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Abstract

We consider a model of random access (slotted-aloha-type) communication networks of
general topology. Assuming that network links receive exogenous arrivals of packets
for transmission, we seek dynamic distributed random access strategies whose goal is
to keep all network queues stable. We prove that two dynamic strategies, which we
collectively call queue length based random access (QRA), ensure stability as long as the
rates of exogenous arrival flows are within the network saturation rate region. The first
strategy, QRA-I, can be viewed as a random-access-model counterpart of the max-weight
scheduling rule, while the second strategy, QRA-II, is a counterpart of the exponential
(EXP) rule. The two strategies induce different dynamics of the queues in the fluid scaling
limit, which can be exploited for the quality-of-service control in applications.
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1. Introduction

In this paper we consider a model of random access (slotted-aloha-type) communication
networks of general topology. Assuming that network links receive exogenous arrivals of
packets for transmission, we seek dynamic distributed random access strategies whose goal is
to keep the network queues stable. (Queues are formed by packets waiting for transmission
at the links.) We prove that two dynamic strategies, which we collectively call queue length
based random access (QRA), ensure stability as long as the rates of exogenous arrival flows are
within the network saturation rate region.

Our basic network model (formally defined in Section 3) is that of [11], which in turn is
a slight generalization of those in [12] and [21]. (A closely related, but different, model was
considered in [10]. All the models mentioned above generalize the classical slotted aloha
system [14].) Informally, our model consists of a finite set N of nodes n and a finite set of
directed communication links i = (n, m) connecting some of the node pairs. Time is slotted. In
each slot, node n transmits a ‘packet’ (or accesses channel) with probability pn, and it chooses
one of its outgoing links i = (n, m) to transmit on, with probabilities pnm/pn summing up
to 1. Link access probabilities pi are, generally speaking, chosen dynamically, but once they
are chosen for a slot, each node transmits independently of the others. A general interference
structure between the nodes is defined, so that some of the simultaneous transmissions on
the network links can fail, owing to the interference from other transmissions. Thus, a set
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of (constant) link access probabilities p = {pi} determines the corresponding set of link
throughputs µ = {µi}—this dependence is denoted by µ(p).

The network saturation throughput region M for the above model is the set of all vectors
µ(p) for all possible access probability sets p, along with all nonnegative vectors x which
can be dominated by such µ(p). In other words, region M is the set of all link throughput
vectors which can be achieved by static random access strategies (i.e. those using constant
access probabilities), under the assumption that all link queues are ‘saturated’ (i.e. have an
unlimited number of packets available for transmission at any link at any time). Gupta and
Stolyar [11] showed that the outer (Pareto) boundary of the saturation throughput region M

was essentially characterized as the set of throughput vectors maximizing (over M) the system
objective function

∑
i wi log µi for all possible sets w = {wi} of nonnegative weights assigned

to the links. (See [10] for an analogous result for a related model.) An important property
of the optimal solution µ∗ for a given set of link weights w is that the corresponding set of
access probabilities p = p(w) (such that µ∗ = µ(p)) can be determined in a distributed
fashion; namely, to determine ‘its own’access probabilities, each node will only need to ‘know’
the weights of the nodes in its appropriately defined ‘local neighborhood’. (This property
was established earlier in [12] for the case when all wi = 1.) It was also suggested in [11]
(and [10]) that a network can be controlled by changing the link weights dynamically to satisfy
some desired constraints of the link throughput allocation while keeping such allocation efficient
(i.e. Pareto optimal). In fact, a specific algorithm was proposed in [11] which seeks to maximize
the system utility,

∑
i αi log µi , subject to the desired lower bounds on the link rates, and was

shown to have good performance.

In this paper we study the network model described above, but consider the case when each
link i receives a flow of exogenous packet arrivals at the average rate λi . The question is: how
can we set access probabilities dynamically so that all link queues are stochastically stable? Let
Qi(t) be the queue length at link i in time slot t , and let the dynamic link weight wi(t) at time t

be a function of Qi(t). A QRA algorithm uses (dynamic) link weights wi(t) and sets access
probabilities in each slot t to p(w(t)). We consider two different variants of the QRA algorithm.
The first algorithm, QRA-I, uses weights wi(t) = αi + γiQi(t)

β with parameters αi ≥ 0,
γi > 0, and β > 0. The second algorithm, QRA-II, uses weights wi(t) = αi exp(γiQi(t))

κ ,
αi > 0, γi > 0, and κ ∈ (0, 1). Our main result is that both the QRA-I and QRA-II algorithms
ensure stability of the queues as long as the input rates vector λ = {λi} of input rates lies
(strictly) within the saturation throughput region M . We note that the QRA-I algorithm was
essentially introduced in [11], but the algorithm stability issue was not addressed there; the
QRA-II algorithm is new.

The reason why we consider two different algorithms is because, although they both ensure
stability (as long as λ is within M), they induce different behavior of the queues. This is
demonstrated by our analysis of their fluid sample paths (FSPs), which are roughly the limits
q(t), t ≥ 0, of ‘fluid-scaled’ processes (1/r)Q(rt), t ≥ 0, as r → ∞. We can say that QRA-I
is the random-access-model counterpart of the much studied max-weight-type scheduling
algorithms. (Max-weight algorithms were originally introduced in [20], and then extended
and generalized to accommodate a large variety of models and scenarios (cf. [6] and [19] for
recent reviews).) The dynamics of an FSP under QRA-I is such that a Lyapunov function of the
form

∑
i ciγiqi(t)

β+1 is nonincreasing. In contrast, FSPs under the QRA-II algorithm are such
that maxi γiqi(t) is nonincreasing. In this sense, QRA-II is the counterpart of the ‘exponential’
(EXP) scheduling rule [16], which has the same property and is known to keep the values
of γiQi(t) roughly equal in the heavy traffic limit [17]. Thus, the QRA-II algorithm (unlike
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QRA-I) allows us, to a certain extent, to ‘directly control’ the ratios of different queues—a
useful feature for quality-of-service control in applications.

In terms of technique, the stability analysis of QRA-II is more involved than that of QRA-I.
Similarly to the situation with the EXP algorithm, the conventional fluid scaling, leading to
FSPs in the limit, is insufficient, and we additionally need to consider a ‘local fluid scaling’,
leading to local fluid sample paths (LFSPs). Analysis of LFSP dynamics for QRA-II (in the
proof of Theorem 4) is substantially different from previous analyses of LFSPs under the EXP
algorithm in that it requires a completely different Lyapunov function. We believe that this part
of our work is of independent interest.

We have to clarify why one would need QRA algorithms at all, and not simply use previously
known max-weight and EXP algorithms for our model. Both max-weight and EXP algorithms
would have the following form: in each time slot choose access probabilities so as to

maximize
∑

i

wi(t)µi (1)

with weights wi(t) defined as for QRA-I and QRA-II, respectively. Such an algorithm will
ensure stability of the queues as long as the input rate vector λ lies within the system’s maximum
stability regionV . RegionV is typically strictly larger than our saturation rate regionM , because
it is defined as the largest region within which stability is feasible at all under any strategy,
including strategies utilizing global and instantaneous state sharing and coordination between
network nodes. However, owing to the fact that ‘instantaneous service rates’ µi enter the sum
in (1) linearly, solving (1) in each time slot would typically involve global (combinatorial)
optimization, not allowing a distributed solution. In contrast, a QRA algorithm chooses access
probabilities which

maximize
∑

i

wi(t) log µi,

and this can be done in a distributed fashion. Thus, although QRA algorithms guarantee stability
within a typically smaller region of input rates, they are much easier to implement in practice.

We would like to mention one more line of previous research (see [1] and the references
therein), which aims at characterizing the stability region S under static random access strategies
(i.e. those with constant access probabilities) for the classical slotted aloha system (where all
links interfere with each other). It is easy to see that the closure of S contains the saturation
throughput region M , that is, M ⊆ S̄. It has long been conjectured that, for slotted aloha, in
fact M = S̄. This conjecture was proved in [1], but only for the case when exogenous arrival
processes are dependent in a special way.

The rest of the paper is organized as follows. In Section 2 we introduce the basic notation.
Our network model is described in Section 3, and the queueing stability problem for the case
of exogenous arrival processes is defined in Section 4. In Section 5 we define the saturation
throughput region. The QRA algorithms and our main stability result (Theorem 1) are presented
in Section 6. Section 7 contains the proof of Theorem 1; the key part of this proof (Theorem 2)
is then proved separately for QRA-I and QRA-II in Sections 8 and 9, respectively.

2. Basic notation and conventions

We use the notation R, R+, and R++ for the sets of real, real nonnegative, and real positive
numbers, respectively. Corresponding I -times product spaces are denoted R

I , R
I+, and R

I++.
The space R

I is viewed as a standard vector space, with elements x ∈ R
I being row vectors
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x = (x1, . . . , xI ), x · y being the scalar product, and ‖x‖ = (x · x)1/2 being the Euclidean
norm, inducing the standard metric.

Vector equalities and inequalities are understood componentwise. Sometimes, where it
cannot cause confusion, we slightly abuse notation by applying log and exp componentwise,

log x = (log x1, . . . , log xI ), exp x = (exp x1, . . . , exp xI ),

and by writing
γ × q = (γ1q1, . . . , γI qI )

for the componentwise product of vectors.
For a scalar function F(x), x ∈ R

I , and a subset M ∈ R
I , x∗ ∈ arg maxx∈M F(x) means

that x∗ maximizes F(x) within M . The abbreviation ‘u.o.c.’ means ‘uniform on compact
sets’ convergence of functions. Usually, we will consider this convergence for functions (or
vector functions) of the time t ∈ [0, ∞), in which case u.o.c. convergence means uniform
convergence in [0, b] for any b ≥ 0. Define [z]− := min{z, 0} and [z]+ := max{z, 0}, and, for
a nonnegative a, define [z]+a as z if a > 0 and [z]+a as [z]+ if a = 0.

3. Basic model

We consider the basic model of [11], which is a generalized version of the model of [12]
and [21]. The system consists of a finite set N = {1, 2, . . . , N} of nodes and operates in
discrete time, with time slots indexed by t = 0, 1, 2, . . . . Let Dn ⊆ N \ n denote the subset
of nodes to which node n has data to send. A node n at any time t may attempt transmission of
one unit of data, called a packet or customer, to one of the nodes m ∈ Dn. When this happens,
we say that node n makes a transmission attempt on the link (n, m). We will denote by

� := {(n, m) | n ∈ N , m ∈ Dn}
the set of all system links, and by I its cardinality (i.e. the total number of links). Throughout
the paper, for brevity, we often (but not always) denote links (n, m) ∈ � by a single index i.

We make the following additional model assumptions.

(a1) A node cannot simultaneously (i.e. within the same slot) transmit on two or more different
links.

(a2) If a node transmits in a slot, any simultaneous attempt to transmit to this node will fail.

(a3) If there are two or more simultaneous transmissions to a node, they all collide and fail.

(a4) Any transmission attempt by node n will interfere with and ‘erase’ any attempt to receive
a packet at any of the nodes within some subset of N , denoted by Nn. (The model of [12]
and [21] additionally assumed that m ∈ Nn implied that n ∈ Nm.)

Note that assumptions (a3) and (a4) imply that Dn ⊆ Nn. (In other words, a transmission
attempt by node n may interfere with receiving at more nodes than it actually sends traffic to.)
Also, by assumption (a2), n ∈ Nn for all n.

We consider a class of random access (slotted-aloha-type) transmission schemes, defined as
follows. In each time slot t each node n chooses the set of link access probabilities pnm, m ∈
Dn, such that

pn :=
∑

m∈Dn

pnm ≤ 1. (2)
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Node n attempts a transmission of one packet (customer) in slot t with probability pn (which can
be called the node access probability) independently of other nodes, and when it does transmit,
it chooses a particular link m ∈ Dn to transmit on, also randomly, with probabilities pnm/pn.
The resulting link transmission success probabilities (or, average link throughputs) in the slot
are given by

µnm = pnm

∏
{k : m∈Nk, k 	=n}

(1 − pk). (3)

We emphasize that the access probabilities pnm may depend on time, past history, and be
mutually dependent across nodes and links. However, once the pnms are chosen for a given
slot, the node transmission attempts are independent.

If the random access scheme is static, that is, probabilities pnm stay constant in time, the
µnms are time average link throughputs.

The dependence of the set (vector) of link throughputs µ = (µi, i ∈ � ) ∈ R
I+ on the set

(vector) of link access probabilities

p ∈ P := {(pi, i ∈ � ) ∈ [0, 1]I | (2) holds},
given by (3), will be denoted by µ(p). Clearly, the function µ(p) is continuous.

4. Stability problem

Suppose that there is an exogenous arrival process of packets (customers) of average rate λi

to be transmitted on link i. To simplify exposition, we will assume that the arrival processes
for different links are mutually independent, and that the process for link i is given by an
independent and identically distributed (i.i.d.) sequence Ai(t), t = 0, 1, 2, . . . , of nonnegative
integer random variables, where Ai(t) is the number of packets (customers) arriving in slot t .
(Obviously, λi = E[Ai(t)].) Also, for simplicity, we assume that P{Ai(t) = 0} > 0.
(These assumptions on the arrival processes can be replaced by much more general Markov
assumptions, e.g. those in [2]. Essentially, all we will need is that the underlying stochastic
process describing the evolution of the system, under the strategy we will introduce later in
Section 6, is Markov.)

Customers waiting for transmission form queues: one queue each link. The queue length
(i.e. number of waiting customers) at link i at time t is denoted by Qi(t).

The problem is to find a dynamic random access strategy, i.e. a dynamic rule for choosing
access probabilities pi , such that the link queues remain stochastically stable. For a random
access strategy such that the queueing process Q(t) = (Qi(t), i ∈ � ), t ≥ 0, is a Markov
chain (as will be the case for the QRA strategies we introduce later in Section 6); stochastic
stability is understood as ergodicity of this Markov chain.

Obviously, stability cannot be expected for arbitrary input rates λ = (λi, i ∈ � ). The QRA
strategies of Section 6 are such that they ensure stability, as long as λ lies within the saturation
throughput region, which we introduce next.

5. Saturation throughput region

We define the system’s saturation throughput region M , which we will often simply call the
throughput region, as the set of all nonnegative vectors, which can be majorized by vectors of
the form µ(p), namely,

M := {µ′ ∈ [0, 1]I | µ′ ≤ µ(p) for some p ∈ P }.
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Region M has the following simple interpretation. Suppose that each link is ‘saturated’, i.e.
there is an unlimited number of packets available for transmission. A vector µ′ is within M if
there exists a static random access strategy, with some constant vector p of access probabilities,
that provides average throughput of at least µ′

i on each link i. It is easy to observe that region M

is a compact subset of the positive quadrant R
I+.

It was shown in [11] that the subset of maximal elements (or Pareto boundary) of M , i.e. the
set

M∗ := {µ∗ ∈ M | µ∗ ≤ µ′ ∈ M implies that µ′ = µ∗},
is essentially equal to the set of points µ ∈ M maximizing (‘weighted proportional fairness’)
objective

∑
i∈� wi log µi for different nonnegative weights wi . The choice of access probabil-

ities p such that µ(p) maximizes
∑

wi log µi over M is given by Proposition 1, below, which
is Theorem 1 of [11], which in turn is a generalization of the corresponding result in [12].

For each n ∈ N , let us denote by

Sn := {(�, k) | k ∈ D�, k ∈ Nn}
the set of all links (�, k) which either originate at n or are such that a transmission by node n

interferes with that on (�, k).

Proposition 1. ([11, Theorem 1].) For an arbitrary set of positive weights

w = (wnm, (n, m) ∈ � ) ∈ R
I++,

there exists a unique set of access probabilities p ∈ P which maximizes the function

∑
(n,m)∈�

wnm log µnm(p).

The optimal p is given by

pnm = wnm∑
(�,k)∈Sn

w�k

. (4)

The dependence of the set (vector) of access probabilitiesp ∈ P on the set (vector) of positive
link weights w∈ R

I++, given by (4), will be denoted by p(w). We will extend the domain of
p(w) for all w ∈ R

I+, using the convention that pnm = 0 when wnm = 0. (Expression (4) is
well defined when wnm > 0, but may not be when wnm = 0.) Clearly, p(w) is continuous at
any point w ∈ R

I++. It is not necessarily continuous at points w with some zero components.
However, some continuity properties, namely those in Proposition 2(c), below, do hold and will
suffice for our purposes.

Proposition 2. (a) Function p(w), w ∈ R
I+, is invariant with respect to the scaling of w by a

positive constant.

(b) Suppose that w′ ∈ R
I+. Then,

µ′ ∈ arg max
x∈M

∑
w′

nm log xnm if and only if µ′
nm = µnm(p(w′))

for all (n, m) with w′
nm > 0. (We use the convention that 0(−∞) = 0.)
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(c) Suppose that w → w′ ∈ R
I+. Then the following assertions hold.

(c1) If w′
nm = 0 and w′

�k > 0 for at least one (�, k) ∈ Sn then pnm(w) → 0 = pnm(w′). In
particular, if w′

nm = 0 and w′
nk > 0 then pnm(w) → 0.

(c2) If w′
nm > 0 then

pnm(w) → pnm(w′) and µnm(p(w)) → µnm(p(w′)).

The proof is straightforward and is thus omitted.

Remark. Expression (4) can be equivalently rewritten as

pnm = wnm∑
k∈Nn

W in
k

, (5)

where
Win

k :=
∑

� : k∈D�

w�k

is the sum of the weights of all links ‘incoming’ to node k. As explained in [11], given the
set of weights w, the calculation of access probabilities pnm according to (5) can be done in a
‘distributed way’, namely, nodes will only need to ‘know’ the weights of their own links and
exchange a minimum amount of information with their ‘neighboring’ nodes.

6. Queue length based dynamic strategies. Stability results

Consider the model described in Sections 3 and 4. Without loss of generality—rather with a
gain of generality—we assume that a transmission attempt (with nonzero probability) is allowed
on any link i in any slot t , regardless of whether or not there are customers in the queue available
for transmission in that slot. (Any transmission attempt interferes with transmissions on the
other links in the usual way.) In particular, it is possible to have a ‘successful transmission
attempt’ on link i that transmits no customer from the corresponding queue, because none were
available. We also adopt the convention that the Ai(t) customers arriving at link i in slot t are
not counted into the queue length Qi(t) at time t , but are immediately available for transmission
at time t . (This convention is nonessential, made just to make the expressions ‘cleaner’.) Given
our conventions, we obviously have the following recurrence for the queue length:

Qi(t + 1) = [Qi(t) + Ai(t) − hi(t)]+, t = 0, 1, 2, . . . , (6)

where hi(t) = 1 if there was a successful transmission attempt on link i at time t , and hi(t) = 0
otherwise.

Below we define the two dynamic strategies that we are going to study, which we collectively
refer to as the QRA algorithms.

Definition. (QRA algorithms.) Each node n maintains dynamic weights wi(t), t = 0, 1, 2, . . . ,
of ‘its’ outgoing links, depending on the corresponding queue lengths. Each node n sets its
access probabilities in slot t according to (5). In other words, the set of access probabilities
in the network at time t is given by p(w(t)). The QRA-I algorithm uses weights wi(t) =
αi +γiQi(t)

β with parameters αi ≥ 0, γi > 0, and β > 0. The QRA-II algorithm uses weights
wi(t) = αi exp(γiQi(t))

κ with parameters αi > 0, γi > 0, and κ ∈ (0, 1).
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Given our assumptions on the arrival processes (see Section 4), it is clear that, under both
QRA algorithms, the queue length (vector) process Q(t), t = 0, 1, 2, . . . , is an irreducible
(and aperiodic) Markov chain with countable state space.

Theorem 1. Suppose that the vector of input rates λ is such that

λ < µ∗ for some µ∗ ∈ M. (7)

Then,

(i) the Markov chain Q = {Q(t), t = 0, 1, 2, . . .} is ergodic under the QRA-I policy;

(ii) the Markov chain Q is ergodic under the QRA-II policy when the following additional
(exponential moment) assumption on the input flows holds:

E[exp(a1Ai(0))] < ∞ for some a1 > 0 and all i. (8)

Remark 1. If input processes are not i.i.d., condition (8) can be relaxed to (26) (See Subsec-
tion 9.1)—the latter condition is the one actually used in the proof.

Remark 2. In essence, the QRA-I algorithm was introduced in [11], in a somewhat different
context, where the arrival processes and queue lengths were ‘virtual’, and used to enforce the
minimum desired throughputs on the links. However, the queueing stability problem was not
addressed in [11].

Remark 3. As already discussed in the introduction, the QRA-II algorithm is the ‘random
access model’ counterpart of the EXP algorithm [16], [17]. (The latter algorithm applies to a
different model.) The queue weights wi(t) used in the original EXP algorithm have the form

wi(t) = αi exp

(
γiQi(t)

1 + (γQ(t))1−κ

)
,

where γQ(t) = (1/I)
∑

i γiQi(t). The form wi(t) = αi exp(γiQi(t))
κ was later used in [9]

(again, for a different model). These two forms result in equivalent behavior to FSPs and
LFSPs, which are used in our stability proofs, and thus, in principle, either form can be used in
QRA-II. The latter form is better suited for a distributed implementation. We emphasize that
previous stability analyses in [9], [16], and [17] are for a different model, and do not apply to
the model of this paper.

7. Proof of Theorem 1

We prove stability using the fluid limit technique [4], [5], [7], [15], [18]. (For an application
of this technique in a discrete-time setting, similar to that of this paper, cf. [2].)

Let Q(r) = (Q(r)(t), t = 0, 1, 2, . . . ) denote a queue length process Q with a fixed initial
condition such that ‖Q(r)(0)‖ = r, r > 0. In the analysis to follow, all variables associated
with a process Q(r) will be supplied with the upper index (r). It will be convenient to extend
the definition of the process Q(r) to continuous time t ≥ 0 by adopting the convention that
Q(t) = Q(�t�).

The following result follows from the state-dependent Lyapunov-type stability criterion for
countable Markov chains, first obtained in [13]. (In the specific form (9), below, a Markov
chain ergodicity criterion was introduced in [15].)
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Proposition 3. Suppose that there exist constants ε > 0 and T > 0 such that, for any sequence
of processes {Q(r), r ↑ ∞}, we have

lim sup
r→∞

E

[
1

r
‖Q(r)(rT )‖

]
≤ 1 − ε. (9)

Then the (original, discrete-time) Markov chain Q is ergodic.

To verify condition (9), the fluid limit technique introduces the sequence of fluid-scaled
processes,

q(r)(t) := 1

r
Q(r)(rt), t ≥ 0.

Note that it suffices to verify (9) under the additional condition that the sequence of rescaled
initial states (1/r)Q(r)(0) converges, which is equivalent to

q(r)(0) → q(0) as r → ∞, where ‖q(0)‖ = 1. (10)

Then, we establish the following result.

Theorem 2. There exist constants ε > 0 and T > 0 for which the following holds. Consider
a fixed sequence of rescaled processes {q(r), r ↑ ∞}, satisfying condition (10). Then, all pro-
cesses of the sequence can be constructed on a common probability space, such that the follow-
ing holds with probability 1. Any subsequence of the sequence of realizations of {q(r), r ↑ ∞}
has in turn a further subsequence u.o.c. converging to a trajectory q = (q(t), t ≥ 0), which
we call an FSP, and which, in particular, satisfies the following properties:

‖q(0)‖ = 1, (11)

function q(t), t ≥ 0, is Lipschitz continuous, (12)

‖q(T )‖ ≤ 1 − ε. (13)

Theorem 2 will be proved separately for QRA-I (under the assumptions of Theorem 1(i)) and
QRA-II (under the assumptions of Theorem 1(ii)) in Sections 8 and 9, respectively. FSPs will
be defined differently for QRA-I and QRA-II. We emphasize that not only will the equations
describing their dynamics be different, but that their definitions are in fact somewhat different
as well.

Once Theorem 2 is established (for both QRA-I and QRA-II), this completes the proof of
Theorem 1. Indeed, for any fixed T > 0, the uniform integrability of the family of random
variables (1/r)‖Q(r)(rT )‖ (indexed by r , as in Proposition 3) is easily established, using
majorization of the queue lengths by the cumulative arrival processes [5], [15]. This fact and
Theorem 2 verify the assertion of Proposition 3.

8. Proof of Theorem 2 for QRA-I

8.1. Probability space construction and other preliminaries

Let us denote by

F
(r)
i (t) :=

t−1∑
s=0

Ai(s), t = 0, 1, 2, . . . , i ∈ � ,
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the total number of customer arrivals at link i by (and excluding) integer time t . We also denote
by

F̂
(r)
i (t) =

t−1∑
s=0

hi(s), t = 0, 1, 2, . . . , i ∈ � ,

the total number of successful transmissions on link i by (and excluding) time t .
Without loss of generality, we will assume that the random transmission attempt decision by

node n at time t , given its ‘current’ (depending on t) set of access probabilities pnm, m ∈ Dn,
is determined by the random variable yn(t), uniformly distributed in [0, 1]. (Random variables
yn(t) are mutually independent across all n and t .) Namely, node n assumes some fixed
ordering of the nodes in Dn: m1, . . . , m�. Then, if yn(t) ∈ φn,m1 := [0, pn,m1 ], node n

attempts transmission on link (n, m1); if yn(t) ∈ φn,m2 := (pn,m1 , pn,m1 + pn,m2 ], node n

attempts transmission on link (n, m2); and so on. If yn(t) ∈ (pn, 1], node n does not attempt a
transmission. We set

Y (r)(t, ξ) =
t−1∑
s=0

I {yn(s) ≤ ξn, n ∈ N }, t = 0, 1, 2, . . . , ξ = (ξ1, . . . , ξN) ∈ [0, 1]N,

(14)
where I {·} is an event indicator (not to be confused with I as the number of links).

We will use vector notation, F (r)(t) = (F
(r)
i (t), i ∈ � ) and F̂ (r)(t) = (F̂

(r)
i (t), i ∈ � ).

Finally, we extend the time domain of the functions F (r)(t), F̂ (r)(t), and Y (r)(t, ξ) to all
real t ≥ 0 by adopting the convention (as we already did for Q(r)(t)) that they are constant
within each time slot [�, � + 1) for all integers � ≥ 0.

By our definitions and conventions, F (r)(0) = 0, F̂ (r)(0) = 0, and Y (r)(0, ξ) = 0 for every
ξ ∈ [0, 1]N . We also have the following ‘integral form’ of recurrence (6):

Q
(r)
i (t) = Q

(r)
i (0) + F

(r)
i (t) − F̂

(r)
i (t)

−
[

min
s∈[0,t]{Q

(r)
i (0) + F

(r)
i (s) − F̂

(r)
i (s)}

]−
, t ≥ 0, i ∈ � . (15)

Without loss of generality, we can assume that the processes F (r)(·) and Y (r)(·, ·), although
carrying the index (r), do not depend on r . (For every r , they are constructed from the same
underlying sequences of i.i.d. random variables.) Then, along any fixed sequence of r ↑ ∞,
the following functional strong law of large numbers properties hold, with probability 1:

(
1

r

)
F

(r)
i (rt) → λit u.o.c. for all i ∈ � , (16)

(
1

r

)
Y (r)(rt, ξ) →

( ∏
n∈N

ξn

)
t u.o.c. (17)

(In (16) and (17), u.o.c. means that the convergence is uniform on t and (t, ξ), respectively,
within any bounded subset.)

8.2. Definition of FSPs

Consider a sequence of r ↑ ∞. For each r , let (Q(r)(·), F (r)(·), F̂ (r)(·), Y (r)(·, ·)) be
a realization (that is, a fixed sample path) of the corresponding random process, with some
fixed initial condition Q(r)(0), ‖Q(r)(0)‖ = r . The entire realization is uniquely determined
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by Q(r)(0), F (r)(·), and Y (r)(·, ·). Assume that this sequence of realizations satisfies condi-
tions (16) and (17).

Consider the following rescaled trajectory for each r:

(q(r) = (q(r)(t), t ≥ 0), f (r) = (f (r)(t), t ≥ 0), f̂ (r) = (f̂ (r)(t), t ≥ 0)),

where f (r)(t) = (1/r)F (r)(rt), f̂ (r)(t) = (1/r)F̂ (r)(rt), and (recall) q(r)(t) = (1/r)Q(r)(rt).
A triple of vector functions (q = (q(t), t ≥ 0), f = (f (t), t ≥ 0), f̂ = (f̂ (t), t ≥ 0)) is

called an FSP if the u.o.c. convergence,

(q(r), f (r), f̂ (r)) → (q, f, f̂ ), (18)

holds for at least one sequence (q(r), f (r), f̂ (r)) of scaled trajectories (with r ↑ ∞), such
that (16) and (17) hold.

We note that the definition of the FSPs given here, as well as their dynamic properties derived
in Subsection 8.3, below, do not require condition (7).

8.3. Basic dynamics of FSPs

Lemma 1. Any FSP satisfies the following conditions: (11),

functions q(·), f (·), and f̂ (·), are Lipschitz continuous with fi(t) = λit , (19)

q ′
i (t) = [λi − vi(t)]+qi (t)

for all i ∈ � and for almost all t ≥ 0, (20)

v(t) ∈ arg max
x∈M

{γ × q(t)β} log x (21)

Proof. Consider a fixed FSP, and any fixed sequence of rescaled paths (q(r), f (r), f̂ (r))

which ‘defines’ this FSP (via convergence (18) and the other conditions). Properties (11)
and (19) are obvious, given the FSP construction. (The property that fi(t) = λit follows
from (16).) Therefore, almost all points t ≥ 0 are such that proper derivatives of component
functions of the FSP exist—such time points will be called regular. It will suffice to show (20)
and (21) for a given regular point t > 0. Indeed, switching to rescaled paths in (15) and taking
the limit on r , we obtain

qi(t) = qi(0) + fi(t) − f̂i (t) −
[

min
s∈[0,t]{qi(0) + fi(s) − f̂i (s)}

]−
, t ≥ 0, i ∈ � . (22)

Set vi(t) = f̂ ′
i (t), and recall that f ′

i (t) = λi . Given (22), we see that the equation in (20)
holds trivially if qi(t) > 0. If qi(t) = 0, we must have q ′

i (t) = 0 (by regularity), and then
λi −vi(t) ≤ 0, because otherwise (22) would imply that the right derivative (d+/dt)qi(t) exists
and is equal to λi − vi(t) > 0. This proves (20).

Let us prove (21). Now, consider the FSP, and the corresponding rescaled trajectories in a
small interval [t, t + ε]. By continuity of q(·) and by (18), all the values of q(r)(s) ≡ Q(r)(rs),
s ∈ [t, t + ε], for all sufficiently large r are close to q(t) as long as ε > 0 is small. For
each r , consider the corresponding unscaled trajectory of Q(r)(·) in the (corresponding) time
interval [rt, rt + rε]. It will be convenient to assume that the trajectory with index r uses
rescaled dynamic weights w

(r)
i (s) = wi(s)/r = αi/r +γi(Q

(r)
i (s))β/r. (This does not change

anything, by Proposition 2(a).) We see that, in [rt, rt + rε], w
(r)
i (s) is close to γiqi(t)

β .
Then, it is easy to see from Proposition 2(c) that, for any link i = (n, m) with qi(t) > 0, the
corresponding interval φn,m (see the construction governing transmission attempts) is close to
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the analogous interval corresponding to the access probabilities p(γ × q(t)β). (Again, this is
for the unscaled trajectory in the interval [rt, rt + rε] with small ε and for large values of r .)
Given (14), condition (17), and again Proposition 2(c), this implies that the time average rate
of successful attempts in the interval [rt, rt + rε] is close to µi(p(γ × q(t)β)). This shows
(we omit ε-δ formalities) that, for all links i with qi(t) > 0, vi(t) = µi(p(γ × q(t)β)), which,
by Proposition 2(b), implies (21).

8.4. Stability of FSPs. Conclusion of the proof of Theorem 2

All the statements of Theorem 2, except (13), easily follow from the fact that (16) and (17)
hold with probability 1, the FSP construction, and the FSP property, (19). It remains to show
that FSPs satisfy (13), which is done in the following theorem.

Theorem 3. Consider the function

�(y) = 1

β + 1

∑
i

γi

µ∗
i

y
β+1
i , y ∈ R

I+.

(It depends on µ∗ as a parameter.) Suppose that λ satisfies (7), and consider the family of
Lipschitz continuous trajectories (q(t), t ≥ 0) satisfying (20) and (21). Then, for any ε1 > 0,
there exists ε2 > 0 such that

�(q(t)) ≥ ε1 implies that
d

dt
�(q(t)) ≤ −ε2.

As a corollary, there exist ε > 0 and T > 0 such that (13) holds uniformly for all FSPs.

Remark. Lipschitz continuous trajectories satisfying (20) and (21) also arise in a com-
pletely different setting, namely, in the ‘session level’ stability analysis of communication
networks with ‘concave-utility-based’ allocation of service rates to different sessions; see [3],
[8], and [22]. (We want to emphasize that the derivation of properties (20) and (21) in our
setting is completely different.) In all the previous work cited above the region M (which has a
different meaning from ours) is convex. In our model region M is not necessarily convex, and
in fact nonconvex in most cases. However, for the purposes of establishing trajectory stability
in Theorem 3, convexity of M is not important. Since this last point may not be immediately
clear from the previous work (some of which does use convexity of M , even though it does not
have to), and for completeness, we present the proof of Theorem 3.

Proof of Theorem 3. Let log µ∗ = u∗ and log v(t) = u(t). Then, we have

d

dt
�(q(t)) =

∑
i

γi

µ∗
i

qi(t)
βq ′

i (t)

=
∑

i

γi

µ∗
i

qi(t)
β(λi − exp(ui(t)))

≤
∑

i

γi

µ∗
i

qi(t)
β(λi − exp(u∗

i ) − exp(u∗
i )(ui(t) − u∗

i )) (23)

=
∑

i

γiqi(t)
β

(
λi

µ∗
i

− 1

)
−

(∑
i

γiqi(t)
βui(t) −

∑
i

γiqi(t)
βu∗

i

)
(24)

≤
∑

i

γiqi(t)
β

(
λi

µ∗
i

− 1

)
. (25)
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Inequality (23) uses convexity of the exponent function, and (24) is less than or equal to (25)
because

∑
i γiqi(t)

βui(t) − ∑
i γiqi(t)

βu∗
i ≥ 0, by condition (21). Expression (25) is negative

and bounded away from 0 as long as �(q(t)) is positive and bounded away from 0.

9. Proof of Theorem 2 for QRA-II

9.1. Preliminaries

Recall that we are now in the conditions of Theorem 1(ii), and, therefore, we are under
the additional assumption (8), which implies a large deviations (Cramer’s) bound for the input
processes. For any i ∈ � and any ν > 0, there exists a constant a = a(ν) > 0 such that, for all
sufficiently large n, uniformly on k ≥ 1,

P

{∣∣∣∣1

n

k+n−1∑
t=k

Ai(t) − λi

∣∣∣∣ ≥ ν

}
< e−an. (26)

Let arbitrary ν > 0 and L > 0 be fixed. Let us also pick any ζ > 0 such that ζ < η ≡ 1−κ .
For each n, let us cover the interval [0, rL] with P r

L := �rL/rζ � + 1 equal nonoverlapping
rζ -long intervals [(j − 1)rζ , jrζ ), 1 ≤ j ≤ P r

L. For each i ∈ � and each ξ ∈ [0, 1], define
the number of arrivals of flow i in the time interval [(j − 1)rζ , jrζ )) as

F
(r)
i,j := F

(r)
i (jrζ ) − F

(r)
i ((j − 1)rζ )

and define
Y

(r)
i,j,ξ := Y

(r)
i (jrζ , ξ) − Y

(r)
i ((j − 1)rζ , ξ).

Let
Er

i (L, ν) =
⋃

1≤j≤P r
L

(∣∣∣∣
F

(r)
i,j

rζ
− λi

∣∣∣∣ > ν

)
,

Gr
i (L, ν, ξ) =

⋃
1≤j≤P r

L

(∣∣∣∣
Y

(r)
i,j,ξ

rζ
− ξ

∣∣∣∣ > ν

)
.

Lemma 2. The following properties hold (with Q+ being the set of strictly positive rational
numbers):

P

{ ⋃
ν,L∈Q+

∞⋂
k=1

∞⋃
r=k

Er
i (L, ν)

}
= 0 for all i ∈ � , (27)

P

{ ⋃
ν,L∈Q+

⋃
ξ∈[0,1], ξ∈Q+

∞⋂
k=1

∞⋃
r=k

Gr
i (L, ν, ξ)

}
= 0 for all i ∈ � . (28)

Equivalently, with probability 1, for any rational numbers L > 0, ν > 0, and ξ ∈ [0, 1], there
exists finite k such that, for all r > k,

max
i∈� , 1≤j≤P r

L

∣∣∣∣E
r
i (L, ν)

rζ
− λi

∣∣∣∣ ≤ ν, (29)

max
i∈� , 1≤j≤P r

L

∣∣∣∣G
r
i (L, ν, ξ)

rζ
− ξ

∣∣∣∣ ≤ ν. (30)

Proof. The proof uses Cramer’s bound (26) and Borel–Cantelli’s lemma. (See [16, Lemma
4.3] for the proof of (27); (28) is proved analogously.)

https://doi.org/10.1239/jap/1214950349 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1214950349


310 A. L. STOLYAR

9.2. FSP definition and stability. Proof of Theorem 2

Consider the system under the QRA-II algorithm. For this algorithm, we define FSPs in
exactly the same way as for QRA-I (see Subsection 8.2), except that we require, in addition
to (or, rather, instead of) (16) and (17), a defining sequence (q(r), f (r), f̂ (r)) of scaled sample
paths that satisfies the stronger conditions given in (29) and (30). (Such FSPs clearly satisfy
the initial condition, (11), and the Lipschitz condition, (19), but certainly not conditions (20)
and (21)—the FSP dynamics under QRA-II is very different.) With this FSP definition, the
proof of all the statements of Theorem 2, except (13), is almost automatic. To establish (13),
we prove the following key property of the FSPs under the QRA-II algorithm.

Theorem 4. Suppose that a point µ∗ ∈ M ∩ R
I++ is such that, for some real c, γi(µ

∗
i −λ) = c

for all i. (We do not necessarily assume (7) and, thus, a positive c may or may not exist.) Then,
in addition to (11) and (12), every FSP satisfies the following condition at every regular point
t ≥ 0, where maxi γiqi(t) > 0:

d

dt
max

i
γiqi(t) ≤ −c. (31)

The above definition of the FSPs for QRA-II, as well as that for QRA-I, does not require
condition (7). And Theorem 4 holds regardless of (7). If condition (7) does hold then µ∗ can
be chosen to be the point where the ray in the direction (1/γ1, . . . , 1/γI ), starting at λ, hits the
boundary of M , in which case c > 0 and

d

dt
max

i
γiqi(t) ≤ −c < 0,

which of course proves (13).

Proof of Theorem 4. Properties (11) and (12) are proved in the same way as for the QRA-I
algorithm (and for fluid limits in general). To prove (31), consider a fixed FSP and a sequence
of rescaled prelimit trajectories defining it. We will use the notation z(t) := maxi γiqi(t),
z(r)(t) := maxi γiq

(r)
i (t), and Z(r)(rt) := maxi γiQ

(r)
i (rt). Suppose that (31) does not hold.

Then, there exists a regular point t such that z(t) > 0 and z′(t) > −c1 > −c. We will show
that this leads to a contradiction. We can choose constants δ > 0, δ1 > 0, and c2 ∈ (c1, c) such
that

z(s) > δ1 for all s ∈ [t, t + δ]
and

z(t + δ) − z(t)

δ
> −c2.

For each r , let us now divide the interval [t, t + δ] into rκδ/� intervals, each of length �rη/r ,
where η = 1 − κ and � > 0 is an arbitrary fixed constant. (Since rκδ/� may not be an integer,
we should divide the interval into, say, �rκδ/�� intervals. To avoid trivial complications and
heavy notation, we assume that rκδ/� is an integer. It will be clear that we do not lose the
correctness of the argument.) Note that in the ‘unscaled time’ each subinterval is of length �rη.

From the Dirichlet principle, for all sufficiently large r , in at least one of the subintervals
(of length �rη/r), the average rate of change of z(r)(·) is greater than or equal to −c2. We pick
such a subinterval [s(r), s(r) + �rη/r] for each r . Let us choose a further subsequence of the
sequence of indices {r} (which we will still denote by {r}) such that s(r) → s for some fixed
s ∈ [t, t + δ]. Obviously, the right endpoint s(r) + �rη/r of the subinterval also converges to s.
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From the subsequence {r}, we choose a further subsequence such that the order of values of
γiq

(r)
i (s(r)), i ∈ � , remains the same. For example, without loss of generality, we can assume

that
z(r)(s(r)) = γ1q

(r)
1 (s(r)) ≥ · · · ≥ γI q

(r)
I (s(r)).

Finally, for each i ∈ � , consider the following trajectories:

y
(r)
i (τ ) := rκ

(
γiq

(r)
i

(
s(r) + τ

rκ

)
− z(r)(s(r))

)
, τ ∈ [0, �],

and choose a subsequence such that, for each i,

y
(r)
i (0) → yi(0),

where maxi yi(0) = y1(0) = 0 (by our construction) and each other yi(0) is either finite
nonpositive or −∞. Let us consider only the case when all the yi(0) are finite. (If not,
it is easy to observe that, in the (unscaled) time interval [rs(r), rs(r) + rη�], the queues with
yi(0) = −∞ have asymptotically vanishing impact on the service of queues with yi(0) > −∞.
So, essentially the same argument, restricted to the subset of queues with finite yi(0), applies.)

We note that the trajectory y
(r)
i (·) is obtained from the trajectory Q

(r)
i (·) by the time ‘speedup’

of rη and the ‘space’ scaling by the factor 1/rη (in addition to the time shift).
In the next step we can and do choose a further subsequence of {r} such that the sequence

{y(r)
i (·), i ∈ � }, converges u.o.c. in [0, �] to a Lipschitz continuous trajectory {yi(·), i ∈ � },

which we call an LFSP. In this step we use properties (29) and (30) which guarantee that, roughly
speaking, the functional law of large numbers holds not only over any (unscaled) interval of
length δr , but also uniformly over the set of �rη-long subintervals of it.

It is also not hard to see that the LFSP trajectory satisfies conditions (32) and (33), below,
at every regular point τ ∈ [0, �].

y′
i (τ ) = γi(λi − µi(τ )) for all i ∈ � , (32)

µi(τ ) ∈ arg max
x∈M

{α × exp(a2y(τ))} log x, (33)

where a2 = κ/z(s)η. Indeed, note that z(r)(s(r))/z(s) → 1 and γiq
(r)
i (s(r) + τ/rκ)/z(s) → 1

as r → ∞, uniformly in i and in τ ∈ [0, �]; recall that γiq
(r)
i (s(r) + τ/rκ) − z(r)(s(r)) =

r−κy
(r)
i (τ ). We have

(γiQ
(r)
i (s(r)r + rητ ))κ − Z(r)(s(r)r)κ = rκ

((
γiq

(r)
i

(
s(r) + τ

rκ

))κ

− z(r)(s(r))κ
)

= rκ(κẑκ−1)(r−κy
(r)
i (τ )),

where ẑ is a number ‘between’ z(r)(s(r)) and γiq
(r)
i (s(r) + τ/rκ). (Here we simply applied the

mean value theorem for an increment of function xκ .) But, ẑ → z(s) as r → ∞, uniformly in
i and τ , and, therefore, we have the following uniform convergence:

(γiQ
(r)
i (s(r)r + rητ ))κ − Z(r)(s(r)r)κ → κ

z(s)η
yi(τ ).

It remains to consider the behavior of the sample path in the unscaled time interval [s(r)r +
rητ, s(r)r + rητ + rη�τ ] with small fixed �τ , as r becomes large, and use the form of the
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QRA-II scheduling rule. (The argument here is analogous to the one used to prove (21) for the
QRA-I rule. We omit details.)

By definition of an LFSP, maxi yi(0) = 0, and, by our construction,

max
i

yi(�) ≥ −c2� > −c�. (34)

We will use the following Lyapunov function:

�(τ) =
∑

i

1

µ∗
i γi

αi exp(a2(yi(τ ) + cτ)),

where, recall, µ∗ ∈ M is such that γi(µ
∗
i − λi) = c for all i. We have

�(0) ≤
∑

i

αi

µ∗
i γi

.

We let ui(τ ) = log µi(τ ) and u∗
i = log µ∗

i . Then,

d

dt
�(y(τ)) = a2

∑
i

αi

µ∗
i γi

exp(a2(yi(τ ) + cτ))(y′
i (τ ) + c)

= a2

∑
i

αi

µ∗
i

exp(a2(yi(τ ) + cτ))(µ∗
i − µi(τ ))

≤ a2

∑
i

αi

µ∗
i

exp(a2(yi(τ ) + cτ))(µ∗
i − (µ∗

i + µ∗
i (ui(τ ) − u∗

i )))

= a2 exp(a2cτ)

(∑
i

αi exp(a2yi(τ ))u∗
i −

∑
i

αi exp(a2yi(τ ))ui(τ )

)

≤ 0.

Since �(τ) is nonincreasing and �(0) is bounded, we see that, for some constant K , depending
only on the system parameters and on c,

max
i

yi(τ ) ≤ Kz(s)η − cτ, τ ∈ [0, �]. (35)

Recall that the function z(·) is defined on the time scale of the FSP (not the LFSP), and it is
Lipschitz and z(0) ≤ max γi . Then Kz(s)η is uniformly bounded within any finite interval (of
the FSP time scale) and, in particular, for s ∈ [t, t + δ], with t and δ chosen at the beginning
of this proof. Therefore, since � could be chosen arbitrarily large, (35) contradicts (34).
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