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ON LARGE INDUCTIVE DIMENSION OF PROXIMITY
SPACES

A. KANDIL

Introduction. The notion of proximity spaces was introduced by
Efremovic in [2, 3]. An analysis of proximity spaces was carried out by
Smirnov in [5)].

The study of covering dimension of proximity spaces was originated by
Smirnov in [6].

In this paper we introduce the concept of 8-large inductive dimension of
proximity spaces and study some of its properties.

1. Definitions and basic concepts.

Definition 1. [5] A proximity space or (8-space) is a pair (X, §) where X is
a set and 8 is a mapping from 2% X 2% into the set {0, 1} satisfying the
following axioms:

1. 8(4, B) = 8B, A)V A, B € 2*.
2.8, BU C) = 84, B) 8(4, C)V 4, B, C € 2~.
3.8({x}, p}) =0 x =y
4.8(X,0) = 1.
5.84,B)=1=3C,De 2> CuU D= Xand
84, C)- 8B, C) = 1.

Remarks. 1. 2% denotes the family of all subsets of the set X.

2. The mapping 8 in definition 1 is called a proximity on X.

3. If 8(4, B) = 0 then we say that the sets 4 and B are near. And if
8(A, B) = 1 then we say that the sets 4 and B are far or remote.

The following properties of §-spaces were proved in [5]:

Py: Every proximity & on a set X induces a topology 75 on X: the
formula

[4] = {x € X:8({x)}),4) =0}V 4 € 2X

defines the closure operator on X.
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The topological space (X, 75) is a completely regular T-space or
T5i-space.

Remark. All topologies considered will be “Tychonoff” that is,
completely regular and T, otherwise known as T3i.

P,: For every completely regular T}-space (X, ) there exists at least one
proximity § on the set X such that 75 = 7.

In this paper we shall consider only the proximities § on the topological
space (X, 7) for which 75 = 7.

P3: For every compact T,-space (X, 7) the proximity 8 on X defined
by

84,B) =1 [A]Nn[B] =10
is the unique proximity on X for which 1§ = 7.
Remark. Here [A] denotes the closure of A.

Definition 2. [4] Let (X, 8) be a §-space; then we say that a set B is a
8-neighbourhood of the set A and we write B @ A if §(4, X \ B) = 1. The
family « € 2% is called a 8-family if

VA€ adBea>4>DB.

A maximal §-family satisfying the finite intersection property is called a
6-end on X [4]. The set of all §-ends on X is denoted by CX.

P,4: For every 8-space (X, 8) the family
Bx = {Oy:H € 75},
is a base for some topology 7y on CX where
04 ={{ € CX:A € ).

Moreover the topological space (CX, 7cy) is a compactification for (X, 75)
generating the proximity § on X as follows:

8(4, B) = 1 & [A]cx N [Blex = 0.

The compact space (CX, t¢y) is called the Smirnov compactification of the
space (X, 15).

Ps: For every T3i-space (X, 7) there exists a one-to-one correspondence
between all compactifications of (X, 1) and all proximities § on X for
which 7 = 75
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P¢: The operator Oy defined in P, above satisfies the following

properties:
I.Oyjnpg = O4 N OpVA, B € 2%,
IL Ouy4, 2 Uy O4, V {4y} € 2%
L &X\ A4, X\ B)=1= 0,4 U O = CX.

IV.XN O, =A°V A4 € 2%,
(A° denotes the interior of the set A4.)

V.04 € ey V A € 2%,
VI.Ogpo = 04V A € 2%,
VIL [Blcxy = CX\ O\ )V B € 2%,
VIII. [OII]CX = [H]C)(V H e TS-
IX. H D Fif and only if Oy 2 [Flex V H, F € 2%

P7: Let (X, 7) be a Tai-space, then the proximity dg on X is defined
by:
8p(4, B) = 1if and only if 4 and B are functionally separated.

It is the finest proximity & on X for which 7 = 75 The Smirnov
compactification CX in this case coincides with the greatest compactifica-
tion BX of X. (X, 8p) will be called a fine 8-space.

Pg: If a subspace F of a fine §-space (X, 8) has the property that every
continuous function f:F — I is extendable over X, then (F, §/F) is a fine
8-space.

Definition 3. We say that the proximity space (X, 8) is perfect if and only
if
[FI‘X H]CX == FrCX OH VHEe TS
Here FryH denotes the boundary of H in X.

The following example shows that not every proximity space is
perfect.

Example. Let R be the real line with the usual topology and let bR be its
Alexandrov Compactification. Then the pair (bR, R) defines on R the
following proximity §; For 4, B € R

8A, B) =1 ifandonlyif [4],z N [Blpr = 0.

The proximity space (R, §) is not perfect. Indeed, if H = (0, co) then it
is easy to see that

https://doi.org/10.4153/CJM-1983-052-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-052-7

964 - A. KANDIL

[Frr H)yr # FryrOp.

LeEMMA 1. The proximity space (X, 8) is perfect if and only if for every two
disjoint open sets Hy, Hy € 15 we have;

OH|UH2 = 0H1 U OHZ‘

Proof. Let (X, 8) be a perfect §-space; and let Hy, H, € 75, Hy N H, =
#. To prove that Oy, yy, = Op, U O, it suffices by Pg (1), Pg (VI) and
complementation to prove that if F;, F, € 75 and F; U F, = X then

[Fi N Fex 2 [Filex N [Flex-

Suppose §{ € [Filcx N [Flex but § & [F} N F)cx- Then
§ € Frex ([Filex)

otherwise { has a neighbourhood V (in CX) such that
V—C-[FI]CX and VﬂF] ﬂF2=ﬂ

But V' N F, is a non-empty subset of X contained in [Fi]cxy N X = F),
contradicting ¥V N F; N F, = . Thus, applying the perfectness of (X, §)
to H = X\ Fj, we have

§ € [Frx N Filcx-
But Fry Fi € Fy N F,, proving { € [F; N F>]cy, a contradiction.

Conversely, assume the condition of the lemma. Let H € 74 and let H*
= X \ [H]. Then it is clear that

FrH = X\ (H U H*).
Consequently,
(1)  [FrHlex =[X\NHU H*)]ey = CX\ Oyypr
= CY\ (0],* U 0”).
Moreover,
CX\ [Opley = CX\ [[H] ey = Oy~
1.e..
(2) Fr<~x0” = CX \ (OHUOH*).
From 1, 2 we have;

[]:l' 1'7,](‘\/ = [’ﬂl'('\r'()”.

https://doi.org/10.4153/CJM-1983-052-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-052-7

PROXIMITY SPACES 965

COROLLARY 1. Every compact proximity space (X, 8) is perfect.
Proof. The proof is immediate if we note that
Oy = H°V H € 2~

LEMMA 2. A 8-space (X, 8) is perfect if, and only if, F < H and §(F, FrH)
= limply H D FY H € 15, F € 15. (15 denotes the family of all closed
subsets of the 8-space (X, 8).)

Proof. Assume that (X, 8) is perfect. Let H € 75 and F € 75 be such
that 6(F, FrH) = 1. Then, X \ FrH D Fie.,

Ox\rriy 2 [Flex

(see Pg IX). Now, using Pg IX, it is sufficient to show that Oy 2 [F]cyx.
Assume the contrary: i.e.,

(1) Oy 2[Flcx-
From the condition F € H we have
(2) [Flex < [Onlcx-
From 1, 2 we have;
() [Flex N FrexOp # 0.
Since (X, §8) is perfect,
FrexOy = [Fry Hlcy.
And since
Ox\rriy = CX \ [FrH]cx [See Pg V1],
hence
4 Ox\rriry = CX\ FrcxOp.
From (3), (4) we have
[Flex € O\ priny
which contradicts the assumption;
[Flex S O fFriny-

i1) Conversely, assume that the condition of the lemma 1s satisfied, i.e.,
V H € sy and F € 15 such that F € H and &F. FrH) = 1 we have
H > F
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Let H € 715, then it is clear that

[FrH]cx € Frex Og.

Now, let { € Frcy Oy. Then, { € [Oyxlcx\Op. And hence
Oy O Oy = Oy #* BV H* € ¢,

Consequently

(5)  [Ow N Opslex = [[H 0 H¥]xlex V H* € §

and

6) €& Oy

We need to prove that { € [FrH]cy. In fact if { & [FrH]cy then there
exists Hy € { such that

(7) X\ FrH D [H.]x.
From 5 we have
(@ §e[[HnN Holxlex-
And from 7 we have
(9)  [Holx € H U (X \ [H]y).
But (9) implies that
[Ho] N H € 3.
Thus we have
(10) [H N Hylx € [Holx N H € H.
Moreover, we have
[H N Holy € [Holy © X\ FrH.
Consequently
[Ho N Hly € X\ FrH.
From 10, 11 and the condition of the lemma we have

H>[HnN Hly

Thus
(12) [[Ho N H]ley € Oy
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Therefore from (8) and (12) we have
{ € Oy
which contradicts condition (6).
This complete the proof of the lemma.
CoRrOLLARY 1. Every fine 8-space (X, 8p) is perfect.

Proof. Let H € 75, and let F be an arbitrary closed subset of X such that
F € Hand 6p (F, FrH) = 1.

From the definition of 65, there exists a continuous real function, f: X —
[0, 1] such that; f(x) = 0V x € Fand f(x) = 1 V x € FrH.

Introduce a function g:X — [0, 1] as follows:

g(x) = f(x) Vx e [Hly and,
g(x) =1 Vxe X\ H

It is easy to see that g is continuous and separates the two sets F and
X\ H.le,H > F.
Thus from the above lemma it follows that (X, &p) is perfect.

Definition 4. A proximity space (X, 8) is called a semicompact §-space if
and only if the following condition is satisfied:

For A, B € 15, 84, B) = 1 if and only if there exists an open subset H
of X with compact boundary such that

AC HCI[H]C X\ B.

ProposITION 1. {7]. 1. Every semicompact 8-space (X, 8) has a basis of
open sets with compact boundaries.

II. Every Ti\-space (X, 7) having a basis of open sets with compact
boundaries induces a semicompact 8-space (X, 8) by the following proximity
relation;

For A, B € X, 8(A, B) = 1 if and only if there exists an open subset H of
X with compact boundary such that

ACHCI[H S X\ B

LeEmMA 3. If (X, 8) is a semicompact 8-space and o is the family of all open
subsets of X with compact boundaries, then for every closed subset F of X
contained in some element H from o, we have H D F.

Proof. This follows immediately from Definition 4, and Proposition 1
(.

https://doi.org/10.4153/CJM-1983-052-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1983-052-7

968 A. KANDIL

CoOROLLARY 1. Every semicompact 8-space (X, 8) is perfect.

Proof. Let o be the family of all open subsets of X with compact
boundaries, and H be an arbitrary open subset of X. Assume that F is a
closed subset of X for which F € H and 8(F, FrH) = 1. Then there exists
H* € o such that

FrH C H* C [H*] € X\ F.
From above we have Fr(H \ [H*]) is compact, indeed;

Fr(H \ [H*]) = Fr(X\ [H*]) U (X \ H))
Fr[H* U (X \ H)]

C Fr(H* U (X\ H))
C FrH*U FrH
c [H*].
It is easy to see that
Fr(H \ [H*]) N H* = 0.

Thus
Fr(H \ [H*]) € Fr H*.

Consequently, H \ [H*] € o.Since F € H \ [H*] € H, from Lemma 3 we
have

H 2 H\[H*] D F.
Therefore H 2 F. 1t follows from Lemma 2 that (X, §) is perfect.
Definition 5. A perfect §-space (X, 8) is called a strongly perfect 8-space
(or S-perfect 8-space) if every closed subspace of (X, 8) is perfect.
Using the following properties:
1) Every closed subspace of a compact space is compact.

2) Every closed subspace F of a normal fine §-space is a normal fine
d-space (see Pg).

The following statement may be easily proved.

LEMMA 4. Every compact 8-space, and every normal fine 8-space are
S-perfect 8-spaces.

PROPOSITION 2. [6]. Every §-space is homeomorphic with a closed subset of
a fine §-space.

From Proposition 2, Example 1 and Corollary 1 of Lemma 2 we deduce
that not every perfect §-space is S-perfect.
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Definition 6. Let (X, §) be a §-space. Then we say that the set L € Xisa
8-partition between A and B if there exist open sets U, W € X such
that;

UDAWDIB UNW=0andUU W= X\ L.
It is clear that if L is a §-partition between 4 and B then
64 U B Ly=1=28§A4,L)=82B,L).

LEMMA 5. Let (X, 8) be a 8-space and let Fy and F, be two of its closed
subsets. If 8(F), F;) = | and Y* is a partition between [F)cx, [Falcx in CX
(in the topological sense [1]) then;

Y = Y* N X is a 8-partition between F,, F, in X.
Proof. This is clear.

LEMMA 5. If the closed subset  of a perfect proximity space (X, 8) is a
8-partition between two closed far sets Fy, F; € X then [{]cy is a partition
between [F\|cx and [F>]cx in CX.

Proof. Let { be a §-partition between F; and F,; then by definition there
exist U; and U, € 75 such that:

X\¢yv=U, VU, U NUy=0and U; D F,,i =1,2.
Let

Y=y UuU U, i=102.
Then

Y; € 75 and

8, Fy) = 8(y, Fy) = 1.

Consequently

[Filex € CX\ [¥alex = Oy,
[Flex & CX\ [Wilex = Oy,
Since U, N U; = @, then

0U| N OU2 = OUlﬂUg = ﬂ
Now from X \ ¢ = U; U U,, (X, 8) is perfect and Pg VIII we have

CX\ Wlex = Oy = Ow,uuy = Ou, Y Ouy,
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970
i.e., CV is a partition between CF; and CF, in CX, where C¥ = [¥]cy,

(31
2. Definition and basic properties of the dimension & Ind in §-spaces.

Definition 7. To every §-space X one assigns the §-large inductive
dimension of X denoted by 8-Ind X, which is a natural number or —1 or
oo. The definition of § Ind X consists of the following conditions:

1;.8Ind X = —1if and only if X = .
1,8 Ind X = nwheren =0, 1,2, ....if for every two closed far sets A4,

B C X there exists a §-partition L between 4 and B such that;

SIndL =n — 1.
13.0Ind X =nifandonlyif § Ind X =nanddInd X >n — 1.
l4 6 Ind X = oo if and only if § Ind X > n for n = —1, 0, 1,

THEOREM 1. For every 8-space X we have

6 Ind X = Ind CX.
Proof. We shall apply induction with respect to Ind CX. If Ind CX =
—1 then CX = # = X and our inequality holds. Assume that the
= 0, and

inequality holds for all §-spaces X with Ind CX < » for some n =

consider a §-space X such that Ind CX = n.

Let F} and F, be far closed sets in X.
Then the sets CF; and CF, are disjoint in CX so that there exists a

partition ¢ in CX between CF, and CF,, such that Ind ¢ = n — 1.
From Lemma 5 we havey = N X is a 8-partition in X between F; and

F,. Since Cy = [{]cy it follows from Theorem 2.2.1 [1] and the inductive

assumption that
dInd y

so that
8Ind X = n = Ind CX.

THEOREM 2. For every S-perfect §-space X we have

n—1,

1A

8 Ind X = Ind CX.
Proof. From Theorem 1 it suffices to show that

Ind CX = 6 Ind X.
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As in the proof of Theorem 1 we shall suppose that 6 Ind X < oo and
apply induction with respect to § Ind X.

Our inequality holds if § Ind X = —1.

Assume that the inequality is proved for all S-perfect §-spaces with
dimension § Ind less than n = 0, and consider an S-perfect §-space X such
that § Ind X = n. Let F, and F, be disjoint closed sets in CX. Then there
exist open sets ¥, ¥, € CX such that

F, ¢V, i=1,2 and
Vilex 0 [Valex = 8.

The sets V; = [V;]cx N X are closed in X and far, so that there exists a
§-partition ¢ in X between V| and V, such that § Ind = n — 1.

From Lemma 6 the set Cy is a partition between CV; and CV; in CX.
And from the induction assumption we have Ind Gy = n — 1.

Since

F; € [Vilex
then Cy is a partition between F and F,; consequently
Ind CX = § Ind X.

CoRrOLLARY 1. For every compact proximity space X the topological Ind X
coincides with § Ind X.

Proof. This is immediate from Theorem 2 and Corollary 1 of Lemma
1.

COROLLARY 2. Every normal fine 8-space X has
6 Ind X = Ind B8X.
Proof. This follows immediately from Theorem 2 and Lemma 4.

COROLLARY 3. If X is an S-perfect 8-space and M is a closed subset of X,
then

§Ind M = 68 Ind X.
Proof. From Definition 4 and the above theorem we have
dInd M = Ind CM = Ind [M]cxy = Ind CX = § Ind X.
COROLLARY 4. For every S-perfect 8-space we have
0dX = 6 Ind X,
where 8dX is the covering dimension of (X, 8), (see [5]).
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Proof. From Theorem 1 in [6] we have
8dX = dim CX.

From Theorem 2 we have § Ind X = Ind CX, and from Theorem 3.1.28
in {1] we have dim CX = Ind CX. Thus we have 8dX = 6 Ind X for every
S-perfect space.

CoROLLARY 5. If (X, 8) is an S-perfect proximity space, and A, B are
closed subsets of (X, 8), then,

8Ind(4 UB)=6IndA +6Ind B + 1.
Proof. »

i

6Ind (4 U B) Ind [4 U Blex = Ind [A]cx U [Blex
=Ind[A]lcx + Ind [Blex + 1 (see [1])
=6IndA4 + 8§Ind B + 1.

Definition 8. 1f (X, 8) is a 8-space, then the set H € 2% is called a
8-singular set if (X \ H, H) = 1.

THEOREM 3. The perfect 8-space X has 8 Ind X = O if and only if for
every closed set F C X and for every 8-neighbourhood U of F there exists a
8-singular set H such that

FC HCU

Proof. Let § Ind X = 0 and let F be a closed subset of the §-space (X, 6),
and let U @ F; then 6(F, X\ U) = 1.

Therefore, the empty set @ is a 8-partition between F and X \ U.
Thus

3 U,, U, € 75 such that
X=UuUulU,U nNnU =286

and

Uy FFU, 2 X\ U
But

CX = Oy = Ow,uu, = Oy, Y Oy, '
and

0U1 N OU2 =0
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because U; N U, = B. Then Oy, and Oy, are open-closed sets in CX.
i.e.,

8O, N X, 0y, N X) =1
which implies that (U, U,;) = 1, i.e.,

U, X\ Up = L.
It is clear that

UD U DF.

The converse is clear.
COROLLARY. For every perfect 8-space X the conditions

Ind X =0 and 86dX =0

are equivalent.

Proof. This is immediate from the above Theorem (3) and Theorem (6)
in [6].
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