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BOUNDING VOLUMES OF SINGULAR
FANO THREEFOLDS

CHING-JUI LAI

Abstract. Let (X,∆) be an n-dimensional ε-klt log Q-Fano pair. We give

an upper bound for the volume Vol(X,∆) = (−(KX + ∆))n when n= 2, or

n= 3 and X is Q-factorial of ρ(X) = 1. This bound is essentially sharp for

n= 2. The main idea is to analyze the covering families of tigers constructed

in J. McKernan (Boundedness of log terminal fano pairs of bounded index,

preprint, 2002, arXiv:0205214). Existence of an upper bound for volumes is

related to the Borisov–Alexeev–Borisov Conjecture, which asserts boundedness

of the set of ε-klt log Q-Fano varieties of a given dimension n.

According to the minimal model program, Fano varieties are the building

blocks for varieties of negative Kodaira dimension. The set of Fano varieties

of a given dimension is expected to satisfy certain boundedness properties.

For example, the set of all the n-dimensional smooth Fano manifolds forms a

bounded family by [KMM92]. Since the need of singularities arises naturally

in the minimal model program, the set of mildly singular Fano varieties

is also expected to be bounded. This is known for terminal Q-Fano Q-

factorial threefolds of Picard number one by [Kaw92] and for canonical

Q-Fano threefolds by [KMMT00]. However, if one considers the set of all

klt Q-Fano varieties with Picard number one of a given dimension, [Lin03]

and [Oka09] have shown that (birational) boundedness fails. The problem is

that the category of klt singularities is too big to be bounded as it contains

finite quotients of arbitrarily large order. Instead, one restricts to a smaller

class of singularities, known as ε-klt singularities where 0< ε < 1. Since the

notion of log pairs naturally arises in the context of minimal model program,

we also consider log Fano varieties.

Definition. A pair (X,∆) consists of a normal projective variety X and

an effective Weil Q-divisor ∆ such that KX + ∆ is Q-Cartier. Let π : Y →X

be a log resolution of a pair (X,∆) and write KY + ∆Y = π∗(KX + ∆).
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38 C.-J. LAI

For 0< ε < 1, we say that the pair (X,∆) is ε-klt if all the coefficients of

∆Y are less than 1− ε. In particular, all the coefficients of ∆ lie in [ 0, 1− ε ).

Note that smaller ε corresponds to worse singularities.

An ε-klt (weak) log Q-Fano variety is an ε-klt pair (X,∆) such that the

Q-Cartier divisor −(KX + ∆) is ample (resp. nef and big).

Definition. We say that a collection of varieties {Xλ}λ∈Λ is bounded

if there exists a morphism of finite type of Noetherian schemes h : X → S

such that for each Xλ, Xλ
∼= Xs for some closed point s ∈ S.

In this paper, we are interested in the following conjecture which is still

open in dimension three and higher.

Borisov–Alexeev–Borisov Conjecture. Fix 0< ε < 1, an integer

n > 0, and consider the set of all the n-dimensional ε-klt log Q-Fano pairs

(X,∆). Then the set of underlying varieties {X} is bounded.

A. Borisov and L. Borisov establish the B–A–B Conjecture for toric vari-

eties in [BB92]. Alexeev establishes the two-dimensional B–A–B Conjecture

in [Ale94] with a simplified argument given in [AM04]. The author’s original

motivation of studying the B–A–B Conjecture is that it is related to the

conjectural termination of flips in the minimal model program: According

to [BS10], log minimal model program, ACC1 for minimal log discrepancies,

and B–A–B Conjecture in dimension 6 d implies termination of log flips in

dimension 6 d+ 1 for effective pairs.

The following statements concerning log Q-Fano pairs (X,∆) are relevant

to the B–A–B Conjecture:

(i) The Cartier index of KX + ∆ of an n-dimensional ε-klt log Q-Fano

pair (X,∆) is bounded from above by a fixed integer r(n, ε) depending

only on n= dimX and ε.

(ii) The anticanonical volume Vol(X,∆) = (−(KX + ∆))n of an n-

dimensional ε-klt log Q-Fano pair (X,∆) is bounded from above by

a fixed integer M(n, ε) depending only on n= dimX and ε.

(iii) (Batyrev Conjecture) For given integers n, r > 0, consider the set of all

the n-dimensional klt log Q-Fano pairs (X,∆) such that r(KX + ∆) is

Cartier. Then the set of underlying varieties {X} is bounded.

1An ACC (resp. DCC) set is a set of real numbers satisfying the ascending (resp.
descending) chain condition, that is, it contains no infinite strictly increasing (decreasing)
sequences.
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BOUNDING VOLUMES OF SINGULAR FANO THREEFOLDS 39

It is clear that the B–A–B Conjecture follows from (i) and (iii) (cf.,

Proposition below). The Batyrev Conjecture (iii) in dimension three is

established by Borisov, [Bor96, Bor01]. Recently Hacon, McKernan, and Xu

have announced a proof of the Batyrev Conjecture (iii) in any dimension.

In general, it is very hard to establish (i). Ambro in [Amb09] has proved

(i) for toric singularities assuming that only the standard coefficients

{1− 1
l |l ∈ Z>1} ∪ {1} are allowed to be the coefficients of ∆. A necessary

condition for (i) is that the coefficients of ∆ must lie in a fixed DCC set: A

counterexample is given by the set of pairs (P1, 1
N {pt}) for N > 1.

For convenience of the reader, we include a well-known (to the experts)

argument establishing the B–A–B Conjecture under conditions (i) and (ii)

in the case when ∆ = 0, or X is Q-factional of ρ(X) = 1.

Proposition. Suppose that ∆ = 0 or X is Q-factional of ρ(X) = 1, then

the B–A–B Conjecture follows from the statements (i) and (ii) above.

Proof. Let X be an ε-klt Q-Fano variety of dimension n and let rX be the

Cartier index of KX . The following statements together imply boundedness:

(1) There is an upper bound r(n, ε) of the Cartier index rX of KX

depending only on n and ε;

(2) The divisor M(−KX) is a very ample line bundle for a fixed M

depending only on n and ε;

(3) The set of Hilbert polynomials F = {P (t) = χ(OX(−rXKX)⊗t)} asso-

ciated to all the n-dimensional ε-klt Q-Fano variety is finite.

In fact, (2) and (3) imply that the set of n-dimensional ε-klt Q-Fano

varieties is contained in the finite union of Hilbert schemes
∏
P (t)∈F HP (t),

where each HP (t) is Noetherian. Note that (1) is essential for getting (2).

The statement (1) is simply (i).

Let r = r(n, ε) as in (i). Since rKX is a line bundle, by [Kol93] | −mrKX |
is base point free for any m> 0 divisible by a constant N1(n)> 0 depending

only on n= dimX. Since | −mrKX | is ample and base point free for m> 0

sufficiently divisible, it defines a finite morphism. By [Kol97, Theorem 5.9],

the map induced by | − lrKX | for l > 0 divisible by N2(n) is birational where

N2(n) also depends only on n= dimX. Since a finite birational morphism

of normal varieties is an isomorphism, it follows that there exists an

effective embedding by |M(−rKX)| for some fixed M > 0 depending only on

n= dimX and ε. This is (2).

https://doi.org/10.1017/nmj.2016.21 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.21


40 C.-J. LAI

By [KM83], the coefficients of the Hilbert polynomial P (t) = χ(OX(tH))

of a polarized variety (X, H) with H an ample line bundle can be bounded

by Hn and |Hn−1 ·KX |. Since by (1) there exists an integer r(n, ε)> 0

depending only on n= dimX and ε such that r(n, ε)(−KX) is an ample line

bundle, set H = r(n, ε)(−KX) and apply (ii), it follows that there are only

finitely many Hilbert polynomials for the set of anticanonically polarized

ε-klt Fano varieties {(X, r(n, ε)(−KX))}. This proves (3).

If X is Q-factorial of ρ(X) = 1, then −(KX + ∆) being ample implies that

−KX is also ample. It is clear that X is also ε-klt and hence boundedness

follows from the same proof as above.

An effective upper bound in (ii) is obtained for smooth Fano n-folds in

[KMM92] and for canonical Q-Fano threefolds in [KMMT00]. In this work,

we obtain an effective answer to question (ii) in dimension two, that is, for

log del Pezzo surfaces (cf., Theorem 4.3).

Theorem A. Let (X,∆) be an ε-klt weak log del Pezzo surface, then the

anticanonical volume Vol(X,∆) = (KX + ∆)2 satisfies

(KX + ∆)2 6max

{
64,

8

ε

}
.

Moreover, this upper bound is in a sharp form: There exists a sequence of

ε-klt del Pezzo surfaces whose volume grows linearly with respect to 1/ε.

Let (X,∆) be an ε-klt weak log del Pezzo surface and Xmin be the

minimal resolution of (X,∆). Alexeev and Mori have shown in [AM04,

Theorem 1.8] that ρ(Xmin)6 128/ε5. Also from [AM04, Lemma 1.2] (or see

the proof of Theorem 4.3), an exceptional curve E on Xmin over X satisfies

16−E2 6 2/ε. In case ∆ = 0, since the Cartier index of KX is bounded

from above by the determinant of the intersection matrix (Ei.Ej) of the

exceptional curves Ei’s on Xmin over X, it follows that the Cartier index

bound r(2, ε) in statement (i) satisfies

(♦) r(2, ε)6 2(2/ε)128/ε5 .

Remark 0.1. An upper bound of (KX + ∆)2 is implicitly mentioned in

[Ale94] but not clearly written down. It is also not clear if the upper bound

(♦) is optimal. In view of Theorem A, this seems unlikely.
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We also obtain an upper bound of the anticanonical volumes for ε-klt

Q-factorial log Q-Fano threefolds of Picard number one (cf., Theorem 5.17).

Theorem B. Let (X,∆) be an ε-klt Q-factorial log Q-Fano threefold of

ρ(X) = 1. Then the degree −K3
X satisfies

−K3
X 6

(
24M(2, ε)R(2, ε)

ε
+ 12

)3

,

where R(2, ε) is an upper bound of the Cartier index of KS for S any ε/2-

klt log del Pezzo surface of ρ(S) = 1 and M(2, ε) is an upper bound of the

anticanonical volume Vol(S) =K2
S for S any ε/2-klt log del Pezzo surface of

ρ(S) = 1. Note that M(2, ε)6max{64, 16/ε} from Theorem A and R(2, ε)6
2(4/ε)128/ε5 from (♦).

For a Q-factorial ε-klt log Q-Fano pair (X,∆) of ρ(X) = 1, since

−(KX + ∆)3 6−K3
X and X is also ε-klt, by Theorem B we get an upper

bound of the anticanonical volume Vol(X,∆) =−(KX + ∆)3. However, it

is not expected that the bound in Theorem B is sharp or in a sharp form.

As a corollary of Theorem B, this gives a proof of the Batyrev conjecture

in the case of log Q-Fano threefolds of Picard number one.

Note that Q-factoriality is a technical assumption. However, this con-

dition is natural in the sense that starting from a smooth variety, each

variety constructed by a step of the minimal model program remains Q-

factorial. In dimension two, surfaces with rational singularities, for example,

klt singularities, are always Q-factorial.

Instead of using deformation theory of rational curves as in [KMMT00],

the Riemann–Roch formula as in [Kaw92], or the sandwich argument of

[Ale94], we aim to create isolated non-klt centers by the method developed

in [McK02]. The point is that deformation theory for rational curves on klt

varieties is much harder and so far no effective Riemann–Roch formula is

known for klt threefolds.

This paper is organized as follows: In Section 1, we study non-klt centers.

In Section 2, we illustrate the general method in [McK02] for obtaining an

upper bound of anticanonical volumes in Theorems A and B. In Section 3,

we review the theory of families of non-klt centers in [McK02]. In Section 4,

we study weak log del Pezzo surfaces and prove Theorem A. In Section 5,

we prove Theorem B.

Through this article we work over field of complex numbers C.
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§1. Non-klt centers

For the definition and properties of the singularities in the minimal model

program, we refer to [KM98].

Definition 1.1. Let (X,∆) be a log pair. A subvariety V ⊆X is called

a non-klt center if it is the image of a divisor of discrepancy at most -1.

A non-klt place is a valuation corresponding to a divisor of discrepancy

at most -1. The non-klt locus Nklt(X,∆)⊆X is the union of the non-klt

centers. If there is a unique non-klt place lying over the generic point of

a non-klt center V , then we say that V is exceptional. If (X,∆) is log

canonical along the generic point of a non-klt center V , then we say that V

is pure.

The non-klt places/centers here are the log canonical (lc) places/centers

in [McK02].

A standard way of creating a non-klt center on an n-dimensional variety

X is to find a very singular divisor: Fix p ∈X a smooth point. If ∆ is

a Q-Cartier divisor on X with multp∆> n, then p ∈Nklt(X,∆). Indeed,

consider the blow up π : Y = BlpX →X and let E be the unique exceptional

divisor with π(E) = p, then the discrepancy

a(E, X,∆) = multE(KY − π∗(KX + ∆)) = (n− 1)−multE(π∗(∆))6−1,

as n− 1 = multE(KY − π∗KX) and multE(π∗(∆)) = multp∆> n.

Existence of singular divisors can be shown by the following standard

estimation.

Lemma 1.2. Let X be an n-dimensional complete complex variety and

D be a divisor with hi(X,O(mD)) =O(mn−1) for all i > 0, for example,

when D is big and nef. Fix a positive rational number α with 0< αn <Dn.

Then for m� 0 and any x ∈Xsm, there exists a divisor Ex ∈ |mD| with

multx(Ex)>m · α.

Proof. This is [Laz04, Proposition 1.1.31].

We will apply Lemma 1.2 to the case where (X,∆) is an n-dimensional

log Q-Fano variety: Write (−(KX + ∆))n > (ωn)n for some rational number

ω > 0, then as the cohomology groups hi(X,OX(m(−KX + ∆))) = 0 for

i > 0 and m> 0 sufficiently divisible by Kawamata–Viehweg vanish-
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ing theorem, we can find for each p ∈Xsm an effective Q-divisor

∆p such that ∆p ∼Q −(KX + ∆)/ω with multp(∆p)> n. In particular,

p ∈Nklt(X,∆ + ∆p).

The non-klt centers satisfy the following Connectedness Lemma of

Kollár and Shokurov, whose proof is simply a formal consequence of

the Kawamata–Viehweg vanishing theorem. This is the most important

ingredient in this work.

Lemma 1.3. Let (X,∆) be a log pair. Let f :X → Z be a projective

morphism with connected fibers such that the image of every component of

∆ with negative coefficient is of codimension at least two in Z. Assume that

−(KX + ∆) is big and nef over Z, then the intersection of Nklt(X,∆) with

each fiber Xz = f−1(z) is connected.

Proof. For simplicity, we assume that Z = Spec(C) is a point and (X,∆)

is log smooth, that is, X is smooth and ∆ has simple normal crossing

support. Then the identity map idX :X →X is a log resolution of (X,∆)

and Nklt(X,∆) = x∆y. Consider the exact sequence

· · · →H0(X,OX)→H0(X,Ox∆y)→H1(X,OX(−x∆y))→ · · · .

Since −x∆y=KX + {∆} − (KX + ∆) and (X, {∆}) is klt, we have

H1(X,OX(−x∆y)) = 0 by Kawamata–Viehweg vanishing theorem as

−(KX + ∆) is nef and big. Since H0(X,OX)∼= C, we see that Nklt(X,∆) =

x∆y is connected.

For general case, see [Cor07, Theorem 17.4].

Here is a nonexample showing that −(KX + ∆) being nef and big is

necessary in the Connectedness Lemma 1.3.

Example 1.4. Let X be P1 × P1 and denote F (resp. G) to be

the fiber of the first (resp. second) projection to P1. Consider ∆1 =

F1 + F2 the sum of two distinct fibers of the first projection to P1 and

∆2 = F +G the sum of two fibers with respect to two different projections

to P1’s. Then Nklt(X,∆1) = F1 + F2 is not connected while Nklt(X,∆2) =

F +G is connected. Note that −(KX + ∆1) is nef but not big while

−(KX + ∆2) is nef and big.

Later on, we will try to produce not only non-klt centers but isolated

non-klt centers. The following theorem is the main technique which allows

us to cut down the dimension of non-klt centers.
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Theorem 1.5. [Kol97, Theorem 6.8.1] Let (X,∆) be klt, projective and

x ∈X a closed point. Let D be an effective Q-Cartier Q-divisor on X

such that (X,∆ +D) is log canonical in a neighborhood of x. Assume that

Nklt(X,∆ +D) = Z ∪ Z ′ where Z is irreducible, x ∈ Z, and x /∈ Z ′. Set

k = dim Z. Let H be an ample Q-divisor on X such that (Hk.Z)> kk. Then

there is an effective Q-divisor B ≡H and rational numbers 0< δ� 1 and

0< c < 1 such that

(1) (X,∆ + (1− δ)D + cB) is non-klt in a neighborhood of x, and

(2) Nklt(X,∆ + (1− δ)D + cB) =W ∪W ′ where W is irreducible, x ∈W ,

x /∈W ′ and dimW < dim Z.

§2. Guiding example

The idea in [McK02] for obtaining an upper bound of the anticanonical

volumes is to create isolated non-klt centers and then use the Connected-

ness Lemma 1.3: For simplicity, we assume that ∆ = 0. Write (−KX)n >

(ωn)n for a positive rational number ω. For each p ∈Xsm, we can find

an effective Q-divisor ∆p ∼Q −KX/ω such that multp∆p > n and hence

p ∈Nklt(X,∆p). The observation is that if ω� 0, then for general p ∈X,

p ∈Nklt(X,∆p) cannot be an isolated point. Indeed, if this is not true,

then for two general points p, q ∈X, the set Nklt(X,∆p + ∆q) would con-

tain {p, q} as isolated non-klt centers. But the pair −(KX + ∆p + ∆q)∼Q(
1− 2

ω

)
(−KX) is nef and big for ω > 2. By the Connectedness Lemma 1.3,

Nklt(X,∆p + ∆q) must be connected, a contradiction.

Therefore, for general p ∈X the minimal non-klt center Vp ⊆Nklt(X,∆p)

passing through p is typically positive dimensional. We would like to show

that the restricted volume Vol(−KX |Vp) on the minimal non-klt center Vp is

large if ω� 0. Hence, we can cut down the dimension of non-klt centers by

Theorem 1.5. After doing this finitely many times, we get isolated non-klt

centers and we are done.

In general, it is hard to find a lower bound of the restricted volume

Vol(−KX |Vp) on the minimal non-klt center Vp. We illustrate McKernan’s

method of obtaining a lower bound of the restricted volumes on the non-klt

center of an ε-klt log Q-Fano variety by the following guiding example (cf.,

[McK02]).

Example 2.1. Let X be the projective cone over a rational normal

curve of degree d> 2 with the unique singular point O ∈X. The blow up
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π : Y = BlOX →X is a resolution of X where Y is a P1-bundle f : Y → P1

over P1 :

It is easy to show that

(a) KY = π∗KX + (−1 + 2/d)E, where E is the unique π-exceptional divi-

sor and hence X is ε-klt for ε= 1/d;

(b) X is Q-factorial of Picard number one and −KX ∼Q (d+ 2)l is an

ample Q-Cartier divisor, where l is the class of a ruling of X. Hence X

is an ε-klt del Pezzo surface;

(c) Vol(−KX) = d+ 4 + 4/d is a linear function of d= 1/ε and provides

the required example in Theorem A.

Let p ∈X be a general point. Then p is not the vertex O and the unique

ruling lp passing through p is the non-klt center of the log pair (X, lp),

that is, lp = Nklt(X, lp). Moreover, the proper transform Fp of lp on Y is a

fiber of the P1-bundle f : Y → P1. In this case, one interprets the P1-bundle

structure of Y as a covering family of non-klt centers of X since the map

π : Y →X is dominant.

For p, q ∈X two general points, let lp and lq be the rulings passing through

p and q respectively. Consider the pair KY + (1− 2/d)E = π∗KX . By

the Connectedness Lemma 1.3, the non-klt locus Nklt(KY + (1− 2/d)E +

π∗(lp + lq)) containing Fp ∪ Fq is connected as

− (KY + (1− 2/d)E + π∗(lp + lq)) =−π∗(KX + lp + lq)≡ dπ∗l

is nef and big. In fact, the fibers Fp and Fq are connected by E in

Nklt(KY + (1− 2/d)E + π∗(lp + lq)) as

Fp ∪ Fq ⊆ Nklt(KY + (1− 2/d)E + π∗(lp + lq))

⊆ π−1(Nklt(KX + lp + lq)) = Fp ∪ Fq ∪ E,

where the second inclusion follows from the definition of non-klt centers. In

particular,

multE(π∗(lp + lq))>
2

d
= 2ε.
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By symmetry, π∗lp must contribute multiplicity at least 1/d= ε to the

component E (and in fact is exactly 1/d in this case), that is,

(2.1) π∗lp > εE.

Note that

(2.2) lp ∼Q
−KX√

d ·
√

Vol(X)
.

By intersecting both sides of (2.1) with a general fiber F of f : Y → P1, we

get for the ruling l = π∗(F ),

(2.3)
1√

d ·
√

Vol(X)
degl(−KX) = π∗lp.F > εE.F.

Since F is a general fiber meeting the horizontal divisor E at a smooth

point, E.F > 1. (In this case E.F = 1.) Combining all of these, we obtain a

lower bound of the restricted volume degl(−KX),

degl(−KX)> ε
√
d ·
√

Vol(X).

Note that since in this case degl(−KX) =−KX .l =−KY .π
∗l 6 2, it follows

that the anticanonical volume Vol(X) =K2
X 6 4d= 4/ε.

In summary, the method of getting an upper bound of the anti-

canonical volumes is to obtain a lower bound of the restricted volume

Vol(−(KX + ∆)|Vp) on the non-klt center Vp. This is outlined in the

following steps:

• Suppose that Vol(X,∆) = (−(KX + ∆))n > (ωn)n for a positive rational

number ω. We will show that ω > 0 cannot be arbitrarily large.

• For general p ∈X, choose

∆p ∼Q
−(KX + ∆)

ω

so that p ∈Nklt(X,∆ + ∆p). Let Vp ⊆Nklt(X,∆ + ∆p) be the minimal

non-klt center containing p.

• Construct covering families of non-klt centers by “lining up” (part of the)

non-klt centers {Vp}; see Section 3. This is the generalization of the P1-

bundle structure in the Example 2.1 and is called the covering families of

tigers in [McK02].
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• Use the Connectedness Lemma 1.3 to obtain a lower bound of the

restricted volume

Vol(−(KX + ∆)|Vp) = (−(KX + ∆)|Vp)dim Vp

on the non-klt center Vp in terms of ω and ε. This is the most technical

part.

• If ω� 0, then we cut down the dimension of non-klt centers by Theorem

1.5. After finitely many steps, we get isolated non-klt centers and hence

a contradiction to the Connectedness Lemma 1.3.

The difficulty of this argument arises in dimensions three in many places.

First of all, the non-klt centers can be of dimension one or two and we have

to deal them separately. When we have one-dimensional covering families

of tigers, it is subtle to detect the contribution of the ε-klt condition from

some horizontal subvariety, which is the analogue to the exceptional curve

E in the Example 2.1. This is done by applying a differentiation argument

to construct a better behaved covering family of tigers; see 5.3. In case

we have two-dimensional non-klt centers, complications arise for computing

intersection numbers as the total space Y of a covering family of tigers is

in general not Q-factorial. This can be fixed by replacing Y with a suitable

birational model. To finish the proof, we also need to run a relative minimal

model on the covering families of tigers and study the geometry of all

possible outcomes.

§3. Covering families of tigers

The main reference for this section is [McK02].

Definition 3.1. [McK02, Definition 3.1] Let (X,∆) be a log pair with

X projective and D a Q-Cartier divisor. We say that pairs of the form

(∆t, Vt) form a covering family of tigers of dimension k and weight ω if

(1) there is a projective morphism f : Y →B of normal projective varieties

such that the general fiber of f over t ∈B is Vt;

(2) there is a morphism of B to the Hilbert scheme of X such that B is the

normalization of its image and f is obtained by taking the normalization

of the universal family;

(3) If π : Y →X is the natural morphism, then π(Vt) is a pure non-klt

center of KX + ∆ + ∆t;

(4) π is generically finite and dominant;
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(5) ∆t ∼Q D/ω, where ∆t is effective;

(6) the dimension of Vt is k.

Note that by definition k 6 dimX − 1 and π|Vt : Vt→ π(Vt) is finite and

birational. A covering family of tigers is illustrated in the following diagram:

We will sometimes also refer Vp as a pure non-klt center of (X,∆ + ∆p)

containing p.

For (X,∆) a log Q-Fano variety, we will always assume that D =

−λ(KX + ∆) for some λ > 0. In particular, D is big and semiample.

The existence of a covering family of tigers is achieved by constructing

non-klt centers at general points of X and then fitting a subcollection of

them into a family. In order to fit the non-klt centers into a family, we

use exceptional non-klt centers where we patch up the unique non-klt place

associated to each of them; see Lemma 3.3. The following lemma allows us

to create exceptional non-klt centers.

Lemma 3.2. Let (X,∆) be a log pair and let D be a big and semiample

Q-Cartier divisor. Write Dn > (ωn)n for some positive rational number ω.

For every p ∈Xsm, we can find an effective Q-divisor ∆p ∼Q D/ω such that

the unique minimal non-klt center Vp ⊆Nklt(X,∆ + ∆p) containing p is

exceptional.

Proof. Fix a rational number 0< λ < 1. By Lemma 1.2, for any p ∈Xsm

we can find an effective divisor ∆′p ∼Q
D
λω such that multp∆

′
p > n and hence

p ∈Nklt(X,∆ + ∆′p).

Fix p ∈Xsm, pick 0< δp 6 1 the unique rational number such that

(X,∆ + δp∆
′
p) is log canonical but not klt at p. By [Amb98, Proposition

3.2], we can find an effective divisor Mp ∼Q D and some rational number

a > 0 such that for any rational number 0< µ < 1, the pair (X, (1− µ)(∆ +

δp∆
′
p) + µ∆ + µaMp) has a unique minimal non-klt center Vp passing

through p which is exceptional. If we write

∆p := (1− µ)δp∆
′
p + µaMp ∼Q

1

ω′p
D,
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then

ω′p =
ω

(1− µ)δp/λ+ µaω

satisfies

(1− µ)δp/λ+ µaω < 1

for δp ≈ λ and 0< µ� 1. Hence ω′p > ω. Since D is semiample, we can add

a small multiple of D to ∆p so that ∆p ∼Q D/ω is the required divisor.

For a topological space X, we say that a subset P is countably dense if

P is not contained in the union of countably many proper closed subsets of

X. The following proposition is the construction of the covering family of

tigers; see also [McK02, Lemma 3.2] or [Tod07, Lemma 3.2].

Proposition 3.3. Let (X,∆) and ∆p be the same as in Lemma 3.2.

Then there exists a covering family of tigers π : Y →X of weight ω with

p ∈ Vp ⊆Nklt(X,∆ + ∆p).

Proof. For each p ∈Xsm, there is an integer mp such that mp∆p and

mpD/ω are linearly equivalent Cartier divisors. For m> 0 such that mD/ω

is Cartier, set Cm := {p ∈Xsm|m∆p ∈ |mD/ω|}. Then by construction

X = ∪mCm, where the union is taken over all m> 0 such that mD/ω is

Cartier. Since X is countably dense, there is an integer m> 0 such that

Cm =X.

Choose m> 0 an integer as above so that mD/ω is integral Cartier and

Cm =X. Let B be the Zariski closure of the set of points {m∆p|p ∈Xsm} ⊆
|mD/ω| in the projective space |mD/ω|. Replace B by an irreducible

component which contains an uncountable subset Q of B such that the

set {p ∈X|∆p ∈Q} is dense in X. This is possible since Cm =X and X is

countably dense. Let H ⊆X × |mD/ω| be the universal family of divisors

defined by the incidence relation and HB →B the restriction to B. Take a

log resolution of HB ⊆X ×B over the generic point of B and extend it over

an open subset U of B. By assumption the log resolution over the generic

point of B has a unique exceptional divisor of log discrepancy zero since it

is true over Q⊆B. Let Y be the image of this unique exceptional divisor

in X ×B with the natural projection map π : Y →X. By construction

π : Y →X dominates X.

Possibly taking a finite cover of B and passing to an open subset of B,

we may assume that any fiber Vt of f : Y →B over t ∈B is a non-klt center

of KX + ∆ + ∆t. Possibly passing to an open subset of B, we may assume
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that f : Y →B is flat and B maps into the Hilbert scheme. Replace B by

the normalization of the closure of its image in the Hilbert scheme and Y

by the normalization of the pullback of the universal family. After possibly

cutting by hyperplanes in B, we may assume that π is generically finite and

dominant. The resulted family is a required covering family of tigers.

In fact, the original construction of covering families of tigers is carried

out in a more general setting.

Corollary 3.4. Let (X,∆) be an n-dimensional log pair and let D

be a big Q-Cartier divisor. Let ω be a positive rational number such that

Vol(D)> (ωn)n. Let P be a countably dense subset of X. Suppose that for

every point p ∈ P we may find a pair (∆p, Vp) such that Vp is a pure non-klt

center of KX + ∆ + ∆p where ∆p ∼Q D/ωp for some ωp > ω. Then we may

find a covering family of tigers of weight ω together with a countably dense

subset Q of P such that for all q ∈Q, Vq is a fiber of π.

Proof. See [McK02, Lemma 3.2] or [Tod07, Lemma 3.2].

The following lemma shows that we can assume the covering families of

tigers under our consideration are always positive dimensional as suggested

in the guiding example 2.1.

Lemma 3.5. Let (X,∆) be a projective klt pair and D =−(KX + ∆) be

a big and nef Q-Cartier divisor. Then a covering family of tigers (∆t, Vt) of

weight ω > 2 is positive dimensional, that is, k = dim Vt > 0.

Proof. This is [McK02, Lemma 3.4] and we include the proof for

convenience of the reader. Suppose that there exists a zero-dimensional

covering family of tigers of weight ω > 2. For p1 and p2 general, there are

divisors ∆1 and ∆2 with ∆i ∼Q D/ω such that pi is an isolated non-klt

center of KX + ∆ + ∆i. As p1 and p2 are general, it follows that ∆2 does not

contain p1 and Nklt(X,∆ + ∆1 + ∆2) contains p1 and p2 as disconnected

non-klt centers. But −(KX + ∆ + ∆1 + ∆2)∼
(
1− 2

ω

)
D is nef and big if

ω > 2. This contradicts to Lemma 1.3.

Recall that we want to obtain a lower bound of restricted volumes on

the non-klt centers by studying the associated covering families of tigers so

that we can cut down the dimension via Theorem 1.5 to get isolated non-klt

centers. If the new non-klt centers after cutting down the dimension are

still positive dimensional, then we have to create new covering families of

tigers and repeat the process. The following proposition due to McKernan,
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[McK02, Lemma 5.3], enables us to create covering families of tigers of new

non-klt centers after cutting down the dimension. We include the proof here

for the convenience of the readers. It starts with two lemmas.

Lemma 3.6. Let π : Y →X be a smooth morphism of smooth varieties.

Let ∆1 be a Q-divisor on X and let Γ1 be the pullback of ∆1 to Y . Let Γ2

be a boundary on Y , such that the support B of Γ2 dominates X and π|B is

smooth. Then (X,∆1) is log canonical (respectively Kawamata log terminal,

etc.) if and only if (Y, Γ = Γ1 + Γ2) is log canonical (respectively Kawamata

log terminal, etc.).

Proof. The property of being log canonical is local in the analytic

topology. On the other hand, locally in the analytic topology, Y is a product

X1 ×X2, where X1 is isomorphic to X and Γ2 is the pullback of a divisor

∆2 on X2 whose support is smooth, so that Γ = ∆1 ×X2 +X1 ×∆2. The

result follows from the same computation as in [Kol97, Proposition 8.21].

Lemma 3.7. Let (X,∆) be a log pair where X is projective and ∆ is

effective. Suppose that V is an exceptional log canonical center of KX + ∆.

Then there is an open subset U of the smooth locus of V with the following

property:

For all divisors Θ on X, which do not contain the generic point of V

and subvarieties W of V such that W |U is a pure log canonical center of

KU + Θ|U , then W is a pure log canonical center of KX + ∆ + Θ.

Proof. This result is local about the generic point of V so we are free to

replace X by any open set that contains the generic point of V . The idea is to

reduce to the case of a divisor, when the result becomes an easy consequence

of inversion of adjunction. Pick a log resolution π : Y →X of the pair (X,∆)

and let Γ be the divisor defined by KY + Γ = π∗(KX + ∆). By assumption

there is a unique divisor E lying over V of log discrepancy zero. Let f :

E→ V be the restriction of π to E. Replacing X by an open subset, we

may assume that f and V are both smooth, and that KV and KX + ∆ are

Q-linearly equivalent to zero. Passing to a smaller open set of X, we can

assume that Γ> 0. By adjunction we may write (KY + Γ)|E =KE +B for

some effective divisor B, where both sides are Q-linearly equivalent to zero.

Passing to a smaller open set again, we may assume that every component

of B dominates V and that f |B is smooth. Then

KE +B = (KY + Γ)|E = π∗(KX + ∆)|E = f∗((KX + ∆)|V )∼Q f
∗(KV ).
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Suppose thatW is a pure log canonical center ofKV + Θ|V . Set Θ′ = π∗Θ.

As Θ does not contain the generic point of V , E is not a component of Θ′,

so that f∗(Θ|V ) = Θ′|E . It follows by Lemma 3.6 that f−1(W ) is a pure log

canonical center of KE + Θ′|E .

The result now follows from the inversion of subadjunction (cf., (17.1.1),

(17.6) and (17.7) of [Kol92]).

Proposition 3.8. Let (X,∆) be a log pair and let D be a Q-Cartier

divisor of the form A+ E where A is ample and E is effective. Let (∆t, Vt)

be a covering family of tigers of weight ω and dimension k. Let At be A|Vt.
Suppose that there is an open subset U ⊆B such that for all t ∈ U we may

find a covering family of tigers (Γt,s, Wt,s) on Vt of weight ω′ with respect

to At. Then for (X,∆) we can find a covering family of tigers (Γs, Ws) of

dimension less than k and weight

ω′′ =
1

1/ω + 1/ω′
=

ωω′

ω + ω′
.

Proof. Pick r so that rA is Cartier and let L=OX(rA) be the corre-

sponding line bundle. Note that by Serre vanishing H1(X, IV ⊗ L⊗m) = 0

for m large enough. Hence we may lift Γt,s to a Q-divisor Θt,s on X

Q-linearly equivalent to the same multiple of A. Adding on a multiple of E

we may assume that Θt,s is in fact a multiple of D. Since adding E only effect

a proper closed subset of X, there is a countably dense collection (∆t, Vt)

satisfying the hypothesis of Lemma 3.7. Thus by Corollary 3.4 applied

to (∆t + Θt,s, Wt,s), we may find a covering family of tigers (Γs, Ws) of

weight ω′′.

We will apply Proposition 3.8 with the ample divisor D =−(KX + ∆)

and only in the case when we have a two-dimensional covering family of

tigers π : Y →X with deg(π)> 1.

In the process of obtaining lower bound of the restricted volume on the

non-klt centers, if we have one-dimensional non-klt centers, then we can

control the restricted volume of D (cf., [McK02, Lemma 5.3]).

Corollary 3.9. Let (X,∆) be a log pair and let D be an ample divisor.

Let (∆t, Vt) be a covering family of tigers of weight ω > 2 and dimension

one. Then deg(D|Vt)6 2ω/(ω − 2).

Proof. Suppose that deg(D|Vt)> 2ω/(ω − 2), then by Lemma 3.2, The-

orem 1.5, and Corollary 3.4 we may find a covering family (Γt,s, Ws,t) of
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tigers of weight ω′ > 2ω/(ω − 2) and dimension zero on Vt. By Proposition

3.8, there exists a covering family of tigers of dimension zero and weight

ω′′ =
ωω′

ω + ω′
> 2

for X. This contradicts Lemma 3.5.

§4. Log Del Pezzo surfaces

Let (X,∆) be an ε-klt weak log del Pezzo surface. The minimal resolution

π : Y →X of (X,∆) is the unique proper birational morphism such that Y is

a smooth projective surface and KY + ∆Y = π∗(KX + ∆) for some effective

Q-divisor ∆Y on Y . Note that minimal resolutions always exist for two-

dimensional log pairs. It is easy to see that (Y,∆Y ) is also an ε-klt weak log

del Pezzo surface with volume

Vol(Y,∆Y ) = (KY + ∆Y )2 = (KX + ∆X)2 = Vol(X,∆X).

Hence replacing (X,∆) by its minimal resolution, we can assume that X is

smooth.

Write (KX + ∆)2 > (2ω)2. For a general point p ∈X, let ∆p ∼Q −(KX +

∆)/ω be an effective Q-divisor constructed from Lemma 1.2 such that

p ∈Nklt(X,∆ + ∆p). Assume that ω > 2, then by Lemma 3.5 the unique

minimal non-klt center Fp of (X,∆ + ∆p) containing p is one-dimensional.

Note that for general p ∈X, Fp 6∆p.

Lemma 4.1. For a very general point p ∈X, the numerical class F := Fp
on X is well defined and F is nef.

Proof. An effective integral one-cycles Fp satisfies Fp 6∆p ∼Q −(KX +

∆)/ω and hence forms a bounded set in the Mori cone of curves. As C is

uncountable, for p ∈X a very general point the numerical class F := Fp is

well defined. Since {Fp} moves, the class F is nef.

The following lemma shows that if we assume the weight ω is large, then

the non-klt centers {Fp} onX already possess a nearly fiber bundle structure

analogous to a covering family of tigers.

Lemma 4.2. Assume that ω > 4, then F 2 = 0, that is, Fp ∩ Fq = ∅ for

p, q ∈X two very general points.
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Proof. Suppose that ω > 4 and assume that Fp ∩ Fq 6= ∅ for p, q ∈X two

very general points. Since by Lemma 4.1 the curve class F = Fp is nef, then

for H =−(KX + ∆)/ω we have

16 Fp.Fq = F.Fq 6 F.∆q = deg(H|Fq).

Since H is big and nef, one can cut down the dimension of the non-klt

centers by Theorem 1.5.2

To be precise, choose x an intersection point of Fp and Fq. Pick 0< δ1 6 1

such that (X,∆ + δ1∆p) is log canonical at x. If (X,∆ + δ1∆p) = {x}, then

this contradicts the Connected Lemma 1.3 as Nklt(X,∆ + δ1∆p + ∆q) con-

taining x and Fq is disconnected but−(KX + ∆ + δ1∆p + ∆q) is nef and big.

Hence we may assume that Nklt(X,∆ + δ1∆p) is one-dimensional. By The-

orem 1.5, there exists rational numbers 0< δ� 1, 0< c < 1, and an effective

Q-divisor Bx ≡H such that Nklt(X,∆ + (1− δ)δ1∆p + cBx) = {x} in a

neighborhood of x. By switching p and q, we can assume that q 6= x. Simi-

larly we have Nklt(X,∆ + (1− δ′)δ2∆q + c′Bq) = {q} in a neighborhood of

q for some divisor Bq ≡H and rational numbers 0< δ2 6 1, 0< δ′� 1, and

0< c′ < 1. The set Nklt(X,∆ + (1− δ)δ1∆p + cBx + (1− δ′)δ2∆q + c′Bq)

contains isolated non-klt centers x and q and hence is disconnected. Since

the pair is numerically equivalent to
(
1− (1−δ)δ1+c+(1−δ′)δ2+c′

ω

)
(−(KX + ∆))

which is nef and big if ω > 4, we have a contradiction to the Connectedness

Lemma 1.3.

Recall that for any two Weil divisors A=
∑
aiDi and B =

∑
biDi, we

define A ∧B to be

A ∧B =
∑
i

min{ai, bi}Di.

Theorem 4.3. Let (X,∆) be an ε-klt weak log del Pezzo surface. Then

the anticanonical volume Vol(X,∆) = (KX + ∆)2 satisfies

(KX + ∆)2 6max

{
64,

8

ε

}
.

Proof. Replacing (X,∆) by its minimal resolution, we may assume

that X is smooth. Write (KX + ∆)2 > (2ω)2, then for each general point

2By adding a small multiple of −(KX + ∆), we may assume that the inequality
deg(H|Fq )> 1 is strict with a smaller modified ω and hence Theorem 1.5 applies.
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p ∈X there exists an effective Q-divisor ∆p ∼Q −(KX + ∆)/ω such that

p ∈Nklt(X,∆ + ∆p). From Lemma 3.5, we may assume that ω > 2 and the

unique minimal non-klt center Fp ⊆Nklt(X,∆ + ∆p) containing p is one-

dimensional. Note that Fp 6∆p for general p ∈X. By Lemmas 4.1 and 4.2,

we may assume that ω > 4 and for very general p ∈X the numerical class

F of Fp is well defined and nef with F 2 = 0.

For two very general points p, q ∈X, ∆p.∆q > 0 and hence Fp =

Supp(Fp) $ Supp(∆p): Otherwise ∆q ≡∆p 6NFp for some N > 0 and

0<∆p.∆q 6N2F 2
p =N2F 2 = 0, a contradiction. Denote Ep = Supp(∆p)−

Fp 6= 0. By the Connectedness Lemma 1.3, Nklt(X,∆ + ∆p + ∆q)⊇ Fp ∪ Fq
is connected. By Lemma 4.2, Fp ∩ Fq = ∅ and hence Ep must contain a

connected curve E 6 Ep such that Fp.E 6= 0, Fq.E 6= 0, and Nklt(X,∆ +

∆p + ∆q)⊇ Fp ∪ Fq ∪ E. Furthermore, we can assume that E is irreducible

since E.Fq 6= 0 as Fq ≡ Fp for q ∈X a very general point. By symmetry and

the ε-klt condition, E satisfies ε
2E 6∆p (cf., Example 2.1).

Suppose that E2 > 0, then as H =−(KX + ∆)/ω is nef

H.E = ∆p.E = (∆′p.E + a′EE
2)> Fp.E > 1

where we write ∆p = ∆′p + a′EE with ∆′p ∧ E = 0, ∆′p > Fp, and a′E > 0. In

particular, we can use Theorem 1.5 again to cut down the dimension of non-

klt centers as in Lemma 4.2. This contradicts the Connectedness Lemma 1.3.

We may assume that E2 < 0, and thus

− 2 6 2ga(E)− 2 = (KX + E).E

= (KX + ∆).E + (1− ε− aE)E2 −∆′.E + εE2 6 εE2

where ∆ = ∆′ + aEE with ∆′ ∧ E = 0 and aE ∈ [ 0, 1− ε ) by the ε-klt

condition. This implies that

16−E2 6 2/ε

where the first inequality follows from the fact that E2 ∈ Z as X is smooth.

Since F 2 = 0 for F the numerical class of Fp, where p ∈X is very general,

by Nakai’s criterion the divisor Hs = F + sE with 0< s6 1/(−E2) is nef

and big. By the Hodge index theorem (see [Har77, V 1.1.9(a)]), we get the

inequality

(1) (KX + ∆)2 6
(−(KX + ∆).Hs)

2

H2
s

.
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From ∆.F > 0 and F 2 = 0, we have that

(2) − (KX + ∆).F 6−(KX + F ).F 6 2.

Also for ∆ = ∆′ + aEE with ∆′ ∧ E = 0 and aE ∈ [ 0, 1− ε ), we have that

− (KX + ∆).E = −KX .E −∆′.E − aEE2

6 E2 + 2− aEE2 = (aE − 1)(−E2) + 26 2− ε(−E2).(3)

Put s= 1/(−E2), all together we get

(KX + ∆)2 6
(−(KX + ∆).(F + sE))2

H2
s

6
(2 + s(2− ε(−E2)))2

2sE.F + s2E2

6 (−E2)

(
2− ε+

2

−E2

)2

= (−E2)(2− ε)2 + 4(2− ε) +
4

−E2

6
8

ε

where the first inequality is (1), the second inequality follows from (2), (3),

and F 2 = 0, and the third inequality is given by E.F > 1, and thus 2sE ·
F + s2E2 > 2s+ s2E2 = 1/(−E2). The last inequality follows from the fact

that the function f(x) = (2− ε)2x+ 4/x, defined on 16 x6 2/ε, achieves

its maximum at x= 2/ε.

Remark 4.4. Note that by applying Corollary 3.9 one can only obtain

an upper bound of order 1/ε2. Hence Theorem 4.3 is a nontrivial result.

§5. Log Fano threefolds of Picard number one

Let (X,∆) be an ε-klt Q-factorial log Q-Fano threefold of Picard number

ρ(X) = 1. Note that by hypothesis X is ε-klt and −KX is ample with

−K3
X >Vol(X,∆) =−(KX + ∆)3. Hence it is sufficient to assume that X

is an ε-klt Q-factorial Q-Fano threefold of Picard number ρ(X) = 1 and to

find an upper bound of Vol(X) =−K3
X .

We will obtain an upper bound of the volumes by studying covering

families of tigers. The weight of any covering families of tigers in our study

will always be the weight with respect to −KX .
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Let X be an ε-klt Q-factorial Q-Fano threefold of Picard number

ρ(X) = 1 and write Vol(X) =−K3
X > (3ω)3 for some positive rational

number ω. Denote D =−2KX , we have D3 > (6ω)3. By Lemma 1.2, we

can fix an affine open subset U ⊆X such that for each p ∈ U there exists

an effective divisor ∆p ∼Q D/ω with multp∆p > 6. We do not assume that

∆p creates exceptional non-klt centers as in Lemma 3.2, otherwise we lose

control on multiplicity. We pick divisors ∆p’s in the following systematic

way so that we can control their multiplicities uniformly.

5.1 Construction

Let ∆U ⊆ U × U be the diagonal and IZ be the ideal sheaf of Z = ∆U ⊆
X × U . For each p ∈ U , by the existence of Q-divisor ∆p ∼Q D/ω with

multp∆p > 6, there exists mp > 0 such that Lmp =mpD/ω is Cartier and

H0(X, Lmp ⊗ I
⊗6mp
p ) 6= 0, where Ip is the ideal sheaf of p ∈ U . In particular,

we can write U = ∪Um where m> 0 runs through all sufficiently divisible

integers such that Lm =mD/ω is Cartier and Um = {p ∈ U |H0(X, Lm ⊗
I⊗6m
p ) 6= 0}. In particular, each Um is closed in X and X = ∪Um. Since the

base field C is uncountable, X cannot be a countable union of proper closed

subsets and there exists some m> 0 such that Um is dense in X.

Fix an m> 0 so that Lm =mD/ω is Cartier and Um = {p ∈
U |H0(X, Lm ⊗ I⊗6m

p ) 6= 0} is dense in X. Denote prX :X × U →X and

prU :X × U → U the projection maps. Since prU :X × U → U is flat, by

[Har77, III 12.11] after restricting to a smaller open affine subset of U , we

can assume that the map

(prU )∗(pr∗XLm ⊗ I⊗6m
Z )⊗ C(p)→H0(X, Lm ⊗ I⊗6m

p )

is isomorphic for each p ∈ U . Since Um is dense in U , the sheaf

(prU )∗(pr∗XLm ⊗ I
⊗6m
Z ) 6= 0 on U and hence H0(X × U, pr∗XLm ⊗ I

⊗6m
Z )

6= 0 as U is affine. Let s ∈H0(X × U, pr∗XLm ⊗ I
⊗6m
Z ) be a nonzero section

with F = div(s) the corresponding divisor on X × U . For each p ∈ U ,

denote Fp = F ∩ (X × {p}) the associated divisor on X ∼=X × {p}. Since

multZ(F )> 6m, by Lemma 5.1 below the Q-divisor ∆p = Fp/m∼Q D/ω on

X satisfies multp∆p > 6 for general p ∈ U .

Lemma 5.1. [Laz04, Lemma 5.2.11] Let g :M → T be a morphism of

smooth varieties, and suppose that Z ⊆M is an irreducible subvariety

dominating T :
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Let F ⊆M be an effective divisor. Then for a general point t ∈ T and any

irreducible component Z ′t ⊆Zt,

multZ′
t
(Mt, Ft) = multZ(M, F )

where multZ(M, F ) is the multiplicity of the divisor F on M along a general

point of the irreducible subvariety Z ⊆M and similarly for multZ′
t
(Mt, Ft).

For a given collection of Q-divisors {∆p = Fp/m∼Q D/ω|p ∈ U general}
associated to a nonzero section in H0(X × U, pr∗XLm ⊗ I

⊗6m
Z ) as above,

by Lemma 3.2 we can modify ∆p’s such that the unique non-klt centers

Vp ⊆Nklt(X,∆p) passing through p are exceptional. By Lemma 3.3 (or in

general Corollary 3.4), we can construct covering families of tigers from

these divisors.

In order to obtain an upper bound of ω, which is enough for bounding

the volumes, we will pick up a “well-behaved” nonzero section s ∈H0(X ×
U, pr∗XLm ⊗ I

⊗6m
Z ) and study the corresponding covering families of tigers.

5.2 Cases

By 5.1, there exists an open affine subset U ⊆X and an integer

m> 0 such that H0(X × U, pr∗XLm ⊗ I
⊗6m
Z ) 6= 0. Let s ∈H0(X ×

U, pr∗XLm ⊗ I
⊗6m
Z ) be a nonzero section with divisor F = div(s) on X × U

and {∆p = Fp/m∼Q D/ω|p ∈ U general} be the associated collection of

Q-divisors. We consider two cases:

(1) (Small multiplicity) For each irreducible component W of Supp(F )

passing through Z, multW(F )6 3m, that is, for general p ∈ U we have

multW (∆p)6 3 for any irreducible component W of Supp(∆p) passing

through p. After differentiating F , we will construct a “well-behaved”

covering family of tigers of dimension one. We will derive an upper

bound of ω by studying this well-behaved covering family of tigers. See

Section 5.3.

(2) (Big multiplicity) There exists an irreducible componentW of Supp(F )

passing through Z with multiplicity multW(F )> 3m, that is, for
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general p ∈ U we have multW (∆p)> 3 for an irreducible component

W of Supp(∆p) passing through p. We will construct a covering family

of tigers of dimension two and derive an upper bound of ω by studying

the geometry of this covering family of tigers. See Section 5.4.

To pick up a “well-behaved” nonzero section in H0(X × U, pr∗XLm ⊗
I⊗6m
Z ), we will apply the following proposition.

Proposition 5.2. [Laz04, Proposition 5.2.13] Let X and U be smooth

irreducible varieties, with U affine, and suppose that

Z ⊆W ⊆X × U

are irreducible subvarieties such that W dominates X. Fix a line bundle L

on X, and suppose given on X × U a divisor F ∈ |pr∗X(L)|. Write

l = multZ(F ), k = multW(F ).

Then after differentiating in the parameter directions, there exists a divisor

F ′ ∈ |pr∗X(L)| on X × U with the property that

multZ(F ′)> l − k and W * Supp(F ′).

5.3 Small multiplicity

Let X be an ε-klt Q-Fano threefold of Picard number one and write

Vol(X) =−K3
X > (3ω)3 for some positive rational number ω. Denote

D =−2KX , we have D3 > (6ω)3. From 5.1, there is an integer m> 0

such that L=mD/ω is Cartier and an open affine subset U ⊆X such

that H0(X × U, pr∗XL⊗ I
⊗6m
Z ) 6= 0. We fix a nonzero section s ∈H0(X ×

U, pr∗XL⊗ I
⊗6m
Z ) with F = div(s) on X × U .

Proposition 5.3. With the above set up, assume that ω > 4. Suppose

that we are in the case where all the irreducible components W of Supp(F )

passing through Z satisfy multW(F )6 3m, then we have ω < 8/ε+ 4. In

particular, there is an upper bound of the volume

Vol(X) =−K3
X 6

(
24

ε
+ 12

)3

.

Proof. Let M be the maximum of multW(F ) amongst all the irreducible

components W of Supp(F ) passing through Z, then M 6 3m from the

hypothesis. For W of Supp(F ) a fixed irreducible component passing
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through Z, take M times differentiation of F by Proposition 5.2. Then

we obtain a divisor F ′ ∈ |pr∗X(L)⊗ I⊗6m−M
Z | with the property that

multZ(F ′)> (6m−M)> 3m and W * Supp(F ′).

Since there are only finitely many irreducible components of Supp(F )

passing through Z and we are taking a generic differentiation, indeed for a

general divisor F ′′ ∈ |pr∗X(L)⊗ I⊗6m−M
Z | we haveW * Supp(F ′′) for anyW

an irreducible component of Supp(F ) passing through Z. In particular, the

base locus Bs(|pr∗XL⊗ I
⊗6m−M
Z |) contains no codimension one components

in a neighborhood of Z.

Let G be a general divisor in |pr∗XL⊗ I
⊗6m−M
Z | and ∆p =Gp/m for p ∈ U

general be the corresponding Q-divisors on X. It follows that p ∈Nklt(KX +

∆p) as multp∆p > 3. The minimal non-klt center Vp ⊆Nklt(KX + ∆p)

passing through p must be positive dimensional by Lemma 3.5 as the weight

of ∆p is ω/2> 2. Also Vp can only be one-dimensional, as by construction

m> 2, and hence

06multW∆p = multw∆p = 1/m < 1,

where W is any irreducible component of Supp(∆p) and w ∈W is a general

point.

Let π : Y →X with f : Y →B be a one-dimensional covering family

of tigers of weight ω′ > ω/2 constructed from ∆p’s by Lemma 3.2 and

Proposition 3.3. By abusing of the notation, we still denote ∆p’s the divisors

associated to this covering family of tigers.

Choose p, q ∈ U ⊆X general. By Lemma 1.3, the non-klt locus

Nklt(π∗(KX + ∆p + ∆q))⊇ Vp ∪ Vq on Y is connected and there is a one-

cycle Cp,q connecting Vp and Vq. Since Y is normal, an irreducible component

C of Cp,q intersecting Vq satisfies C ∩ Ysm 6= ∅ for p, q ∈X general. Since C

is in Nklt(π∗(KX + ∆p + ∆q)), by symmetry we have multC(π∗(∆p))> ε/2.

Choose a general point b ∈ f(C), then Yb = f−1(b) is a general fiber of

f : Y →B and one has

2
ω
2 − 2

>
2

ω
(−KX .Vt) = π∗∆p.Yb >

ε

2

where the first inequality follows from Corollary 3.9. For the second

inequality, note that we can make 06multW∆p = 1/m� 1 for W any

irreducible component of Supp(∆p). In fact, in 5.2 we can start with the
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section sN ∈H0(X × U, pr∗XLmN ⊗ I⊗6mN
p ) for N � 0. The dichotomy into

small and big multiplicities are the same and the above argument still goes

through.

Hence ω 6 8/ε+ 4.

Remark 5.4. The difficulty here when we have covering families of

tigers of dimension one is that in general the one-cycle C as in the above

proof might be contained in Supp(π−1
∗ (∆p)). In this case, one cannot see the

contribution of the ε-klt condition from the intersection number π∗∆p.Yb for

Yb a general fiber over f(C)⊆B, since Yb ⊆ Supp(π−1
∗ (∆p)) (cf., Example

2.1). The differentiation argument eliminates the contribution of irreducible

codimension one components of Supp(π−1
∗ (∆p)) along Yb and hence we can

proceed as in Proposition 5.3.

5.4 Big multiplicity

Again, let X be an ε-klt Q-factorial Q-Fano threefold of Picard number

one. Write Vol(X) =−K3
X > (3ω)3 for some positive rational number ω

and denote D =−2KX . As before, from 5.1 there is an integer m> 0

such that L=mD/ω is Cartier and an open affine subset U ⊆X such

that H0(X × U, pr∗XL⊗ I
⊗6m
Z ) 6= 0. We fix a nonzero section s ∈H0(X ×

U, pr∗XL⊗ I
⊗6m
Z ) with F = div(s) on X × U . We now consider the case

where there exists an irreducible componentW of Supp(F ) passing through

Z with multiplicity multW(F )> 3m.

Lemma 5.5. Suppose that there exists an irreducible component W of

Supp(F ) passing through Z with multiplicity multW(F )> 3m, then there

exists a covering family of tigers of dimension two and weight ω′ > ω/2.

Proof. Fix W to be one of these irreducible components. Cutting down

by hyperplanes on U and restrict to a smaller open subset of U , we may

assume that W → U factors through a Hilbert scheme of X and W →X

is generically finite. Replace U by the normalization of the closure of its

image in the Hilbert scheme andW by the normalization of universal family,

we obtain maps π : Y →X and f : Y →B. Note that a general fiber Yb is

two-dimensional. We claim that the pairs (∆b = π∗(Yb), Vb = Yb) is a two-

dimensional covering of tigers of weight ω′ > ω/2.

Since X is Q-factorial and ρ(X) = 1, the integral divisor ∆b = π∗(Yb)

for any b ∈B on X is Q-linearly equivalent to a multiple of −KX . Also

π∗(Yb)6 Fb since by construction this is true for the divisor Wb. In

particular, π∗(Yb)∼Q −KX/ω
′ for some ω′ > ω/2. Since any two general
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divisors π∗(Ybi), i= 1, 2, on X are Q-linearly equivalent as the base field

is uncountable, and it is clear that Vb = π(Yb) is a pure non-klt center of

Nklt(X,∆b), the claim follows.

Let π : Y →X with f : Y →B be a covering family of tigers of dimension

two and weight ω′ > ω/2 from Lemma 5.5. We first deal with case where

π : Y →X is not birational.

Proposition 5.6. Suppose that the two-dimensional covering family of

tigers π : Y →X with f : Y →B of weight ω′ > ω/2 is not birational and

assume that ω > 12, then ω 6 24/ε+ 12. In particular, there is an upper

bound of volume

Vol(X) =−K3
X 6

(
72

ε
+ 36

)3

.

Proof. Let d> 2 be the degree of π : Y →X. Fix an open subset

U ⊆X such that for a general point p ∈ U , there are d divisors ∆ti
p for

some t1, . . . , td ∈B such that π(Yti)⊆Nklt(X,∆ti
p ) is the unique minimal

non-klt center passing through p. Consider the collection of Q-divisors

{∆′p = 6
d

∑d
i=1 ∆ti

p |p ∈ U}, then multp∆
′
p > 6, multW ′∆′p = 6

d 6 3 for W ′ ⊆
Supp(∆′p) any irreducible component, and ∆′p ∼Q

−KX
dω′/6 .

By the same construction as in 5.1, possibly after shrinking U to

a smaller open affine subset, there exists an integer m> 0 such that

H0(X × U, pr∗XL⊗ I
⊗6m
Z ) 6= 0 where L= 6m(−KX)/dω′ is Cartier. Let

t ∈H0(X × U, pr∗XL⊗ I
⊗6m
Z ) be a general nonzero section and G= div(t)

be the associated divisor on X × U . Note that multZ(G)> 6m and

multW(G)6 6m/d6 3m for W any irreducible component of Supp(G)

passing through Z. This is true since for general p ∈ U there is a special

divisor ∆′p with multp∆
′
p > 6 and multW ′∆′p = 6

d 6 3 for W ′ ⊆ Supp(∆′p) any

irreducible component, but t is a general section and we can use Lemma 5.1

to compute the multiplicity of the general section tp = t|X×{p}.
By a differentiation argument and the same construction as in Proposition

5.3, there is a covering family of tigers (∆t, Vt) of dimension one and

weight ω′′ > dω′/6> dω/12 which satisfies the property that the base

locus Bs(|pr∗XL⊗ I
⊗6m−M
Z |) contains no codimension one components in

a neighborhood of Z, where M is the maximum of multW(G) amongst all

the irreducible components W of Supp(G) passing through Z. Hence by

Corollary 3.9 again, we get

2

ω′′ − 2
>

1

ω′′
(−KX .Vt) = π∗∆p.Yb >

ε

2
.
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In particular,
4

ε
+ 2> ω′′ >

dω

12
>
ω

6

and ω 6 24/ε+ 12.

Assumption 5.7. From now on, we assume that π : Y →X with f : Y →
B is a birational covering family of tigers of dimension two and weight

ω′ > ω/2. Write KY + Γ−R= π∗KX where Γ and R are effective divisors

on Y with no common components.

Lemma 5.8. There is a π-exceptional divisor E on Y dominating B. In

particular, π : Y →X is not small.

Proof. Suppose that there is no π-exceptional divisors dominating B.

Let AB be a sufficiently ample divisor on B and AY = f∗AB the pullback.

Since ρ(X) = 1, the divisor AX = π∗AY on X is ample and π∗AX =AY +G

for some effective π-exceptional divisor G. By assumption f(G)⊆B has

codimension one and hence AY +G6 f∗H for some divisor H on B. This

is a contradiction since then AY +G is not big but π∗AX is.

The following lemma is crucial for computing the restricted volume. The

key point is that it allows us to control the negative part of the subadjunction

−KX |Vt . Note that the proof fails in higher dimensions (cf., [McK02, Lemma

6.2]).

Lemma 5.9. Let E be a π-exceptional divisor dominating B, then for

general points p, q ∈X we have that

E ⊆Nklt(KY + Γ−R+ π∗(∆p + ∆q)).

In particular, if we denote H = π∗(−KX), then for any π-exceptional divisor

E dominating B we have

2

ω′
H ∼Q π

∗(∆p + ∆q)> εE.

Proof. Since the construction of covering families of tigers is done by

the Hilbert scheme, π is finite on the general fibers Vt of f : Y →B. Recall

that π(Vt)⊆X is a pure non-klt center of (X,∆p(t)) for some ∆p(t) passing

through a general point p(t) ∈X. We denote ∆p(t) by ∆t for simplicity.

Let E be a π-exceptional divisor dominating B. Take t1, t2 ∈B gen-

eral, and consider π(E ∩ Vti)⊆ π(Vti) ∩ π(E). Since π is finite on the
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general fibers of f : Y →B, π(E) is an irreducible curve contained in

π(Vt1) ∩ π(Vt2)⊆Nklt(KX + ∆t1 + ∆t2). Pick a general point x ∈ π(E) and

consider its preimage on Vti . Since π is finite on the general fiber Vt,

π−1(x) ∩ Vti can only be finitely many points. Choose xi ∈ π−1(x) ∩ Vti
over x for i= 1, 2. By the Connectedness Lemma 1.3 applied to the pair

(Y, Γ−R+ π∗(∆t1 + ∆t2)) over X, there is a (possibly reducible) curve

contained in π−1(x) ∩Nklt(Y, Γ−R+ π∗(∆t1 + ∆t2)) connecting x1 and

x2. The component of this curve containing x1 cannot lie on Vt1 as the map

π is finite on Vt1 . As x ∈ π(E) is general, this curve deforms into a dimension

two set by moving x ∈ π(E). Denote Ẽ the closure of this two-dimensional

set, which is another π-exceptional divisor mapping onto π(E) and intersects

along E ∩ Vt1 . Since there are only finitely many exceptional divisors over

π(E) and t1 is general, we can assume Ẽ = E as E is irreducible, and

hence E ⊆Nklt(KY + Γ−R+ π∗(∆t1 + ∆t2)). In particular, multE(KY +

Γ−R+ π∗(∆t1 + ∆t2))> 1 and we get π∗(∆p + ∆q)> E if E * Supp(Γ)

and π∗(∆p + ∆q)> εE if E ⊆ Supp(Γ) from the fact that Γ ∈ [ 0, 1− ε ) as

X is ε-klt.

To study the geometry of the covering family f : Y →B, we would like

to run a relative minimal model program of (Y, Γ) over B. However, Y is

normal but possibly not Q-factorial. To get a Q-factorial model of (Y, Γ),

we adopt Hacon’s dlt models (cf., [KK10, Theorem 3.1]). In fact, since the

volume bound will be obtained by doing a computation on a general fiber

Yb, it suffices to modify Y over an open subset U ⊆B.

Lemma 5.10. After restricting to an open subset U ⊆B and replacing

Y by a suitable birational model, we can assume that Y is Q-factorial and

(Y, Γ) is ε/2-klt. Moreover, we can assume that for E any π-exceptional

divisor dominating U and p, q ∈X general, we have that

(5.1)
2

ω′
H ∼Q π

∗(∆p + ∆q)>
ε

2
E.

Proof. Fix p, q ∈X general and consider the pair

(]) KY + Γ−Rd + π∗(∆p + ∆q)−Re ∼Q π
∗(KX + ∆p + ∆q)

where R=Rd +Re with (−)d the sum of components dominating B and

(−)e the sum of components mapping to points in B. Restricting Y to

YU = f−1(U) for a suitable nonempty open set U ⊆B, we may assume that
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Re = 0 and the pair (]) becomes the effective pair

KY + Γ−Rd + π∗(∆p + ∆q)∼Q π
∗(KX + ∆p + ∆q).

We abuse the notation: Y is understood to be YU if not specified.

Denote Γp,q = Γ−Rd + π∗(∆p + ∆q) and let φ :W → Y be a log resolu-

tion of (Y, Γp,q). Write

KW + φ−1
∗ Γp,q +Q∼Q φ

∗(KY + Γp,q) + P

where Q, P > 0 are φ-exceptional divisors with Q ∧ P = 0. We aim to modify

W by running a relative minimal model program over Y with scaling of an

ample divisor so that it contracts Q<1−ε/2 + P .

Consider F =
∑

i Fi where the sum runs over all the φ-exceptional

divisors with log discrepancy in (ε/2, 1] with respect to (Y, Γp,q), then

(F + P ) ∧Q>1−ε/2 = 0 and Supp(F )⊇ Supp(Q<1−ε/2).

Since (Y, Γ−R) is ε-klt, the divisor Γ on Y as well as φ−1
∗ Γ on W

has coefficients in [ 0, 1− ε ). For rational numbers 0< ε < ε′ < 1 and

0< δ, δ′� 1, we have the following ε/2-klt pair

KW + φ−1
∗ Γ +Q<1−ε/2 + δ′Q1−ε/26·<1 + (1− ε′)(Q>1)red + δF

∼Q φ
∗(KY + Γp,q)− (φ−1

∗ Γp,q − φ−1
∗ Γ)− (1− δ′)Q1−ε/26·<1

− (Q>1 − (1− ε′)(Q>1)red) + P + δF

where (
∑

i aiQi)
α6·<β =

∑
α6ai<β

aiQi and (
∑

j bjGj)red =
∑

bj 6=0 Gj .

We denote this pair by (W, Ξ) where Ξ = φ−1
∗ Γ +Q<1−ε/2 + δ′Q1−ε/26·<1 +

(1− ε′)(Q>1)red + δF .

By [BCHM10], a relative minimal model program with scaling of an

ample divisor of the pair (W, Ξ) over Y terminates with a birational model

ψ :W 99KW ′ over Y with φ′ :W ′→ Y the induced map. We obtain the

following diagram:

where π′ :W ′→X is the induced map.
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Write KW ′ + ΓW ′ −RW ′ ∼Q π
′∗KX where π′ = φ′ ◦ π. Note that

ΓW ′ ∈ [ 0, 1− ε ) by the ε-klt condition and ΓW ′ − ψ∗Γ> 0 is φ′-exceptional.

It follows by the construction that

ψ−1
∗ ΓW ′ 6 φ−1

∗ Γ + δ′Q1−ε/26·<1 + (1− ε′)(Q>1)red.

In particular, (W ′, ΓW ′) is ε/2-klt as the pair (W, Ξ) is ε/2-klt and the

minimal model program does not make singularities worse.

On W ′, the divisor

G = ψ∗

(
−(φ−1

∗ Γp,q − φ−1
∗ Γ)− (1− δ′)Q1−ε/26·<1

−(Q>1 − (1− ε′)(Q>1)red) + P + δF
)

is φ′-nef with φ′∗G6 0. By [KM98, Negativity Lemma 3.39], we have that

G6 0. Since F is φ-exceptional and (F + P ) ∧Q>1−ε/2 = 0, it follows that

ψ∗(P + δF ) = 0. In particular, all the φ′-exceptional divisors on W ′ have

log discrepancies less than or equal to ε/2 with respect to (Y, Γp,q).

We now show that for any π′-exceptional divisor E′ on W ′ dominating

U , E′ satisfies the inequality

2

ω′
H ′ ∼Q π

′∗(∆p + ∆q)>
ε

2
E′.

where H ′ = ψ∗H = π′∗(−KX). This is easy to see: If E = φ′∗(E
′) 6= 0 on

YU , then by Lemma 5.9 E ⊆Nklt(KY + Γ−R+ π∗(∆p + ∆q)) and hence

E′ ⊆Nklt(KW ′ + ΓW ′ −RW ′ + π′∗(∆p + ∆q)). The inequality then follows

from the same argument as in Lemma 5.9. If φ′∗E
′ = 0, then by construc-

tion multE′(KW ′ + ΓW ′ −RW ′ + π′∗(∆p + ∆q))> 1− ε/2. Suppose that

E′ ⊆ Supp(RW ′), then

2

ω′
H ′ ∼Q π

′∗(∆p + ∆q)> E
′ >

ε

2
E′.

If E′ ⊆ Supp(ΓW ′), then as ΓW ′ ∈ [ 0, 1− ε ) we get

2

ω′
H ′ ∼Q π

′∗(∆p + ∆q)>

((
1− ε

2

)
− (1− ε)

)
E′ =

ε

2
E′.

It follows that W ′ is a required model.
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Remark 5.11. Write Γ = π−1
∗ ∆ + Γd + Γe and R=Rd +Re, where

(−)d is the sum of components dominating B and (−)e is the sum of

components mapping to points in B. From the proof of Lemma 5.10, we

deduce the following two inequalities:

(5.2)
2

ω′
H ∼Q π

∗(∆p + ∆q)>Rd

and

(5.3)
2

ω′
H ∼Q π

∗(∆p + ∆q)>
ε

2
Γd.

Now let π : Y →X with f : Y → U be the modified birational covering

family of tigers of dimension two and weight ω′ > ω/2 given by Lemma 5.10

where Y is now Q-factorial. Write KY + Γ−R∼Q π
∗KX , where Γ> 0,

R> 0 are π-exceptional, and Γ ∧R= 0. The pair (Y, Γ) is ε/2-klt with

Γ ∈ [ 0, 1− ε ) and note that H = π∗(−KX) is semiample and big on Y .

Recall that for a projective morphism φ : Z→ U , a divisor D on Z is

pseudo-effective (PSEF) over U if the restriction of D to the generic fiber

is pseudo-effective.

Lemma 5.12. Assume that ω′ > 2 and consider the pseudo-effective

threshold of KY + Γ over U with respect to H

τ := inf{t > 0|KY + Γ + tH is PSEF over B},

then

1> τ > 1− 2

ω′
> 0.

Proof. Since KY + Γ +H ∼Q R> 0, the first inequality is clear. When

restrict to a general fiber Yu of Y over U , we have

(KY + Γ + τH)|Yu = (R− (1− τ)H)|Yu

=

(
Rd −

2

ω′
H

)
|Yu −

(
1− τ − 2

ω′

)
H|Yu

which cannot be PSEF if ω′ > 2 and τ < 1− 2
ω′ since the first term is

nonpositive by (5.2) and the second term is negative.

Now we run a relative minimal model program with scaling of the covering

family of tigers f : Y → U . Since (Y, Γ) is ε/2-klt and H is semiample and

big, we may assume that (Y, Γ + τ ′H) remains ε/2-klt for a rational number
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0< τ ′ < τ . Run a relative minimal model program of (KY + Γ + τ ′H) with

scaling of H over U . By [BCHM10], it terminates with a relative Mori fiber

space Y ′→ T over U with dim Y ′ > dim T > dim U . Denote the induced

maps by g : Y 99K Y ′, ψ : Y ′→ T , and φ : Y ′→ U , we get the following

diagram:

For a general fiber Y ′t of ψ : Y ′→ T , the Picard number ρ(Y ′t ) = 1 and

−(KY ′ + Γ′d)|Y ′
t
∼Q (H ′ −Rd)|Y ′

t
is ample.

Lemma 5.13. There exists a divisor E′ on Y ′ which is exceptional over

X and dominates T .

Proof. Recall that there is a natural map T → U →B. Hence we can

extend ψ : Y ′→ T to ψ : Y ′→ T over B where (−) stands for a projec-

tive compactification of (−). Take a common resolution p :W →X and

q :W → Y ′ and let AT be a sufficiently ample divisor on T . Let AY ′ =

ψ
∗
AT , AW = q∗AY ′ , and AX = p∗AW . Then p∗AX =AW + E = q∗AY ′ +

E = q∗ψ
∗
AT + E for an effective divisor E on W which is exceptional over

X. Since ρ(X) = 1, it follows by the same argument as in Lemma 5.8 that

one of the irreducible components of E maps to a divisor E′ on Y ′. By the

same argument as in Lemma 5.8 again, one of the irreducible components

of the nonzero divisor q∗(E) dominates T .

Proposition 5.14. If dim T = 2, then ω′ 6 8/ε+ 2.

Proof. By Lemma 5.13, there exists a divisor E′ on Y ′ which is

exceptional over X and dominates T . Note that Y ′ is normal and hence

ψ(Sing(Y ′)) is a proper subset of T . In particular, a general fiber Y ′t
of ψ : Y ′→ T is a smooth projective curve and hence E′.Y ′t > 1. Since

−(KY ′ + Γ′d)|Y ′
t
∼Q (H ′ −Rd)|Y ′

t
is ample, a general fiber Y ′t is a smooth

rational curve P1. From (5.1), we know that

2

ω′
H ′ − ε

2
E′ ∼Q effective.
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Also from (5.2),

− (KY ′ + Γ′).Y ′t = (H ′ −R′).Y ′t =

(
1− 2

ω′

)
H ′.Y ′t +

(
2

ω′
H −R′

)
.Y ′t

>

(
1− 2

ω′

)
H ′.Y ′t .

It follows that

2

ω′
>

1

ω′
(−(KY ′ + Γ′).Y ′t ) >

1

ω′

(
1− 2

ω′

)
H ′.Y ′t

>

(
1− 2

ω′

)
ε

4
E′.Y ′t

>

(
1− 2

ω′

)
ε

4

where the first inequality is by the adjunction formula on P1. Hence

ω′ 6 8
ε + 2.

Proposition 5.15. If dim T = 1, then

ω′ 6
4M(2, ε)R(2, ε)

ε
+ 2

where R(2, ε) is an upper bound of the Cartier index of KS for S any ε/2-

klt log del Pezzo surface of ρ(S) = 1 and M(2, ε) is an upper bound of the

volume Vol(S) =K2
S for S any ε/2-klt log del Pezzo surface of ρ(S) = 1.

Proof. Since f : Y → U has connected fibers, T ∼= U . Since −(KY ′ +

Γ′d)|Y ′
u
∼Q (H ′ −Rd)|Y ′

u
is ample and ρ(Y ′u) = 1 for a general point u ∈ U ,

we see that

−KY ′
u
∼Q (H ′ + Γ′d −Rd)|Y ′

u

is ample. By Lemma 5.13, let E′ be a divisor on Y ′ exceptional over X

which dominates U , then

−KY ′
u
≡ (H ′ + Γ′d −Rd)|Y ′

u
>

(
1− 2

ω′

)
H|Y ′

u
>

(
1− 2

ω′

)
· ω
′ε

4
E′u

where the second inequality follows by dropping Γ′d and applying (5.2) while

the last one from (5.1). By intersecting with the ample divisor −KY ′
u
, this
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implies that

(−KY ′
u
)2 > (ω′ − 2)

ε

4
E′u.(−KY ′

u
).

Now (Y ′u, Γ
′
u) is an ε/2-klt log del Pezzo surfaces of Picard number one.

Hence Y ′u is an ε/2-klt del Pezzo surfaces of Picard number ρ(Y ′u) = 1. By

Theorem 4.3, (−KY ′
u
)2 is bounded above by a positive number M(2, ε)

satisfying

M(2, ε)6max

{
64,

16

ε
+ 4

}
.

Also, by (♦) the Cartier index of KY ′
u

has an upper bound,

R(2, ε)6 r

(
2,
ε

2

)
6 2(4/ε)128/ε5 .

It follows that

M(2, ε) > (−KY ′
u
)2 >

1

R(2, ε)
(ω′ − 2)

ε

4
E′u.(Ample Cartier)

>
1

R(2, ε)
(ω′ − 2)

ε

4

and hence we get an upper bound,

ω′ 6
4M(2, ε)R(2, ε)

ε
+ 2.

Remark 5.16. It has been shown in [Bel08] that a klt log del Pezzo

surface has at most four isolated singularities. Also surface klt singularities

are classified by Alexeev in [Cor07]. Hence we expect that it is possible to

obtain a better upper bound for R(2, ε) and M(2, ε) in Proposition 5.15.

Theorem 5.17. Let (X,∆) be an ε-klt log Q-Fano threefold of ρ(X) = 1.

Then the degree −K3
X satisfies

−K3
X 6

(
24M(2, ε)R(2, ε)

ε
+ 12

)3

where where R(2, ε) is an upper bound of the Cartier index of KS for S any

ε/2-klt log del Pezzo surface of ρ(S) = 1 and M(2, ε) is an upper bound of

the volume Vol(S) =K2
S for S any ε/2-klt log del Pezzo surface of ρ(S) = 1.

Note that we have M(2, ε)6max{64, 16/ε+ 4} from Theorem 4.3 and

R(2, ε)6 2(4/ε)128/ε5 from (♦).
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Proof. Recall that ω′ > ω/2. The theorem then follows from Propositions

5.3, 5.14 and 5.15.

The following example shows that the cone construction analogous to

Example 2.1 only provides ε-klt Fano threefolds with volumes of order 1/ε2.

Example 5.18. (Projective cone of projective spaces) For n> 1 and

d> 2, let Pn ↪→ PN be the embedding by |O(d)| and X be the associated

projective cone. The projective variety X is normal Q-factorial of Picard

number one with the unique singularity at the vertex O. X admits a

resolution π : Y =BlOX →X with exceptional divisor E ∼= Pn of normal

bundle OE(E)∼=OPn(−d). The variety Y is the projective bundle µ : Y ∼=
PPn(OPn ⊕OPn(−d))→ Pn with tautological bundle OY (1)∼=OY (E). We

have:

• OE(E)∼=OPn(−d) and hence En+1 = (−d)n;

• KY = π∗KX + (−1 + n+1
d )E and hence X is always klt. X is terminal

(resp. canonical) if and only if n+ 1> d> 2 (resp. n+ 1> d> 2);

• KY = µ∗(KPn + det(E))⊗OY (−rk(E))≡−(n+ 1 + d)F − 2E where E =

OPn ⊕OPn(−d) and F = µ∗OnP(1);

• Fn+1 = 0 and Fn+1−k.Ek = (−d)k−1 for 16 k 6 n+ 1;

• Kn+1
Y =Kn+1

X + (−1 + n+1
d )n+1En+1 and

Kn+1
Y =

−1

d

n+1∑
k=1

(
n+ 1− k

k

) (
−1 +

n+ 1

d

)n+1−k
(2d)k

=
−1

d
((d− n− 1)n+1 − (−(d+ n+ 1)n+1));

• In summary, −KX is ample with

(−KX)n+1 =
(d+ n+ 1)n+1

d
.

If n= 2, then we have an ε-klt Fano threefold of Picard number one with

ε= 1/d. The volume Vol(X) = (−KX)3 is of order 1/ε2.

In view of Theorem 5.17, it is then interesting to see whether ε-klt Fano

threefolds with big volumes exist.

Question 5.19. Can one find an ε-klt Q-factorial Q-Fano threefold X

of ρ(X) = 1 with volume Vol(X) = (−KX)3 =O
(

1
εc

)
for c> 3?
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