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ON LARGE INDUCTIVE DIMENSION OF PROXIMITY 
SPACES 

A. KANDIL 

Introduction. The notion of proximity spaces was introduced by 
Efremovic in [2, 3]. An analysis of proximity spaces was carried out by 
Smirnov in [5]. 

The study of covering dimension of proximity spaces was originated by 
Smirnov in [6]. 

In this paper we introduce the concept of S-large inductive dimension of 
proximity spaces and study some of its properties. 

1. Definitions and basic concepts. 

Definition 1. [5] A proximity space or (S-space) is a pair (X, 8) where X is 
a set and S is a mapping from 2X X 2X into the set {0, 1} satisfying the 
following axioms: 

1. 8(A9 B) = S(B, A)\f A,B G 2X. 

2. 8{A9 B U C) = 8(A9 B) 8(A, C)VA,B,Ce 2X. 
3. «({*}, M ) = 0 ^ x = y. 
4. 8(X9 0) = 1. 
5 J ( i , 5 ) = U 3 C , D G 2 ^ C u D = I a n d 

8(A, C) • 8(B9 C) = 1. 

Remarks. 1. 2X denotes the family of all subsets of the set X. 
2. The mapping 8 in definition 1 is called a proximity on X. 
3. If ô(̂ 4, B) = 0 then we say that the sets A and B are near. And if 

ô(v4, B) = 1 then we say that the sets A and B are far or remote. 

The following properties of ô-spaces were proved in [5]: 

P\\ Every proximity S on a set X induces a topology T§ on X\ the 
formula 

[A] = {x G X:8( {x}9 A) = 0} V A G 2X 

defines the closure operator on X. 
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962 A. KANDIL 

The topological space (X, rg) is a completely regular T\ -space or 
r3^-space. 

Remark. All topologies considered will be "Tychonoff" that is, 
completely regular and T\, otherwise known as T^{. 

P2: For every completely regular T\-space (X, T) there exists at least one 
proximity 8 on the set X such that rg = r. 

In this paper we shall consider only the proximities 8 on the topological 
space (X, r) for which T8 = r. 

Py. For every compact r2-space (X, r) the proximity 8 on X defined 
by 

8(A,B) = 1 <*[A] n [B] = 0 

is the unique proximity on X for which T$ = T. 

Remark. Here [A ] denotes the closure of A. 

Definition 2. [4] Let (X, 8) be a 8-space; then we say that a set B is a 

8-neighbourhood of the set A and we write B 3) A if 8(A, X \ B) = 1. The 

family a Q 2 1 is called a 8family if 

A maximal 8-family satisfying the finite intersection property is called a 

8-end on X [4]. The set of all 8-ends on X is denoted by CX. 

P4: For every 8-space (X, 8) the family 

fa = { O ^ t f G T 6 } , 

is a base for some topology rcx on CX where 

OA = {Ç <E CX.A e H-

Moreover the topological space (CX, rcx) is a compactification for (X, T$) 
generating the proximity 8 on X as follows: 

8(,4, £ ) = \^[A]cxn [B]cx = 0. 

The compact space (CX, rcx) is called the Smirnov compactification of the 
space (X, Tg). 

P5: For every T^-space (X, T) there exists a one-to-one correspondence 
between all compactifications of (X, r) and all proximities 8 on X for 
which T = Tg. 
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P6: The operator Ou defined in P4 above satisfies the following 
properties: 

I- 0AnB = 0A O 0BVA, B G 2* 

IL Ou^ ^ u x o^v{4} e 2* 
III. 8(X \ A, X \ B) = \=> 0A U 0B = CX 
i v . i n o^ = ^ ° V y i G 2* 

(v4° denotes the interior of the set A.) 

V. 0A £ TCXV A G 2*. 

VI. OAO = OA V ^ G 2*. 
VII.[2?]CJr= C I \ 0 ( A 5 ) V 5 G 2* 

VIII. [OffJc* = [ i / ] c * V / / G r5. 
IX. if 3 F if and only if 0 H 3 [F]cx V //, F G 2* 

P7: Let (X, T) be a 7^-space, then the proximity S^ on X is defined 
by: 

ô/?04, B) = 1 if and only if yl and 5 are functionally separated. 

It is the finest proximity 5 on I for which r = T$. The Smirnov 
compactification CX in this case coincides with the greatest compactifica-
tion fiX of X. (X, 8p) will be called a fine S-space. 

P8: If a subspace F of a fine ô-space (X, 8) has the property that every 
continuous function f:F —» I is extendable over X, then (F, ô/F) is a fine 
6-space. 

Definition 3. We say that the proximity space (X, 8) is perfect if and only 
if 

[*>* H]cx = Frcx 0HV H G TÔ. 

Here FrxH denotes the boundary of H in X. 

The following example shows that not every proximity space is 
perfect. 

Example. Let R be the real line with the usual topology and let bR be its 
Alexandrov Compactification. Then the pair (bR, R) defines on R the 
following proximity 5; For A, B Q R 

8(A, B) = 1 if and only if [A]hR n [B]hR = 0. 

The proximity space (R, 8) is not perfect. Indeed, if H = (0, 00) then it 
is easy to see that 
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[FrR H]hR ¥= FrhR0H. 

LEMMA 1. The proximity space (X, 8) is perfect if and only if for every two 
disjoint open sets H\, Hi ^ T§ we have] 

0H]UH2 = 0Hx U 0Hr 

Proof Let (X, 8) be a perfect 8-space; and let Hh H2 e TÔ, HX n H2 = 
0. To prove that 0HlU„2 = 0H] U 0Hv it suffices by P6 (II), P6 (VI) and 
complementation to prove that if F\, F2 ^ rc

8 and F\ U F2 = X then 

[i7! n F 2 ] c x 2 [ F , ] ^ O [F 2] c x . 

Suppose J G [F,]CA, n [F2] c*but S £[F{ n F2]cx. Then 

f e Frcx ( [ F ^ * ) , 

otherwise f has a neighbourhood F (in CX) such that 

F ç [Fx]cx and F n F, n F2 = «I. 

But F n F2 is a non-empty subset of Jf contained in [F]] c^ Pi X — F b 

contradicting F Pi F\ n F2 = 0. Thus, applying the perfectness of (X, 8) 
to H = X \ F], we have 

f e [Fr* n Fx\cx. 

But Fr* Fi Q F\ P F2, proving J e [F] n F2] c*, a contradiction. 

Conversely, assume the condition of the lemma. Let H ^ T§ and let H* 
= X \ [H\. Then it is clear that 

FrH = X \ (H U / /*) . 

Consequently, 

(1) [Fr H}cx = {X\(HU H*) ) c x = CX \ OtIUH. 

= CX \ (Oir U O,,). 

Moreover, 

CX \ [0„\cx = CX \ [ [//] } c x = Otr 

i.e., 

(2) FrcxOi,= CX\(0HUOH*). 

From 1, 2 we have; 

[Fr H]cx = /V r v O„. 
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COROLLARY 1. Every compact proximity space (X, 8) is perfect. 

Proof. The proof is immediate if we note that 

0H = H° V H G 2X. 

LEMMA 2. A S-space (X, 8) is perfect if and only if F Q H and S (F, FrH) 
= 1 imply H 3> F V H e r^, F e T$. (T$ denotes the family of all closed 
subsets of the 8-space {X, 8).) 

Proof. Assume that (X, 8) is perfect. Let H e TS and F £ T§ be such 
that Ô(F, F r # ) = 1. Then, X \ FrH 3> F i.e., 

0(X\FrH) 2 [F]C;f 

(see F6 IX). Now, using P6 IX, it is sufficient to show that 0H 3 [^lex-
Assume the contrary: i.e., 

(1) OH2[F]CX. 

From the condition F Q H we have 

(2) [F]CA- £ [OH]CX. 

From 1, 2 we have; 

(3) [F]cx n /> c *0 / / * 0. 

Since (AT, ô) is perfect, 

And since 

< W r H ) = CX \ [FrH]cx [See />6 VII], 

hence 

(4) 0(x\FrH) - CX \ FrcxOH. 

From (3), (4) we have 

[F]CX 2 0(x\FrH) 

which contradicts the assumption; 

[F\CX - 0(X\FrH)-

ii) Conversely, assume that the condition of the lemma is satisfied, i.e., 
V H G Ta and F G T\ such that F Q H and S(F, Fr//) = 1 we have 
H 3) F. 
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Let H e TS, then it is clear that 

[FrH]cx ç Frcx 0H. 

Now, let f e Frcx 0H. Then, f G [OH]CX\OH. And hence 

0/y n oH* = oHnH* * 0 v H* e f. 

Consequently 

(5) [ 0 „ n 0 „ . ] c * = [ [H n / / * ] * ] „ V if* e f 

and 

(6) ? « 0 „ . 

We need to prove that £ G [Fr/ / ] c^. In fact if f £ [FrH]cx then there 
exists /70 G f such that 

(7) X \ FrH 3) [HQ]X. 

From 5 we have 

(8) £ G [ [// n tf0]jr]c;f. 

And from 7 we have 

(9) [//OJA- Q HU(X\ [H]x). 

But (9) implies that 

[H0] n / / G TJ. 

Thus we have 

(10) [7/ n //<,]* ç [ i / o ] ; r n H £ // . 

Moreover, we have 

[// n //<,]* c [H0]x QX\ FrH. 

Consequently 

[H0 n / / ] * C X \ FrH. 

From 10, 11 and the condition of the lemma we have 

/ / 3) [H n H]x. 

Thus 

(12) [ [ / / 0 n H]]cx c 0 „ . 
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Therefore from (8) and (12) we have 

S e 0H 

which contradicts condition (6). 

This complete the proof of the lemma. 

C O R O L L A R Y 1. Every fine S-space (X, 8p) is perfect. 

Proof Let H e Tg and let F be an arbitrary closed subset of X such that 
F c H and 8p(F, FrH) = 1. 

From the definition of 8p9 there exists a continuous real f u n c t i o n , / : ^ —* 
[0, 1] such tha t ; / ( j c ) = 0 V J C G F a n d / ( x ) = I V I G FrH. 

Introduce a function g:X —» [0, 1] as follows: 

g(x) = / ( J C ) V x G [ f f k and, 

g(x) = 1 V x e X\H. 

It is easy to see that g is continuous and separates the two sets F and 
X\H. I.e., # 3 F. 

Thus from the above lemma it follows that (X, 8p) is perfect. 

Definition 4. A proximity space {X, 8) is called a semicompact 8-space if 
and only if the following condition is satisfied: 

For A, B e Tg, 8(^4,1?) = 1 if and only if there exists an open subset H 
of X with compact boundary such that 

A Q H Q [H] Q X\B. 

PROPOSITION 1. [7]. I. Every semicompact 8-space (X, 8) has a basis of 
open sets with compact boundaries. 

II. Every T^{-space (X, T) having a basis of open sets with compact 
boundaries induces a semicompact 8-space (X, 8) by the following proximity 
relation ; 

For A, B Q X, 8(A, B) = 1 if and only if there exists an open subset H of 
X with compact boundary such that 

A Q H Q [H] Q X\B. 

L E M M A 3. If(X, 8) is a semicompact 8-space and o is the family of all open 
subsets of X with compact boundaries, then for every closed subset F of X 
contained in some element H from o, we have H 2> F. 

Proof. This follows immediately from Definition 4, and Proposition 1 

(I). 
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COROLLARY 1. Every semicompact S-space (X, 8) is perfect. 

Proof. Let o be the family of all open subsets of X with compact 
boundaries, and H be an arbitrary open subset of X. Assume that F is a 
closed subset of X for which F Q H and 8(F, FrH) = 1. Then there exists 
H* e a such that 

FrH Q H* ç [//*] Q X \ F. 

From above we have Fr(H \ [H*] ) is compact, indeed; 

Fr(H \ [H*] ) = Fr(X \ [//*]) U (X \ H) ) 
= Fr[H* U (X \ H) ] 
Q Fr(H* U (X \ H) ) 
ç Fr H* U Fr H 
Q [H*]. 

It is easy to see that 

Fr(H \ [//*] ) n H* = 0. 

Thus 

F r ( # \ [i/*] ) ç Fr H*. 

Consequently, H\ [H*] e o. Since F Q H\ [//*] ç // , from Lemma 3 we 
have 

Hr
 D / / \ [//*] 3) F. 

Therefore 77 3) F. It follows from Lemma 2 that (X, 8) is perfect. 

Definition 5. A perfect S-space (X, ô) is called a strongly perfect 8-space 
(or S-perfect 8-space) if every closed subspace of (X, ô) is perfect. 

Using the following properties: 

1) Every closed subspace of a compact space is compact. 
2) Every closed subspace F of a normal fine 8-space is a normal fine 

ô-space (see P8). 

The following statement may be easily proved. 

LEMMA 4. Every compact 8-space, and every normal fine 8-space are 
S-perfect 8-spaces. 

PROPOSITION 2. [6]. Every 8-space is homeomorphic with a closed subset of 
a fine 8-space. 

From Proposition 2, Example 1 and Corollary 1 of Lemma 2 we deduce 
that not every perfect 8-space is 5-perfect. 
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Definition 6. Let (X, 8) be a 6-space. Then we say that the set L Q X is a 
8-partition between A and B if there exist open sets U, W Q X such 
that; 

U * A,W * B,U Ci W = 0 and U U H ^ = X \ L . 

It is clear that if L is a 5-partition between 4̂ and 2? then 

S(y4 U J , I ) = 1 = 8(^, L) = 0(5, L). 

LEMMA 5. Let (X, 8) be a 8-space and let F\ and F2 be two of its closed 
subsets. If8{F\, F2) = 1 and\p* is a partition between [F\]cx, [Fdcx *n CX 
(in the topological sense [1] ) then; 

\p = tp* n X is a 8-partition between F\, F2 in X. 

Proof This is clear. 

LEMMA 5. If the closed subset \p of a perfect proximity space (X, 8) is a 
8-partition between two closed far sets F\, F2 £ X then [\p]cx w a partition 
between [F\\cx and [F2\cx w CX. 

Proof. Let xp be a 5-partition between F\ and F2; then by definition there 
exist U\ and U2

 G Ts s u c r i t n a t : 

I \ ^ = [ / , U [ / 2 , ( / i n [ / 2 = ^ and £/,- 3> F,., i = 1, 2. 

Let 

ift = ^ U f/f-, / = 1, 2. 

Then 

\pi G T§ and 

8 (^ , F2) = «(*, F,) = 1. 

Consequently 

[FX]CXQ CX\W2]CX= 0Uv 

[F2]CXQ CX\W]]CX= 0Ur 

Since U2 n Ï/, = 0, then 

oUx n o^ = o^n^ = 0. 

Now from * \ $ = ^ U l/2> (X, 6) is perfect and P6 VIII we have 

CX\ [xp]cx = 0{X\v = 0{U]UU2) = 0Ux U Of; 
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i.e., Cb is a partition between CFX and CF2 in CX, where C ^ = [ ^ ] c ^ 
[5]. 

2. Definition and basic properties of the dimension 8 Ind in S-spaces. 

Definition 7. To every ô-space X one assigns the ô-large inductive 
dimension of X denoted by 5-Ind X, which is a natural number or — 1 or 
oo. The definition of 8 Ind X consists of the following conditions: 

\x. 8 Ind X = - 1 if and only if X = 0. 
12. 8 Ind X ^ ft where n = 0, 1, 2 , . . . . if for every two closed far sets ^4, 

B Q X there exists a S-partition L between A and i? such that; 

8 Ind L ê « - 1. 

13. Ô Ind X = « if and only if 5 Ind X ^ n and 5 Ind X > n ~ 1. 
14. 8 Ind X - oo if and only if 8 Ind X > n for n = - 1 , 0, 1, 

2, 

THEOREM 1. For every 8-space X we have 

8 Ind X ^ Ind CX. 

Proof. We shall apply induction with respect to Ind CX. If Ind CX = 
— 1 then CX = 0 = X and our inequality holds. Assume that the 
inequality holds for all 8-spaces X with Ind CX < n for some n i^ 0, and 
consider a ô-space X such that Ind CX = ft. 

Let F] and F2 be far closed sets in X. 
Then the sets CF\ and CF2 are disjoint in CX so that there exists a 

partition \p in CX between CFi and CF2, such that Ind \p ^ ft — 1. 
From Lemma 5 we have \p = \p n X is a 8-partition in X between F\ and 

F2. Since C\p = Wcx it follows from Theorem 2.2.1 [1] and the inductive 
assumption that 

8 Ind ip ^ ft — 1, 

so that 

8 Ind X ^ ft = Ind CX. 

THEOREM 2. For every S-perfect 8-space X we have 

8 Ind X = Ind CX. 

Proof. From Theorem 1 it suffices to show that 

Ind CX ^ 8 Ind X. 
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As in the proof of Theorem 1 we shall suppose that 5 Ind X < oo and 
apply induction with respect to 8 Ind X 

Our inequality holds if 8 Ind X = — 1. 
Assume that the inequality is proved for all ^-perfect ô-spaces with 

dimension 8 Ind less than n = 0, and consider an ^-perfect 5-space X such 
that 8 Ind X = n. Let F\ and F2 be disjoint closed sets in CX. Then there 
exist open sets V\, V2 £ CX such that 

Fi ç Kp 1 = 1, 2 and 

[File* n [ F 2 ] c x = 0. 

The sets Fz = [F 7 ] c ^ Pi X are closed in X and far, so that there exists a 
ô-partition \p in X between Fj and F2 such that 8 Ind ë H — 1. 

From Lemma 6 the set G// is a partition between CFj and CV2 in CX 
And from the induction assumption we have Ind C\p ^ n — 1. 

Since 

then C\p is a partition between F\ and fy, consequently 

Ind CX g Ô Ind X 

COROLLARY 1. For every compact proximity space X the topological Ind A" 
coincides with 8 Ind X 

Proof. This is immediate from Theorem 2 and Corollary 1 of Lemma 
1. 

COROLLARY 2. Every normal fine 8-space X has 

8 Ind X = Ind £ X 

Proof This follows immediately from Theorem 2 and Lemma 4. 

COROLLARY 3. If X is an S-perfect 8-space and M is a closed subset of X, 
then 

8 Ind M ^ 8 Ind X 

Proof. From Definition 4 and the above theorem we have 

8 Ind M = Ind CM = Ind [M]cx ^ Ind CX = 8 Ind X 

COROLLARY 4. For every S-perfect 8-space we have 

8dX ^ 5 Ind X, 

where 8dX is the covering dimension of (X, 8), (see [5] ). 
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Proof. From Theorem 1 in [6] we have 

8dX = dim CX. 

From Theorem 2 we have 8 Ind X = Ind CX, and from Theorem 3.1.28 
in [1] we have dim CX ^ Ind CX. Thus we have 8dX ^ 8 Ind X for every 
^-perfect space. 

COROLLARY 5. If (X, 8) is an S-perfect proximity space, and A, B are 
closed subsets of (X, Ô), then, 

8 Ind (A U B) ^ 8 Ind A + 5 Ind B + 1. 

Proof. 

8 Ind (^ u 5 ) = Ind [4 U £ ] c ; r = Ind [^ ] c ^ U [B]cx 

^ I n d o l e * * lnd[B]cx+ 1 (see[l]) 

- 8 Indv4 + 8 Ind B + 1. 

Definition 8. If (A", ô) is a ô-space, then the set / / e 2* is called a 
8-singular set if 5(X \ H, H) = 1. 

THEOREM 3. 77ze perfect 8-space X has 8 Ind X = 0 if and only if for 
every closed set F Q X and for every 8-neighbourhood U ofF there exists a 
8-singular set H such that 

F Q H Q U. 

Proof. Let 8 Ind X = 0 and let F be a closed subset of the S-space (X, ô), 
and let U 3> F; then 5(F, X \ U) = 1. 

Therefore, the empty set 0 is a 5-partition between F and X \ U. 
Thus 

3 £/j, £/2
 G T5 such that 

X = ux u t/2, f/i n u2 = 0 

and 

t/! 3) F, f/2 => * \ U. 

But 

c x = o x = o ( l / l U ( / 2 ) = oUx u o„2, 

and 

Out n 0(/2 = 0 
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because U\ C\ U2 = 0. Then Orj] and Orj2 are open-closed sets in CX. 
i.e., 

8(0Hl n x, oHl n X) = \ 

which implies that 8(U\, U2) = 1, i.e., 

S(UhX\Ul) = 1. 

It is clear that 

The converse is clear. 

COROLLARY. For every perfect 8-space X the conditions 

8 Ind X = 0 and WX = 0 

«re equivalent. 

Proof. This is immediate from the above Theorem (3) and Theorem (6) 
in [6]. 
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