HARISH-CHANDRA MODULES OVER THE \mathbb{Q} HEISENBERG-VIRASORO ALGEBRA

XIANGQIAN GUO ${ }^{\boxtimes}$, XUEWEN LIU and KAIMING ZHAO

(Received 28 July 2009; accepted 6 June 2010)

Communicated by J. Du

Abstract

In this paper, it is proved that all irreducible Harish-Chandra modules over the \mathbb{Q} Heisenberg-Virasoro algebra are of the intermediate series (all weight spaces are at most one-dimensional).

2000 Mathematics subject classification: primary 17B10; secondary 17B65, 17B68, 17B70.
Keywords and phrases: Virasoro algebra, \mathbb{Q} Heisenberg-Virasoro algebra, modules of the intermediate series.

1. Introduction

The Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one. It contains the classical Heisenberg algebra and the Virasoro algebra as subalgebras. The structure of their irreducible highest weight modules was studied in [1, 3]. Irreducible Harish-Chandra modules over the Heisenberg-Virasoro algebra were classified in [13]. They are either highest weight modules, lowest weight modules, or modules of the intermediate series. The representation theory of the Heisenberg-Virasoro algebra is closely related to those of other Lie algebras, such as the Virasoro algebra and toroidal Lie algebras, see $[4,5,8]$. For other results on Heisenberg-Virasoro algebras, see [11, 16] and the references therein.

Recently, some authors have introduced generalized Heisenberg-Virasoro algebras and started to study their representations (see [12, 17]). In this paper, we give the classification of irreducible Harish-Chandra modules over the \mathbb{Q} Heisenberg-Virasoro algebra. As in the \mathbb{Q} Virasoro algebra case [15], only modules of the intermediate series appear. The main ideas in our proof (Lemma 3.1) are similar to those of [15] and [6].

[^0]In this paper we denote by \mathbb{Z}, \mathbb{Q}, and \mathbb{C} the sets of integers, rational numbers and complex numbers, respectively. Now we give the definitions of the generalized Heisenberg-Virasoro algebras and the \mathbb{Q} Heisenberg-Virasoro algebra.

Definition 1.1. Suppose that G is an additive subgroup of \mathbb{C}. The generalized Heisenberg-Virasoro algebra $\mathrm{HVir}[G]$ is the Lie algebra over \mathbb{C} with a basis

$$
\left\{d_{g}, I(g), C_{D}, C_{D I}, C_{I} \mid g \in G\right\}
$$

subject to the Lie brackets given by

$$
\begin{gathered}
{\left[d_{g}, d_{h}\right]=(h-g) d_{g+h}+\delta_{g,-h} \frac{g^{3}-g}{12} C_{D},} \\
{\left[d_{g}, I(h)\right]=h I(g+h)+\delta_{g,-h}\left(g^{2}+g\right) C_{D I},} \\
{[I(g), I(h)]=g \delta_{g,-h} C_{I},} \\
{\left[\operatorname{HVir}[G], C_{D}\right]=\left[\operatorname{HVir}[G], C_{D I}\right]=\left[\operatorname{HVir}[G], C_{I}\right]=0 .}
\end{gathered}
$$

It is easy to see that $\operatorname{HVir}[G] \simeq \operatorname{HVir}\left[G^{\prime}\right]$ if and only if there exists a nonzero $a \in \mathbb{C}$ such that $G=a G^{\prime}$. If $G=\mathbb{Z}$, then $\operatorname{HVir}[\mathbb{Z}]=$ HVir is the classical HeisenbergVirasoro algebra. When $G=\mathbb{Q}$, we call $\operatorname{HVir}[\mathbb{Q}]$ the \mathbb{Q} Heisenberg-Virasoro algebra; this is the main object of this paper. An $\mathrm{HVir}[G]$ module V is said to be trivial if $\operatorname{HVir}[G] V=0$, and we denote the one-dimensional trivial module by T.

The modules of the intermediate series $V(\alpha, \beta ; F)$ over $\mathrm{HVir}[G]$ are defined as follows, for all $\alpha, \beta, F \in \mathbb{C}$. As a vector space over \mathbb{C}, the space $V(\alpha, \beta ; F)$ has a basis $\left\{v_{g} \mid g \in G\right\}$ and the actions are

$$
\begin{gather*}
d_{g} v_{h}=(\alpha+h+g \beta) v_{g+h}, \quad I(g) v_{h}=F v_{g+h}, \tag{1.1}\\
C_{D} v_{g}=0, \quad C_{I} v_{g}=0, \quad C_{D I} v_{g}=0 \quad \forall g, h \in G \tag{1.2}
\end{gather*}
$$

It is well known that $V(\alpha, \beta ; F) \cong V(\alpha+g, \beta ; F)$ for all $\alpha, \beta, F \in \mathbb{C}$ and $g \in G$. So we always assume that $\alpha=0$ when $\alpha \in G$. It is also easy to see that $V(\alpha, \beta ; F)$ is reducible if and only if $F=0, \alpha=0$, and $\beta \in\{0,1\}$. The module $V(0,0 ; 0)$ has a one-dimensional submodule T and $V(0,0 ; 0) / T$ is irreducible; $V(0,1 ; 0)$ has a codimension one irreducible submodule. We denote the unique nontrivial irreducible subquotient of $V(\alpha, \beta ; F)$ by $V^{\prime}(\alpha, \beta ; F)$. It is easy to see that $V^{\prime}(0,0 ; 0) \cong$ $V^{\prime}(0,1 ; 0)$.

REMARK 1.2 . When $F \neq 0$, it is not hard to verify that $V(\alpha, \beta ; F) \cong V\left(\alpha^{\prime}, \beta^{\prime} ; F^{\prime}\right)$ if and only if $\alpha-\alpha^{\prime} \in G$ and $(\beta, F)=\left(\beta^{\prime}, F^{\prime}\right)$.

Here is our main theorem.
THEOREM 1.3. Suppose that V is an irreducible nontrivial Harish-Chandra module over $\operatorname{HVir}[\mathbb{Q}]$. Then V is isomorphic to $V^{\prime}(\alpha, \beta ; F)$ for suitable $\alpha, \beta, F \in \mathbb{C}$.

This paper is organized as follows. In Section 2, we collect some known results on the Virasoro algebra and on the Heisenberg-Virasoro algebra for later use. In Section 3, we give the proof of the main theorem.

2. Preliminaries

Since generalized Heisenberg-Virasoro algebras are closely related to generalized Virasoro algebras, we first recall some results on generalized Virasoro algebras.
Definition 2.1. Let G be a nonzero additive subgroup of \mathbb{C}. The generalized Virasoro algebra $\operatorname{Vir}[G]$ is a Lie algebra over \mathbb{C} with a basis $\left\{d_{g}, C_{D} \mid g \in G\right\}$ and is subject to the Lie brackets given by

$$
\left[d_{g}, d_{h}\right]=(h-g) d_{g+h}+\delta_{g,-h} \frac{g^{3}-g}{12} C_{D}, \quad\left[\operatorname{Vir}[G], C_{D}\right]=0 .
$$

Notice that $\operatorname{Vir}[G]$ is a subalgebra of $\operatorname{HVir}[G]$. If $G=\mathbb{Z}$, then $\operatorname{Vir}[\mathbb{Z}]=\operatorname{Vir}$ is the classical Virasoro algebra and if $G=\mathbb{Q}$, then $\operatorname{Vir}[\mathbb{Q}]$ is called the \mathbb{Q} Virasoro algebra.

A module of the intermediate series $V(\alpha, \beta)$ has a \mathbb{C}-basis $\left\{v_{g} \mid g \in G\right\}$ and the Vir-actions are

$$
d_{g} v_{h}=(\alpha+h+g \beta) v_{g+h}, \quad C_{D} v_{g}=0 \quad \forall g, h \in G .
$$

It is well known that $V(\alpha, \beta)$ is reducible if and only if $\alpha \in G$ and $\beta \in\{0,1\}$. The unique nontrivial irreducible subquotient of $V(\alpha, \beta)$ is denoted by $V^{\prime}(\alpha, \beta)$. It is also known that $V(\alpha, \beta) \cong V(\alpha+g, \beta)$ for all $\alpha, \beta \in \mathbb{C}$ and all $g \in G$. So we always assume that $\alpha=0$ if $\alpha \in G$.

Mazorchuk [15] classified irreducible Harish-Chandra modules over Vir[Q]].
THEOREM 2.2. Every irreducible Harish-Chandra module over Vir[Q] is isomorphic to $V^{\prime}(\alpha, \beta)$ for suitable $\alpha, \beta \in \mathbb{C}$.

Now we consider the \mathbb{Q} Heisenberg-Virasoro algebra HVir[$\mathbb{Q}]$, which contains the classical Heisenberg-Virasoro algebra $\mathrm{HVir}[\mathbb{Z}]=$ HVir. The classification of irreducible Harish-Chandra modules over HVir was given in [13].
Theorem 2.3. Any irreducible Harish-Chandra module over HVir is isomorphic to either a highest weight module, a lowest weight module, or $V^{\prime}(\alpha, \beta ; F)$ for suitable $\alpha, \beta, F \in \mathbb{C}$.

3. Proof of Theorem 1.3

We decompose \mathbb{Q} as the union of a series of rings $\mathbb{Q}_{k}=\{n / k!\mid n \in \mathbb{Z}\}$, where $k \in \mathbb{N}$. Then we can view each $\operatorname{HVir}\left[\mathbb{Q}_{k}\right]$ as a subalgebra of $\operatorname{HVir}[\mathbb{Q}]$ naturally, and thus $\operatorname{HVir}[\mathbb{Q}]=\bigcup_{k \in \mathbb{N}} \operatorname{HVir}\left[\mathbb{Q}_{k}\right]$. Clearly, $\operatorname{HVir}\left[\mathbb{Q}_{k}\right] \simeq \mathrm{HVir}$ for all $k \in \mathbb{N}$. For convenience, we write $U(\mathbb{Q})=U(\operatorname{HVir}[\mathbb{Q}])$ and $U\left(\mathbb{Q}_{k}\right)=U\left(\operatorname{HVir}\left[\mathbb{Q}_{k}\right]\right)$. Denote $U(\mathbb{Q})_{q}=\left\{u \in U(\mathbb{Q}) \mid\left[d_{0}, u\right]=q u\right\}$ and $U\left(\mathbb{Q}_{k}\right)_{q}=\left\{u \in U\left(\mathbb{Q}_{k}\right) \mid\left[d_{0}, u\right]=q u\right\}$, for all $q \in \mathbb{Q}$.

Lemma 3.1. Suppose that N is a finite-dimensional irreducible $U(\mathbb{Q})_{0}$-module; then there exists $k \in \mathbb{N}$ such that N is an irreducible $U\left(\mathbb{Q}_{k}\right)_{0}$-module.

Proof. There is an associative algebra homomorphism $\Phi: U(\mathbb{Q})_{0} \rightarrow \operatorname{gl}(N)$, where $\mathrm{gl}(N)$ is the general linear associative algebra of N.

Since N and hence $\operatorname{gl}(N)$ are both finite-dimensional, $U(\mathbb{Q})_{0} / \operatorname{ker}(\Phi)$ is finitedimensional. Take $y_{1}, y_{2}, \ldots, y_{m} \in U(\mathbb{Q})_{0}$ such that $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{m}}$ form a basis of $U(\mathbb{Q})_{0} / \operatorname{ker}(\Phi)$. Then there exists $k \in \mathbb{N}$ such that $y_{1}, y_{2}, \ldots, y_{m}$ are all in $U\left(\mathbb{Q}_{k}\right)_{0}$.

We claim that N is an irreducible $U\left(\mathbb{Q}_{k}\right)_{0}$-module. Let M be a proper $U\left(\mathbb{Q}_{k}\right)_{0^{-}}$ submodule of N. For all $y \in U(\mathbb{Q})_{0}$, there exist $y_{0} \in \operatorname{ker}(\Phi)$ and $a_{i} \in \mathbb{C}$ such that $y=y_{0}+\sum_{i=1}^{m} a_{i} y_{i}$. Thus

$$
y M=\left(y_{0}+\sum_{i=1}^{m} a_{i} y_{i}\right) M \subseteq\left(\sum a_{i} y_{i}\right) M \subseteq M
$$

that is, M is a $U(\mathbb{Q})_{0}$-submodule of N, which forces $M=0$. Thus N is irreducible over $U\left(\mathbb{Q}_{k}\right)_{0}$.

Now we fix a nontrivial irreducible Harish-Chandra module V over HVir[$\mathbb{Q}]$. Then there exists $\alpha \in \mathbb{C}$ such that $V=\bigoplus_{q \in \mathbb{Q}} V_{q}$, where $V_{q}=\left\{v \in V \mid d_{0} v=(\alpha+q) v\right\}$. We define the support of V as $\operatorname{supp} V=\left\{q \in \mathbb{Q} \mid V_{q} \neq 0\right\}$.
Lemma 3.2. supp $V=\mathbb{Q}$ or $\mathbb{Q} \backslash\{-\alpha\}$ and $\operatorname{dim} V_{q}=1$ for all $q \in \operatorname{supp} V$.
Proof. First view V as a $\operatorname{Vir}[\mathbb{Q}]$ module; by Theorem 2.2, $\operatorname{dim} V_{p}=\operatorname{dim} V_{q}$ for all $p, q \in \mathbb{Q} \backslash\{-\alpha\}$. In particular, V is a uniformly bounded module, that is, the dimensions of all weight spaces are bounded by a positive integer.

Suppose that $\operatorname{dim} V_{q}>1$ for some $q \in \operatorname{supp} V$. Then it is easy to see that V_{q} is an irreducible $U[\mathbb{Q}]_{0}$-module. By Lemma 3.1, there is some $k \in \mathbb{N}$ such that V_{q} is an irreducible $U\left(Q_{k}\right)_{0}$-module.

We consider the $\operatorname{HVir}\left[\mathbb{Q}_{k}\right]$-module $W=U\left(\mathbb{Q}_{k}\right) V_{q}$, which is uniformly bounded. Then, by Theorem 2.3, there is a composition series of $\mathrm{HVir}\left[\mathbb{Q}_{k}\right]$-modules, namely,

$$
0=W^{(0)} \subset W^{(1)} \subset W^{(2)} \subset \cdots \subset W^{(m)}=W
$$

Each factor $W^{(i)} / W^{(i-1)}$ is either trivial or of the intermediate series, and in both cases all weight spaces are one-dimensional.

Take the first i such that $\operatorname{dim} W_{q}^{(i)} \neq 0$. Then $\operatorname{dim} W_{q}^{(i)}=\operatorname{dim}\left(W^{(i)} / W^{(i-1)}\right)_{q}=1$. But, on the other hand, $W_{q}^{(i)}$ is a $U\left(\mathbb{Q}_{k}\right)_{0}$-module, that is, a nontrivial proper $U\left(\mathbb{Q}_{k}\right)_{0^{-}}$ submodule of V_{q}. This is a contradiction, so $\operatorname{dim} V_{q}=1$ for all $q \in \operatorname{supp} V$.

Since V is nontrivial, there exists $q \in \operatorname{supp} V \backslash\{-\alpha\}$. Our result follows since $\operatorname{dim} V_{p}=\operatorname{dim} V_{q}=1$ for all $p \in \mathbb{Q} \backslash\{-\alpha\}$.

Now we can give the proof of our main theorem.
Proof of Theorem 1.3. By Lemma 3.2, we know that supp $V=\mathbb{Q}$ for some $\alpha \in \mathbb{C}$ or supp $V=\mathbb{Q} \backslash\{-\alpha\}$. Denote $V^{(0)}=0$ and $V^{(k)}=\bigoplus_{q \in \mathbb{Q}_{k}} V_{q}$ for all $k \geq 1$. Then $\operatorname{supp} V^{(k)}=\left\{q \in \mathbb{Q} \mid V_{q}^{(k)} \neq 0\right\}=\operatorname{supp} V \cap \mathbb{Q}_{k}$ for all $k \geq 1$. There is a vector space filtration of V, namely,

$$
0=V^{(0)} \subset V^{(1)} \subset V^{(2)} \subset \cdots \subset V^{(k)} \subset \cdots \subset V \quad \text { and } \quad V=\bigcup_{k=0}^{\infty} V^{(k)}
$$

It is clear that each $V^{(k)}$ can be viewed as an $\operatorname{HVir}\left[\mathbb{Q}_{k}\right]$-module, and each $\operatorname{HVir}\left[\mathbb{Q}_{k}\right]$ is isomorphic to HVir.

If $-\alpha \notin \operatorname{supp} V$, then each $V^{(k)}$ is irreducible over $\operatorname{HVir}\left[\mathbb{Q}_{k}\right]$ when $k \in \mathbb{Z}$, by Lemma 3.2 and Theorem 2.3.

If $-\alpha \in \operatorname{supp} V$, then $\alpha=0$ by assumption. Since V is an irreducible $\operatorname{HVir}[\mathbb{Q}]-$ module, there exists $p \in \mathbb{Q} \backslash\{0\}$ such that $u_{p} \in U(\operatorname{HVir}[\mathbb{Q}])_{p}$ and $u_{p} V_{0}=V_{p}$, as well as $q \in \mathbb{Q} \backslash\{0\}$ such that $u_{q} \in U(\operatorname{HVir}[\mathbb{Q}])_{q}$ and $u_{q} V_{-q}=V_{0}$. Then there exists k_{0} such that $u_{p}, u_{q} \in U\left(\operatorname{HVir}\left[\mathbb{Q}_{k_{0}}\right]\right)$, and thus $V^{\left(k_{0}\right)}$ is irreducible as an $\operatorname{HVir}\left[\mathbb{Q}_{k_{0}}\right]$-module.

Now $V^{\left(k_{0}\right)}$ is irreducible over $\operatorname{HVir}\left[\mathbb{Q}_{k_{0}}\right]$, and so $V^{(k)}$ is irreducible over $\operatorname{HVir}\left[\mathbb{Q}_{k}\right]$ whenever $k \geq k_{0}$. By Theorem 2.3, we see that $C_{D} V=C_{I} V=C_{D I} V=0$, that $I(0)$ acts as a scalar $F \in \mathbb{C}$, and that there exist $\alpha_{k}, \beta_{k} \in \mathbb{C}$ such that $V^{(k)} \cong V^{\prime}\left(\alpha_{k}, \beta_{k} ; F\right)$ as modules over $\operatorname{HVir}\left[\mathbb{Q}_{k}\right]$ (defined by (1.5) and (1.6) with $G=\mathbb{Q}_{k}$) when $k \geq k_{0}$. Write $\alpha=\alpha_{k_{0}}$ and $\beta=\beta_{k_{0}}$ for short.

If $F=0, V$ is an irreducible $\operatorname{Vir}(\mathbb{Q})$-module and $I(p) V=0$ for all $p \in \mathbb{Q}$. Theorem 1.3 follows from Theorem 2.2. Next we assume that $F \neq 0$.

Now we need to prove that $V \cong V^{\prime}(\alpha, \beta ; F)$ as modules over $\operatorname{HVir}[\mathbb{Q}]$, that is, we can choose a basis of V such that (1.1) and (1.2) hold. We proceed by choosing a basis of each $V^{(k)}$ inductively, such that (1.1) and (1.2) hold when one only considers the actions of $\operatorname{HVir}\left[\mathbb{Q}_{k}\right]$, and that the basis of each $V^{(k+1)}$ is the extension of the basis of $V^{(k)}$ for all $k \geq k_{0}$.

Naturally, there is such a basis for $V^{\left(k_{0}\right)}$. Now suppose that $m>k_{0}$ and that we have found such bases for $V^{(k)}$ whenever $k_{0} \leq k \leq m-1$. In particular, there is a basis $\left\{v_{q} \in V_{q} \mid q \in \operatorname{supp} V^{(m-1)}\right\}$ with the property that $d_{p} v_{q}=(\alpha+q+p \beta) v_{p+q}$ and $I(p) v_{q}=F v_{p+q}$ for all $p, q \in \operatorname{supp} V^{(m-1)}$. Now we consider $V^{(m)}$.

Let Φ be the canonical isomorphism $\mathrm{HVir} \rightarrow \operatorname{HVir}\left[\mathbb{Q}_{m}\right]$ given by $\Phi\left(d_{n}\right)=m!d_{n / m}$! and $\Phi(I(n))=m!I(n / m!)$ for all $n \in \mathbb{Z}$. Then $V^{(m)}$ can be viewed as an HVir module via Φ and is isomorphic to $V\left(\alpha^{\prime}, \beta^{\prime} ; F^{\prime}\right)$ as modules over HVir for suitable $\alpha^{\prime}, \beta^{\prime}, F^{\prime} \in \mathbb{C}$, by Theorem 2.3. Then there is a basis $\left\{v_{q}^{\prime} \mid q \in \operatorname{supp} V^{(m)}\right\}$ of $V^{(m)}$ such that, for all $i / m!, k / m!\in \operatorname{supp} V^{(m)}$,

$$
\left(m!d_{i / m!}\right) v_{k / m!}^{\prime}=\left(\alpha^{\prime}+k+i \beta^{\prime}\right) v_{(k+i) / m!}^{\prime}, \quad(m!I(i / m!)) v_{k / m!}^{\prime}=F^{\prime} v_{(k+i) / m!}^{\prime}
$$

That is,

$$
d_{i / m!} v_{k / m!}^{\prime}=\left(\frac{\alpha^{\prime}}{m!}+\frac{k}{m!}+\frac{i}{m!} \beta^{\prime}\right) v_{(k+i) / m!}^{\prime}, \quad I(i / m!) v_{k / m!}^{\prime}=\frac{F^{\prime}}{m!} v_{(k+i) / m!}^{\prime}
$$

or equivalently,

$$
d_{p} v_{q}^{\prime}=\left(\frac{\alpha^{\prime}}{m!}+q+p \beta^{\prime}\right) v_{p+q}^{\prime}, \quad I(p) v_{q}^{\prime}=\frac{F^{\prime}}{m!} v_{p+q}^{\prime} \quad \forall p, q \in \operatorname{supp} V^{(m)}
$$

We take $p=0$ and $q \in \operatorname{supp} V^{(m-1)} \subset \operatorname{supp} V^{(m)}$, and then $d_{0} v_{q}^{\prime}=\left(\alpha^{\prime} / m!+q\right) v_{q}^{\prime}$ and $I(0) v_{q}^{\prime}=\left(F^{\prime} / m!\right) v_{q}^{\prime}$, which shows that $\alpha^{\prime}=m!\alpha$ and $F^{\prime}=m!F$.

Assume that $v_{q}^{\prime}=c_{q} v_{q}$ for all $q \in \operatorname{supp} V^{(m-1)}$. Compare $I(p) v_{q}^{\prime}=F v_{p+q}^{\prime}$ and $I(p) v_{q}=F v_{p+q}$. We see that c_{p} is independent of p. Then we may choose $v_{p}^{\prime}=v_{p}$ for all $p \in \operatorname{supp} V^{(m-1)}$. By the remark in Section 1 we see that $\beta^{\prime}=\beta$. Denote $v_{q}=v_{q}^{\prime}$ for all $q \in \operatorname{supp} V^{(m)} \backslash \operatorname{supp} V^{(m-1)}$. Thus the basis $\left\{v_{q} \mid q \in \operatorname{supp} V^{(m)}\right\}$ is an extension of $\left\{v_{p} \mid p \in \operatorname{supp} V^{(m-1)}\right\}$ such that $d_{p} v_{q}=(\alpha+q+p \beta) v_{p+q}$ and $I(p) v_{q}=F v_{p+q}$ for all $p, q \in \operatorname{supp} V^{(m)}$.

By induction, we can produce a basis $\left\{v_{q} \mid q \in \operatorname{supp} V\right\}$ for V such that $d_{p} v_{q}=(\alpha+q+p \beta) v_{p+q}$ and $I(p) v_{q}=F v_{p+q}$ for all $p, q \in \operatorname{supp} V$ and further $C_{D} V=C_{I} V=C_{D I} V=0$. That is, $V \cong V^{\prime}(\alpha, \beta ; F)$. This completes the proof.

Recall from [10] that the rank of an additive subgroup G of \mathbb{C}, denoted by $\operatorname{rank}(G)$, is the maximal number r for which we can find $g_{1}, \ldots, g_{r} \in G \backslash\{0\}$ such that $\mathbb{Z} g_{1}+\cdots+\mathbb{Z} g_{r}$ is a direct sum. If such an r does not exist, then we define $\operatorname{rank}(G)=\infty$.

Now we can see that the proof of Theorem 1.3 is also valid when G is an infinitely generated additive subgroup of \mathbb{C} of rank one. Thus we have the following result.
THEOREM 3.3. Let G be an infinitely generated additive subgroup of \mathbb{C} of rank one. Then any nontrivial irreducible Harish-Chandra module over $\mathrm{HVir}[G]$ is isomorphic to $V^{\prime}(\alpha, \beta ; F)$ for suitable $\alpha, \beta, F \in \mathbb{C}$.

Acknowledgements

The authors are grateful to the referee and the editor for valuable suggestions to make the paper more readable.

References

[1] E. Arbarello, C. De Concini, V. G. Kac and C. Procesi, 'Moduli spaces of curves and representation theory', Comm. Math. Phys. 117 (1988), 1-36.
[2] P. Batra, X. Guo, R. Lu and K. Zhao, 'Highest weight modules over the pre-exp-polynomial Lie algebras', J. Algebra 322 (2009), 4163-4180.
[3] Y. Billig, 'Representations of the twisted Heisenberg-Virasoro algebra at level zero', Canad. Math. Bull. 46 (2003), 529-537.
[4] Y. Billig, 'A category of modules for the full toroidal Lie algebra', Int. Math. Res. Not. (2006), 46, Art. ID 68395.
[5] M. Fabbri and F. Okoh, 'Representation of Virasoro Heisenbergs and Virasoro toroidal algebras', Canad. J. Math. 51 (1999), 523-545.
[6] X. Guo, R. Lu and K. Zhao, 'Classification of irreducible Harish-Chandra modules over the generalized Virasoro algebra', Preprint.
[7] X. Guo, R. Lu and K. Zhao, 'Simple Harish-Chandra modules, intermediate series modules and Verma modules over the loop-Virasoro algebra', Forum Math., in press.
[8] Q. Jiang and C. Jiang, 'Representations of the twisted Heisenberg-Virasoro algebra and the full toroidal Lie algebras', Algebra Colloq. 14 (2007), 117-134.
[9] V. G. Kac and K. A. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras (World Scientific, Singapore, 1987).
[10] I. Kaplansky, Infinite Abelian Groups, Revised edition (The University of Michigan Press, Ann Arbor, MI, 1969).
[11] D. Liu and C. Jiang, 'Harish-Chandra modules over the twisted Heisenberg-Virasoro algebra', J. Math. Phys. 49 (2008), 012901, 13 pp.
[12] D. Liu and L. Zhu, 'The generalized Heisenberg-Virasoro algebra', Front. Math. China 4 (2009), 297-310.
[13] R. Lu and K. Zhao, 'Classification of irreducible weight modules over the twisted Heisen-berg-Virasoro algebra', Commun. Contemp. Math. 12 (2010), 183-205.
[14] O. Mathieu, 'Classification of Harish-Chandra modules over the Virasoro algebra', Invent. Math. 107 (1992), 225-234.
[15] V. Mazorchuk, 'Classification of simple Harish-Chandra modules over Q Virasoro algebra', Math. Nachr. 209 (2000), 171-177.
[16] R. Shen and C. Jiang, 'Derivation algebra and automorphism group of the twisted HeisenbergVirasoro algebra', Comm. Algebra 34 (2006), 2547-2558.
[17] R. Shen, Q. Jiang and Y. Su, 'Verma modules over the generalized Heisenberg-Virasoro algebra', Comm. Algebra 36 (2008), 1464-1473.

XIANGQIAN GUO, Department of Mathematics, Zhengzhou University, Zhengzhou 450001, Henan, PR China
e-mail: guoxq@zzu.edu.cn

XUEWEN LIU, Department of Mathematics, Zhengzhou University, Zhengzhou 450001, Henan, PR China
e-mail: liuxw@zzu.edu.cn
KAIMING ZHAO, Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
and
Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
e-mail: kzhao@wlu.ca

[^0]: (C) 2010 Australian Mathematical Publishing Association Inc. 1446-7887/2010 \$16.00

