ON LARGE INDUCTIVE DIMENSION OF PROXIMITY SPACES

A. KANDIL

Introduction. The notion of proximity spaces was introduced by Efremovic in [2, 3]. An analysis of proximity spaces was carried out by Smirnov in [5].

The study of covering dimension of proximity spaces was originated by Smirnov in [6].

In this paper we introduce the concept of δ -large inductive dimension of proximity spaces and study some of its properties.

1. Definitions and basic concepts.

Definition 1. [5] A proximity space or $(\delta$ -space) is a pair (X, δ) where X is a set and δ is a mapping from $2^X \times 2^X$ into the set $\{0, 1\}$ satisfying the following axioms:

1. $\delta(A, B) = \delta(B, A) \forall A, B \in 2^X$. 2. $\delta(A, B \cup C) = \delta(A, B) \delta(A, C) \forall A, B, C \in 2^X$. 3. $\delta(\{x\}, \{y\}) = 0 \Leftrightarrow x = y$. 4. $\delta(X, \emptyset) = 1$. 5. $\delta(A, B) = 1 \Rightarrow \exists C, D \in 2^X \ni C \cup D = X$ and $\delta(A, C) \cdot \delta(B, C) = 1$.

Remarks. 1. 2^X denotes the family of all subsets of the set X.

2. The mapping δ in definition 1 is called a *proximity on X*.

3. If $\delta(A, B) = 0$ then we say that the sets A and B are *near*. And if $\delta(A, B) = 1$ then we say that the sets A and B are *far* or *remote*.

The following properties of δ -spaces were proved in [5]:

 P_1 : Every proximity δ on a set X induces a topology τ_{δ} on X; the formula

 $[A] = \{x \in X : \delta(\{x\}, A) = 0\} \forall A \in 2^X$

defines the closure operator on X.

Received April 28, 1981 and in revised form March 1, 1982 and August 25, 1982.

The topological space (X, τ_{δ}) is a completely regular T_1 -space or $T_{3\frac{1}{2}}$ -space.

Remark. All topologies considered will be "Tychonoff" that is, completely regular and T_1 , otherwise known as $T_{3\frac{1}{2}}$.

 P_2 : For every completely regular T_1 -space (X, τ) there exists at least one proximity δ on the set X such that $\tau_{\delta} = \tau$.

In this paper we shall consider only the proximities δ on the topological space (X, τ) for which $\tau_{\delta} = \tau$.

 P_3 : For every compact T_2 -space (X, τ) the proximity δ on X defined by

 $\delta(A, B) = 1 \Leftrightarrow [A] \cap [B] = \emptyset$

is the unique proximity on X for which $\tau_{\delta} = \tau$.

Remark. Here [A] denotes the closure of A.

Definition 2. [4] Let (X, δ) be a δ -space; then we say that a set B is a δ -neighbourhood of the set A and we write $B \supset A$ if $\delta(A, X \setminus B) = 1$. The family $\alpha \subseteq 2^X$ is called a δ -family if

 $\forall A \in \alpha \exists B \in \alpha \ni A \supset B.$

A maximal δ -family satisfying the finite intersection property is called a δ -end on X [4]. The set of all δ -ends on X is denoted by CX.

 P_4 : For every δ -space (X, δ) the family

 $\beta_X = \{ O_H : H \in \tau_{\delta} \},$

is a base for some topology τ_{CX} on CX where

 $O_A = \{ \zeta \in CX : A \in \zeta \}.$

Moreover the topological space (*CX*, τ_{CX}) is a compactification for (*X*, τ_{δ}) generating the proximity δ on *X* as follows:

 $\delta(A, B) = 1 \Leftrightarrow [A]_{CX} \cap [B]_{CX} = \emptyset.$

The compact space (CX, τ_{CX}) is called the Smirnov compactification of the space (X, τ_{δ}) .

 P_5 : For every $T_{3\frac{1}{2}}$ -space (X, τ) there exists a one-to-one correspondence between all compactifications of (X, τ) and all proximities δ on X for which $\tau = \tau_{\delta}$. P_6 : The operator O_H defined in P_4 above satisfies the following properties:

I. $O_{A \cap B} = O_A \cap O_B \forall A, B \in 2^X$. II. $O_{\cup A_\lambda} \supseteq \cup_\lambda O_{A_\lambda} \forall \{A_\lambda\} \subseteq 2^X$. III. $\delta(X \setminus A, X \setminus B) = 1 \Rightarrow O_A \cup O_B = CX$. IV. $X \cap O_A = A^\circ \forall A \in 2^X$.

 $(A^{\circ}$ denotes the interior of the set A.)

V. $O_A \in \tau_{CX} \forall A \in 2^X$. VI. $O_{A^\circ} = O_A \forall A \in 2^X$. VII. $[B]_{CX} = CX \setminus O_{(X \setminus B)} \forall B \in 2^X$. VIII. $[O_H]_{CX} = [H]_{CX} \forall H \in \tau_{\delta}$. IX. $H \supset F$ if and only if $O_H \supseteq [F]_{CX} \forall H, F \in 2^X$.

 P_7 : Let (X, τ) be a $T_{3\frac{1}{2}}$ -space, then the proximity δ_β on X is defined by:

 $\delta_{\beta}(A, B) = 1$ if and only if A and B are functionally separated.

It is the finest proximity δ on X for which $\tau = \tau_{\delta}$. The Smirnov compactification CX in this case coincides with the greatest compactification βX of X. (X, δ_{β}) will be called a fine δ -space.

 P_8 : If a subspace F of a fine δ -space (X, δ) has the property that every continuous function $f: F \to I$ is extendable over X, then $(F, \delta/F)$ is a fine δ -space.

Definition 3. We say that the proximity space (X, δ) is *perfect* if and only if

 $[Fr_X H]_{CX} = Fr_{CX} O_H \forall H \in \tau_{\delta}.$

Here Fr_XH denotes the boundary of H in X.

The following example shows that not every proximity space is perfect.

Example. Let **R** be the real line with the usual topology and let bR be its Alexandrov Compactification. Then the pair (bR, \mathbf{R}) defines on **R** the following proximity δ ; For $A, B \subseteq R$

 $\delta(A, B) = 1$ if and only if $[A]_{bR} \cap [B]_{bR} = \emptyset$.

The proximity space (R, δ) is not perfect. Indeed, if $H = (0, \infty)$ then it is easy to see that

 $[Fr_R H]_{bR} \neq Fr_{bR}O_H.$

LEMMA 1. The proximity space (X, δ) is perfect if and only if for every two disjoint open sets $H_1, H_2 \in \tau_{\delta}$ we have;

 $O_{H_1\cup H_2} = O_{H_1} \cup O_{H_2}.$

Proof. Let (X, δ) be a perfect δ -space; and let $H_1, H_2 \in \tau_{\delta}, H_1 \cap H_2 = \emptyset$. To prove that $O_{H_1 \cup H_2} = O_{H_1} \cup O_{H_2}$, it suffices by P_6 (II), P_6 (VI) and complementation to prove that if $F_1, F_2 \in \tau_{\delta}^c$ and $F_1 \cup F_2 = X$ then

 $[F_1 \cap F_2]_{CX} \supseteq [F_1]_{CX} \cap [F_2]_{CX}.$

Suppose $\zeta \in [F_1]_{CX} \cap [F_2]_{CX}$ but $\zeta \notin [F_1 \cap F_2]_{CX}$. Then

 $\zeta \in Fr_{CX}([F_1]_{CX}),$

otherwise ζ has a neighbourhood V (in CX) such that

 $V \subseteq [F_1]_{CX}$ and $V \cap F_1 \cap F_2 = \emptyset$.

But $V \cap F_2$ is a non-empty subset of X contained in $[F_1]_{CX} \cap X = F_1$, contradicting $V \cap F_1 \cap F_2 = \emptyset$. Thus, applying the perfectness of (X, δ) to $H = X \setminus F_1$, we have

 $\zeta \in [Fr_X \cap F_1]_{CX}.$

But $Fr_X F_1 \subseteq F_1 \cap F_2$, proving $\zeta \in [F_1 \cap F_2]_{CX}$, a contradiction.

Conversely, assume the condition of the lemma. Let $H \in \tau_{\delta}$ and let $H^* = X \setminus [H]$. Then it is clear that

$$FrH = X \setminus (H \cup H^*).$$

Consequently,

(1)
$$[Fr H]_{CX} = [X \setminus (H \cup H^*)]_{CX} = CX \setminus O_{H \cup H^*}$$
$$= CX \setminus (O_{H^*} \cup O_H).$$

Moreover,

$$CX \setminus [O_H]_{CX} = CX \setminus [[H]]_{CX} = O_{H^*}$$

i.e.,

(2)
$$Fr_{CX}O_H = CX \setminus (O_H UO_{H^*}).$$

From 1, 2 we have;

$$[Fr H]_{CX} = Fr_{CX}O_{H}.$$

964

COROLLARY 1. Every compact proximity space (X, δ) is perfect.

Proof. The proof is immediate if we note that

 $O_H = H^{\circ} \forall H \in 2^X.$

LEMMA 2. A δ -space (X, δ) is perfect if, and only if, $F \subseteq H$ and $\delta(F, FrH) = 1$ imply $H \supset F \forall H \in \tau_{\delta}, F \in \tau_{\delta}^{c}$. $(\tau_{\delta}^{c}$ denotes the family of all closed subsets of the δ -space (X, δ) .)

Proof. Assume that (X, δ) is perfect. Let $H \in \tau_{\delta}$ and $F \in \tau_{\delta}^{c}$ be such that $\delta(F, FrH) = 1$. Then, $X \setminus FrH \supseteq F$ i.e.,

$$O_{(X \setminus FrH)} \supseteq [F]_{CX}$$

(see P_6 IX). Now, using P_6 IX, it is sufficient to show that $O_H \supseteq [F]_{CX}$. Assume the contrary: i.e.,

(1) $O_H \not\supseteq [F]_{CX}$.

From the condition $F \subseteq H$ we have

(2) $[F]_{CX} \subseteq [O_H]_{CX}$.

From 1, 2 we have;

(3) $[F]_{CX} \cap Fr_{CX}O_H \neq \emptyset.$

Since (X, δ) is perfect,

$$Fr_{CX}O_H = [Fr_X H]_{CX}$$
.

And since

$$O_{(X \setminus FrH)} = CX \setminus [FrH]_{CX}$$
 [See P_6 VII],

hence

(4) $O_{(X \setminus FrH)} = CX \setminus Fr_{CX}O_{H}.$

From (3), (4) we have

 $[F]_{CX} \not\subseteq O_{(X \setminus FrH)}$

which contradicts the assumption;

 $[F]_{CX} \subseteq O_{(X \setminus FrH)}.$

ii) Conversely, assume that the condition of the lemma is satisfied, i.e., $\forall H \in \tau_{\delta}$ and $F \in \tau_{\delta}^{c}$ such that $F \subseteq H$ and $\delta(F, FrH) = 1$ we have $H \supset F$.

Let $H \in \tau_{\delta}$, then it is clear that

 $[FrH]_{CX} \subseteq Fr_{CX} O_H.$

Now, let $\zeta \in Fr_{CX} O_H$. Then, $\zeta \in [O_H]_{CX} \setminus O_H$. And hence

 $O_H \cap O_{H^*} = O_{H \cap H^*} \neq \emptyset \forall H^* \in \zeta.$

Consequently

(5)
$$[O_H \cap O_{H^*}]_{CX} = [[H \cap H^*]_X]_{CX} \forall H^* \in \zeta$$

and

(6) $\zeta \notin O_H$.

We need to prove that $\zeta \in [FrH]_{CX}$. In fact if $\zeta \notin [FrH]_{CX}$ then there exists $H_{\circ} \in \zeta$ such that

(7) $X \setminus FrH \supset [H_{\circ}]_X.$

From 5 we have

(8) $\zeta \in [[H \cap H_{\circ}]_X]_{CX}.$

And from 7 we have

(9) $[H_0]_X \subseteq H \cup (X \setminus [H]_X).$

But (9) implies that

 $[H_{\circ}] \cap H \in \tau_{\delta}^{c}.$

Thus we have

(10)
$$[H \cap H_0]_X \subseteq [H_0]_X \cap H \subseteq H.$$

Moreover, we have

$$[H \cap H_{o}]_{X} \subseteq [H_{o}]_{X} \subseteq X \setminus FrH.$$

Consequently

 $[H_{\circ} \cap H]_X \subseteq X \setminus FrH.$

From 10, 11 and the condition of the lemma we have

 $H \supset [H \cap H]_X.$

Thus

$$(12) \quad [[H_{\circ} \cap H]]_{CX} \subseteq O_{H}.$$

https://doi.org/10.4153/CJM-1983-052-7 Published online by Cambridge University Press

966

Therefore from (8) and (12) we have

 $\zeta \in O_H$

which contradicts condition (6).

This complete the proof of the lemma.

COROLLARY 1. Every fine δ -space (X, δ_{β}) is perfect.

Proof. Let $H \in \tau_{\delta_{\beta}}$ and let F be an arbitrary closed subset of X such that $F \subseteq H$ and $\delta_{\beta}(F, FrH) = 1$.

From the definition of δ_{β} , there exists a continuous real function, $f: X \to [0, 1]$ such that; $f(x) = 0 \forall x \in F$ and $f(x) = 1 \forall x \in FrH$.

Introduce a function $g: X \rightarrow [0, 1]$ as follows:

$$g(x) = f(x) \quad \forall x \in [H]_X \text{ and},$$

 $g(x) = 1 \quad \forall x \in X \setminus H.$

It is easy to see that g is continuous and separates the two sets F and $X \setminus H$. I.e., $H \supset F$.

Thus from the above lemma it follows that (X, δ_{β}) is perfect.

Definition 4. A proximity space (X, δ) is called a semicompact δ -space if and only if the following condition is satisfied:

For $A, B \in \tau_{\delta}^{c}, \delta(A, B) = 1$ if and only if there exists an open subset H of X with compact boundary such that

 $A \subseteq H \subseteq [H] \subseteq X \setminus B.$

PROPOSITION 1. [7]. I. Every semicompact δ -space (X, δ) has a basis of open sets with compact boundaries.

II. Every $T_{3\frac{1}{2}}$ -space (X, τ) having a basis of open sets with compact boundaries induces a semicompact δ -space (X, δ) by the following proximity relation;

For $A, B \subseteq X, \delta(A, B) = 1$ if and only if there exists an open subset H of X with compact boundary such that

 $A \subseteq H \subseteq [H] \subseteq X \setminus B.$

LEMMA 3. If (X, δ) is a semicompact δ -space and σ is the family of all open subsets of X with compact boundaries, then for every closed subset F of X contained in some element H from σ , we have $H \supset F$.

Proof. This follows immediately from Definition 4, and Proposition 1 (I).

A. KANDIL

COROLLARY 1. Every semicompact δ -space (X, δ) is perfect.

Proof. Let σ be the family of all open subsets of X with compact boundaries, and H be an arbitrary open subset of X. Assume that F is a closed subset of X for which $F \subseteq H$ and $\delta(F, FrH) = 1$. Then there exists $H^* \in \sigma$ such that

 $FrH \subseteq H^* \subseteq [H^*] \subseteq X \setminus F.$

From above we have $Fr(H \setminus [H^*])$ is compact, indeed;

$$Fr(H \setminus [H^*]) = Fr(X \setminus [H^*]) \cup (X \setminus H))$$

= $Fr[H^* \cup (X \setminus H)]$
 $\subseteq Fr(H^* \cup (X \setminus H))$
 $\subseteq Fr H^* \cup Fr H$
 $\subseteq [H^*].$

It is easy to see that

$$Fr(H \setminus [H^*]) \cap H^* = \emptyset.$$

Thus

$$Fr(H \setminus [H^*]) \subseteq Fr H^*.$$

Consequently, $H \setminus [H^*] \in \sigma$. Since $F \subseteq H \setminus [H^*] \subseteq H$, from Lemma 3 we have

 $H \supseteq H \setminus [H^*] \supset F.$

Therefore $H \supset F$. It follows from Lemma 2 that (X, δ) is perfect.

Definition 5. A perfect δ -space (X, δ) is called a strongly perfect δ -space (or S-perfect δ -space) if every closed subspace of (X, δ) is perfect.

Using the following properties:

1) Every closed subspace of a compact space is compact.

2) Every closed subspace F of a normal fine δ -space is a normal fine δ -space (see P_8).

The following statement may be easily proved.

LEMMA 4. Every compact δ -space, and every normal fine δ -space are S-perfect δ -spaces.

PROPOSITION 2. [6]. Every δ -space is homeomorphic with a closed subset of a fine δ -space.

From Proposition 2, Example 1 and Corollary 1 of Lemma 2 we deduce that not every perfect δ -space is S-perfect.

Definition 6. Let (X, δ) be a δ -space. Then we say that the set $L \subseteq X$ is a δ -partition between A and B if there exist open sets U, $W \subseteq X$ such that;

$$U \supset A, W \supset B, U \cap W = \emptyset$$
 and $U \cup W = X \setminus L$.

It is clear that if L is a δ -partition between A and B then

 $\delta(A \cup B, L) = 1 = \delta(A, L) = \delta(B, L).$

LEMMA 5. Let (X, δ) be a δ -space and let F_1 and F_2 be two of its closed subsets. If $\delta(F_1, F_2) = 1$ and ψ^* is a partition between $[F_1]_{CX}$, $[F_2]_{CX}$ in CX (in the topological sense [1]) then;

 $\psi = \psi^* \cap X$ is a δ -partition between F_1 , F_2 in X.

Proof. This is clear.

LEMMA 5. If the closed subset ψ of a perfect proximity space (X, δ) is a δ -partition between two closed far sets $F_1, F_2 \subseteq X$ then $[\psi]_{CX}$ is a partition between $[F_1]_{CX}$ and $[F_2]_{CX}$ in CX.

Proof. Let ψ be a δ -partition between F_1 and F_2 ; then by definition there exist U_1 and $U_2 \in \tau_{\delta}$ such that:

$$X \setminus \psi = U_1 \cup U_2, U_1 \cap U_2 = \emptyset$$
 and $U_i \supset F_i, i = 1, 2$.

Let

$$\psi_i = \psi \cup U_i, \quad i = 1, 2.$$

Then

$$\psi_i \in \tau_{\delta}^c$$
 and
 $\delta(\psi_1, F_2) = \delta(\psi, F_1) = 1.$

Consequently

$$[F_1]_{CX} \subseteq CX \setminus [\psi_2]_{CX} = O_{U_1},$$

$$[F_2]_{CX} \subseteq CX \setminus [\psi_1]_{CX} = O_{U_2}.$$

Since $U_2 \cap U_i = \emptyset$, then

 $O_{U_1} \cap O_{U_2} = O_{U_1 \cap U_2} = \emptyset.$

Now from $X \setminus \psi = U_1 \cup U_2$, (X, δ) is perfect and P_6 VIII we have

$$CX \setminus [\psi]_{CX} = O_{(X \setminus \psi)} = O_{(U_1 \cup U_2)} = O_{U_1} \cup O_{U_2},$$

i.e., $C\Psi$ is a partition between CF_1 and CF_2 in CX, where $C\Psi = [\Psi]_{CX}$, [5].

2. Definition and basic properties of the dimension δ Ind in δ -spaces.

Definition 7. To every δ -space X one assigns the δ -large inductive dimension of X denoted by δ -Ind X, which is a natural number or -1 or ∞ . The definition of δ Ind X consists of the following conditions:

1₁. δ Ind X = -1 if and only if $X = \emptyset$.

1₂. δ Ind $X \leq n$ where n = 0, 1, 2, ... if for every two closed far sets A, $B \subseteq X$ there exists a δ -partition L between A and B such that;

 δ Ind $L \leq n - 1$.

1₃. δ Ind X = n if and only if δ Ind $X \leq n$ and δ Ind X > n - 1. 1₄. δ Ind $X = \infty$ if and only if δ Ind X > n for $n = -1, 0, 1, 2, \ldots$.

THEOREM 1. For every δ -space X we have

 δ Ind $X \leq$ Ind CX.

Proof. We shall apply induction with respect to Ind CX. If Ind CX = -1 then $CX = \emptyset = X$ and our inequality holds. Assume that the inequality holds for all δ -spaces X with Ind CX < n for some $n \ge 0$, and consider a δ -space X such that Ind CX = n.

Let F_1 and F_2 be far closed sets in X.

Then the sets CF_1 and CF_2 are disjoint in CX so that there exists a partition $\tilde{\psi}$ in CX between CF_1 and CF_2 , such that $\operatorname{Ind} \tilde{\psi} \leq n - 1$.

From Lemma 5 we have $\psi = \tilde{\psi} \cap X$ is a δ -partition in X between F_1 and F_2 . Since $C\psi = [\psi]_{CX}$ it follows from Theorem 2.2.1 [1] and the inductive assumption that

 $\delta \operatorname{Ind} \psi \leq n - 1$,

so that

 δ Ind $X \leq n =$ Ind CX.

THEOREM 2. For every S-perfect δ -space X we have

 δ Ind X = Ind CX.

Proof. From Theorem 1 it suffices to show that

Ind $CX \leq \delta$ Ind X.

As in the proof of Theorem 1 we shall suppose that δ Ind $X < \infty$ and apply induction with respect to δ Ind X.

Our inequality holds if δ Ind X = -1.

Assume that the inequality is proved for all S-perfect δ -spaces with dimension δ Ind less than $n \ge 0$, and consider an S-perfect δ -space X such that δ Ind X = n. Let \tilde{F}_1 and \tilde{F}_2 be disjoint closed sets in CX. Then there exist open sets $\tilde{V}_1, \tilde{V}_2 \subseteq CX$ such that

$$\widetilde{F}_i \subseteq \widetilde{V}_i, \quad i = 1, 2 \text{ and}$$

 $[\widetilde{V}_1]_{CX} \cap [\widetilde{V}_2]_{CX} = \emptyset.$

The sets $V_i = [\tilde{V}_i]_{CX} \cap X$ are closed in X and far, so that there exists a δ -partition ψ in X between V_1 and V_2 such that δ Ind $\leq n - 1$.

From Lemma 6 the set $C\psi$ is a partition between CV_1 and CV_2 in CX. And from the induction assumption we have Ind $C\psi \leq n - 1$.

Since

 $\widetilde{F}_i \subseteq [\widetilde{V}_i]_{CX}$

then $C\psi$ is a partition between F_1 and F_2 ; consequently

Ind $CX \leq \delta$ Ind X.

COROLLARY 1. For every compact proximity space X the topological Ind X coincides with δ Ind X.

Proof. This is immediate from Theorem 2 and Corollary 1 of Lemma 1.

COROLLARY 2. Every normal fine δ -space X has

 δ Ind X = Ind βX .

Proof. This follows immediately from Theorem 2 and Lemma 4.

COROLLARY 3. If X is an S-perfect δ -space and M is a closed subset of X, then

 δ Ind $M \leq \delta$ Ind X.

Proof. From Definition 4 and the above theorem we have

 δ Ind M = Ind CM = Ind $[M]_{CX} \leq$ Ind $CX = \delta$ Ind X.

COROLLARY 4. For every S-perfect δ -space we have

 $\delta dX \leq \delta \text{ Ind } X$,

where δdX is the covering dimension of (X, δ) , (see [5]).

Proof. From Theorem 1 in [6] we have

 $\delta dX = \dim CX.$

From Theorem 2 we have δ Ind X = Ind CX, and from Theorem 3.1.28 in [1] we have dim $CX \leq$ Ind CX. Thus we have $\delta dX \leq \delta$ Ind X for every S-perfect space.

COROLLARY 5. If (X, δ) is an S-perfect proximity space, and A, B are closed subsets of (X, δ) , then,

$$\delta$$
 Ind $(A \cup B) \leq \delta$ Ind $A + \delta$ Ind $B + 1$.

Proof.

$$\delta \operatorname{Ind} (A \cup B) = \operatorname{Ind} [A \cup B]_{CX} = \operatorname{Ind} [A]_{CX} \cup [B]_{CX}$$
$$\leq \operatorname{Ind} [A]_{CX} + \operatorname{Ind} [B]_{CX} + 1 \quad (\operatorname{see} [1])$$
$$= \delta \operatorname{Ind} A + \delta \operatorname{Ind} B + 1.$$

Definition 8. If (X, δ) is a δ -space, then the set $H \in 2^X$ is called a δ -singular set if $\delta(X \setminus H, H) = 1$.

THEOREM 3. The perfect δ -space X has δ Ind X = O if and only if for every closed set $F \subseteq X$ and for every δ -neighbourhood U of F there exists a δ -singular set H such that

 $F \subseteq H \subseteq U$.

Proof. Let δ Ind X = 0 and let F be a closed subset of the δ -space (X, δ) , and let $U \supset F$; then $\delta(F, X \setminus U) = 1$.

Therefore, the empty set \emptyset is a δ -partition between F and $X \setminus U$. Thus

$$\exists U_1, U_2 \in \tau_\delta \quad \text{such that} \\ X = U_1 \cup U_2, U_1 \cap U_2 = \emptyset$$

and

$$U_1 \supset F, U_2 \supset X \setminus U.$$

But

$$CX = O_X = O_{(U_1 \cup U_2)} = O_{U_1} \cup O_{U_2},$$

and

$$O_{U_1} \cap O_{U_2} = \emptyset$$

972

because $U_1 \cap U_2 = \emptyset$. Then O_{U_1} and O_{U_2} are open-closed sets in CX. i.e.,

 $\delta(O_{H_1} \cap X, O_{H_2} \cap X) = 1$

which implies that $\delta(U_1, U_2) = 1$, i.e.,

$$\delta(U_1, X \setminus U_1) = 1.$$

It is clear that

 $U \supset U_1 \supset F.$

The converse is clear.

COROLLARY. For every perfect δ -space X the conditions

 δ Ind X = 0 and $\delta dX = 0$

are equivalent.

Proof. This is immediate from the above Theorem (3) and Theorem (6) in [6].

REFERENCES.

1. R. Engelking, Dimension theory (Warszawa, 1978).

- 2. V. A. Efremovic, Infinitesimal spaces, Soviet Math, Doklady 76 (1951), 341-343.
- 3. —— The geometry of proximity spaces, Math, Sb 31 (1952), 89-200.
- 4. S. A. Naimpally and B. D. Warrack, *Proximity spaces* (Cambridge University Press, 1970).
- 5. M. Smirnov Ju, On proximity spaces, Amer. Math. Soc. Transl. Ser 2, 38 (1964), 4-35.
- 6. ——— On the dimension of proximity spaces, Amer Math. Soc. Transl., Ser 2, 21 (1962), 1-20.
- On dimension of remainder of compact extension of proximity and topological spaces, Math. Sb 69 (1966), 141-159.

Mansoura University, Mansoura, Egypt