap R = \emptyset$.

We have proved that A is an ideal of Q disjoint from R which by Lemma 5.4 gives that $A \subseteq P'$. It follows that τ_1 saturates $P' \setminus P_1$.

It remains to establish the last condition in (21). Since τ_1 saturates both $Q \setminus P_1$ and $P' \setminus P_1$, it also saturates $Q \setminus P'$. Letting $\tau_2 = (\tau_1|_{O \setminus P'}) \cup \{(0,0)\}$, we get $\tau_2 \in \mathscr{C}_0(Q/P')$. Now condition (20) yields that $\tau_2 K \tau$ which implies that $\tau_2 \subseteq \tau^K$. Let $a, b \in Q \setminus P'$ be such that $a\tau_1 b$. Then $a\tau_2 b$ and thus $a\tau^K b$. Also $a\tau_1 b$ implies that $a\varphi\sigma_1 b\varphi$ whence $a\varphi\sigma^K b\varphi$ since $\sigma_1 \subseteq \sigma^K$, and thus $a\hat{\sigma}b$. Since $\tau_2 \in \mathscr{C}_0(Q/P')$ and $\zeta_{O/P'}$ is the greatest 0-restricted congruence on Q/P', we get $\tau_2 \subseteq \zeta_{O/P'}$. In particular, $a \xi_{O/P'} b$. We have proved that $a \tau' b$ which shows that $\tau_1|_{O\setminus P'} \subseteq \tau'|_{O\setminus P'}$.

This completes the verification of the requirements in Lemma 2.3 for the inclusion $v_1 \subseteq \theta$. Therefore θ has the required maximality so that $\theta = v^K$. \Box

230

REGULAR SEMIGROUPS

REFERENCES

1. J. M. Howie, An introduction to semigroup theory (Academic Press, 1976).

2. F. Pastijn and M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc. 295 (1986), 607-633.

3. M. Petrich, Congruences on extensions of semigroups, Duke Math. J. 34 (1967), 215-224.

4. M. Petrich, The congruence lattice of an ideal extension of semigroups, Glasgow Math. J.
35 (1993), 39-50.

Department of Mathematics University of Western Ontario London, Ontario Canada N6A 5B7