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Ramanujan and the Modular j-Invariant
Bruce C. Berndt and Heng Huat Chan

Abstract. A new infinite product tn was introduced by S. Ramanujan on the last page of his third notebook. In
this paper, we prove Ramanujan’s assertions about tn by establishing new connections between the modular j-
invariant and Ramanujan’s cubic theory of elliptic functions to alternative bases. We also show that for certain
integers n, tn generates the Hilbert class field of Q(

√
−n). This shows that tn is a new class invariant according

to H. Weber’s definition of class invariants.

1 Introduction

Except for four entries, the last two pages in Ramanujan’s third notebook, pages 392 and
393 in the pagination of [21, vol. 2], are devoted to values of the modular j-invariant. Recall
[14, p. 81], [15, p. 224] that the invariants J(τ ) and j(τ ), for τ ∈ H := {τ : Im τ > 0}, are
defined by

J(τ ) =
g3

2 (τ )

∆(τ )
and j(τ ) = 1728 J(τ ),(1.1)

where

∆(τ ) = g3
2 (τ )− 27g2

3 (τ ),(1.2)

g2(τ ) = 60
∞∑

m,n=−∞
(m,n)6=(0,0)

(mτ + n)−4,

and

g3(τ ) = 140
∞∑

m,n=−∞
(m,n)6=(0,0)

(mτ + n)−6.

Furthermore, the function γ2(τ ) is defined by [15, p. 249]

γ2(τ ) = 3
√

j(τ ),(1.3)
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where that branch which is real when τ is purely imaginary is chosen.
At the top of page 392 in [21, vol. 2], which inexplicably is printed upside down, Ra-

manujan defines J := Jn and u := un by

Jn =
1− 16αn(1− αn)

8
(
4αn(1− αn)

)1/3
and Jn =

3
√

4un

23
,(1.4)

where n is a natural number. Here, if, as usual in the theory of elliptic functions, k, 0 <
k < 1, denotes the modulus, then

√
αn := kn is the singular modulus. To help identify Jn,

first recall Ramanujan’s definition of the class invariant Gn,

Gn := 2−1/4q−1/24
n

∞∏
j=1

(1 + q2 j−1
n ),(1.5)

where n is a positive rational number and qn = exp(−π
√

n). In the notation of Weber [26],
Gn =: 2−1/4f(

√
−n). Furthermore [4],

Gn = {4αn(1− αn)}−1/24.(1.6)

Now, from (1.4) and (1.6), we easily find that

Jn =
1

8
G8

n(1− 4G−24
n ).(1.7)

We now identify Jn with γ2. First, following Ramanujan, set

f (−q) :=
∞∏

n=1

(1− qn) = q−1/24η(τ ),(1.8)

where q = exp(2πiτ ), τ ∈ H, and η(τ ) denotes the Dedekind eta-function. From Cox’s
text [15, p. 257, Theorem 12.17],

γ2(τ ) =
f2(τ )24 + 16

f2(τ )8
,(1.9)

where f2(τ ) =
√

2q1/24 f (−q2)/ f (−q) and q = e2πiτ . Hence, by (1.9),

γ2(τ ) = 28 q2/3 f 16(−q2)

f 16(−q)
+

f 8(−q)

q1/3 f 8(−q2)
.(1.10)

Setting τ = (3 +
√
−n)/2, we deduce from (1.5) and (1.10) that

γ2

(
3 +
√
−n

2

)
=

28 − 26G24
n

24G16
n

= −4G8
n(1− 4G−24

n ).(1.11)
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Hence, from (1.7), (1.11), and (1.3),

Jn = −
1

32
γ2

(
3 +
√
−n

2

)
= −

1

32
3

√
j

(
3 +
√
−n

2

)
.(1.12)

Ramanujan records fifteen values of Jn, n ≡ 3 (mod 4), although some are not given very
explicitly. He also records factors of certain polynomials in Jn. A complete discussion of
this material can be found in Berndt’s book [2, Chap. 34, Sect. 11].

Up to this point, all of Ramanujan’s claims about the j-invariant are well known, but on
page 393, Ramanujan records the following interesting result.

Theorem 1.1 For q = exp(−π
√

n), define

t := tn :=
√

3q1/18 f (q1/3) f (q3)

f 2(q)
.(1.13)

Then

tn =
(

2
√

64 J2
n − 24 Jn + 9− (16 Jn − 3)

)1/6
.(1.14)

Ramanujan then gives a table of polynomials satisfied by tn, for five values of n.

Theorem 1.2 For the values of n given below, we have the following table of polynomials
pn(t) satisfied by tn.

n pn(t)
11 t − 1
35 t2 + t − 1
59 t3 + 2t − 1
83 t3 + 2t2 + 2t − 1

107 t3 − 2t2 + 4t − 1

The simplicity of these polynomials is remarkable, since the corresponding well-known
polynomials (of the same degree) satisfied by Jn are considerably more complicated, espe-
cially in the latter three instances.

The form of Theorem 1.1 suggests hitherto unknown connections between the j-invar-
iant and Ramanujan’s cubic theory of elliptic functions to alternative bases developed by
Berndt, S. Bhargava, and F. G. Garvan [3]. In Section 2, we offer some of these connections
and show how they can be exploited to calculate particular values of γ2(τ ). We also use this
connection to give a proof of Theorem 1.1 in Section 3.

In Section 4, we derive the polynomials in Theorem 1.2 from Theorem 1.1 and results
in papers by A. G. Greenhill [17], [18]. In view of (1.14), there is clearly a relation be-
tween tn and the Hilbert class field of Q(

√
−n). We will show that in fact tn generates the

Hilbert class field of Q(
√
−n) for certain integers n. In this final section we also provide

some historical remarks on what Ramanujan likely knew about the j–invariant from the
literature.
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2 Connections with Ramanujan’s Alternative Cubic Theory

Recall that the ordinary hypergeometric function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) :=
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

where (a)k = (a)(a + 1) · · · (a + k−1), and |z| < 1. In the alternative cubic theory, the base
q is defined by

q := q3 := exp

(
−

2π
√

3

2F1( 1
3 ,

2
3 ; 1; 1− α)

2F1( 1
3 ,

2
3 ; 1;α)

)
, 0 < α < 1.(2.1)

From the fundamental inversion formula for the cubic theta functions [3, Lemma 2.9], we
find that

α := α(q) =
c3(q)

a3(q)
,(2.2)

where

a(q) :=
∞∑

m,n=−∞

qm2+mn+n2

(2.3)

and

c(q) :=
∞∑

m,n=−∞

q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2

.(2.4)

Following Ramanujan, define M(q) and N(q) by

g2(τ ) =
4π4

3
M(q) and g3(τ ) =

8π6

27
N(q),

where q = exp(2πiτ ), τ ∈ H. Then, it was shown by Berndt, Bhargava, and Garvan [3,
Theorems 4.2–4.5] (see also [11]) that

M(q) = z4(1 + 8α), N(q) = z6(1− 20α− 8α2),(2.5)

M(q3) = z4

(
1−

8

9
α

)
, and N(q3) = z6

(
1−

4

3
α +

8

27
α2

)
,(2.6)

where

z := 2F1( 1
3 ,

2
3 ; 1;α).
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It follows from (1.1) and (1.2) that

j(τ ) = 1728
M3(q)

M3(q)− N2(q)
.(2.7)

Now, employing (2.5) and (2.6) in (2.7), we deduce that, respectively,

j(τ ) = 27
(1 + 8α)3

α(1− α)3
(2.8)

and

j(3τ ) = 27

(
1 + 8(1− α)

)3

(1− α)α3
.(2.9)

Alternatively, we show how to derive (2.9) from (2.1) and (2.8). In (2.1), set q =
exp(2πiτ ). Then, replacing α by 1− α in (2.1), we find that

exp

(
−

2π
√

3

2F1( 1
3 ,

2
3 ; 1;α)

2F1( 1
3 ,

2
3 ; 1; 1− α)

)
= exp

(
−2πi/(3τ )

)
.(2.10)

It is well known that j(τ ) is a modular function on the full modular group [14, p. 84], [15,
p. 221]. In particular,

j(−1/τ ) = j(τ ).(2.11)

Hence, by (2.11), (2.10), and (2.8),

j(3τ ) = j

(
−

1

3τ

)
= 27

(
1 + 8(1− α)

)3

(1− α)α3
,

and thus (2.9) has been established again.
Identity (2.8) is truly a cubic analogue of the well-known identity [8, p. 115, Theo-

rem 4.4]

j(τ ) = 256
(1− λ + λ2)3

λ2(1− λ)2
,

where

λ := λ(q) = q
ψ4(q2)

ϕ4(q)
,

with

ψ(q) :=
∞∑

n=0

qn(n+1)/2 and ϕ(q) :=
∞∑

n=−∞

qn2

, q = eπiτ .
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We remark here that the discovery of identities (2.8) and (2.9) has recently motivated a
proof of Ramanujan’s cubic transformation via Goursat’s transformation formulas. For
more details, see [11].

Next, we use (2.8) and (2.9) to calculate some values for γ2(τ ). We emphasize that we
could utilize (1.11) in our procedures. However, our calculations avoid the need for the
values of class invariants. Instead, we employ some simple modular equations from the
alternative cubic theory.

Examples

γ2(3
√
−1) = 22

√
3(2 + 3

√
3)(2
√

3 + 1)(2 +
√

3)2/3,(2.12)

γ2(3
√
−2) = 22 · 5 · (3

√
6− 1)(3

√
6 + 5)(5 + 2

√
6)2/3,(2.13)

γ2(
√
−5/3) = 3

√
5(3
√

5− 2)(7− 2
√

5)

(√
5− 1

2

)10/3

,(2.14)

γ2(
√
−15) = 3

√
5(3
√

5 + 2)(7 + 2
√

5)

(√
5 + 1

2

)10/3

,(2.15)

γ2(
√
−7/3) =

4

9
(45− 26

√
3 + 2

√
21)(34 + 13

√
7)

· (142− 78
√

3 + 6
√

21− 13
√

7)1/3,

(2.16)

γ2(
√
−21) =

4

9
(45 + 26

√
3− 2

√
21)(34 + 13

√
7)

· (142 + 78
√

3− 6
√

21− 13
√

7)1/3.

(2.17)

Remark Note that if we use (1.11) to evaluate γ2(τ ), we obtain a product of two rather
“complicated” algebraic numbers. On the other hand, our new method produces much
simpler expressions for γ2(τ ).

We will provide proofs of (2.12) and (2.13) and say a few words about the proofs of
identities (2.14)–(2.17).

Proof of (2.12) We first recall the definition of a modular equation of degree n in the cubic
theory [3]. Suppose that, for some positive integer n,

2F1( 1
3 ,

2
3 ; 1; 1− β)

2F1( 1
3 ,

2
3 ; 1;β)

= n
2F1( 1

3 ,
2
3 ; 1; 1− α)

2F1( 1
3 ,

2
3 ; 1;α)

.(2.18)

Then a modular equation of degree n in Ramanujan’s alternative cubic theory is a relation
between α and β induced by (2.18). As in the classical theory, we say that β has degree n
over α.

https://doi.org/10.4153/CMB-1999-050-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-050-1


Ramanujan and the Modular j-Invariant 433

If n is a positive rational number, then the singular modulus 3
√
αn in the alternative cubic

theory is that unique positive number such that

2F1( 1
3 ,

2
3 ; 1; 1− αn)

2F1( 1
3 ,

2
3 ; 1;αn)

=
√

n.(2.19)

Now suppose that β = 1− α. Then, from (2.18),

2F1( 1
3 ,

2
3 ; 1; 1− β)

2F1( 1
3 ,

2
3 ; 1;β)

=
√

n,

i.e., by (2.19), β = αn, the cube of the singular modulus.
We now demonstrate how this principle can be used to calculate values of γ2(τ ).
Suppose that β has degree 3 over α in the cubic theory. Then [3, Lemma 7.4]

β1/3 =
1− 3
√

1− α

1 + 2 3
√

1− α
.(2.20)

Assuming that β = 1− α, we conclude, as above, that β = α3. Hence, from (2.20),

α
1/3
3 =

1− α1/3
3

1 + 2α1/3
3

,

which implies that

α
1/3
3 =

√
3− 1

2
.(2.21)

From (2.1), note that q = e−2π. Thus, by (2.8) and a straight-forward calculation, we find
that

γ2(
√
−1) = 12,

which is well known [15, p. 261]. From (2.9) and (2.21), we also find that

γ2(3i) =
24(19− 6

√
3)

3
√

18− 6
√

3(3
√

3− 5)
.

Upon simplifications, we arrive at (2.12).
Next, assume that β has degree 2 over α and degree 3 over 1− α. Then, from (2.18) we

can deduce that

2F1( 1
3 ,

2
3 ; 1; 1− β)

2F1( 1
3 ,

2
3 ; 1;β)

=
√

6.

Thus, β = α6. Since β has degree 2 over α, from [3, Theorem 7.1],

(αβ)1/3 + {(1− α)(1− β)}1/3 = 1.(2.22)
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Since β has degree 3 over 1− α, by (2.20),

β1/3 =
1− α1/3

1 + 2α1/3
,

from which it follows that

α1/3 =
1− β1/3

1 + 2β1/3
.(2.23)

If x = α1/3
6 , substitution of (2.23) into (2.22) yields, after a lengthy calculation,

(1 + x + x2)(1− 8x + 10x2) = 0.(2.24)

Checking numerically the two real roots, we find that the appropriate root of (2.24) is

α
1/3
6 =

4−
√

6

10
.(2.25)

From (2.1), q = e−2π
√

2, and so from (2.8), we easily find that γ2(
√

2i) = 20, which is well-
known [15, p. 261]. Next, substituting (2.25) into (2.9) and simplifying, we deduce (2.13).

Unlike (2.13), the proofs of identities (2.14)–(2.17) require only a single modular equa-
tion in each case. For (2.14) and (2.15), we use Ramanujan’s modular equation of degree 5
[3, Theorem 5.6], namely,

(αβ)1/3 + {(1− α)(1− β)}1/3 + 3{αβ(1− α)(1− β)}1/6 = 1,

and show that

α5 =
1

2

(
1−

11
√

5

25

)
.

This corresponds to q = e−2π
√

5/3 and gives us the value for γ2(
√
−5/3). Next, observe

that

1− α5 =
1

2

(
1 +

11
√

5

25

)

differs from the value α5 by only a sign change in
√

5. Since (2.9) relates γ2(
√
−15) and

1 − α5 in exactly the same way as γ2(
√
−5/3) and α5, we can simply replace

√
5 by −

√
5

in the expression for γ2(
√
−5/3) to obtain γ2(

√
−15).

For the proofs of identities (2.16) and (2.17), we use a new modular equation of degree 7
recently discovered by Chan and W.-C. Liaw [13]. Suppose β has degree 7 over α. Let
w = (x + y − 1)(x + y + 1) and s = xy, where x =

√
αβ and y =

√
(1− α)(1− β). Then

w4−24·3·7sw3+(28·3·72s2−23·35·5s)w2−(212·73s3+27·35·11s2+37·13s)w−35s(26s+32)2 = 0.

From the modular equation above, we deduce that

α7 =
1

2
−

13

36

√
3 +

1

36

√
21.

This value corresponds to q = e−2π
√

7/3 and gives us the value for γ2(
√
−7/3). The value

for γ2(
√
−21) can be obtained by replacing

√
3 by−

√
3 in the expression for γ2(

√
−7/3).
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3 Theorem 1.1 and the Alternative Cubic Theory

In this section, we will derive the following q-identity from the alternative cubic theory and
deduce Theorem 1.1 as a corollary of this identity.

Theorem 3.1 Set

h(q) =
f 12(−q3)

q f 6(−q) f 6(−q9)
,

where f (−q) is given as in (1.8). Then

h(q)− 27h(q)−1 = γ2(3τ ) + 6,(3.1)

where q = exp(2πiτ ).

Proof of Theorem 3.1 From [3, Lemma 5.1] or [10],

c(q3) = 3q
f 3(−q9)

f (−q3)
.(3.2)

By combining Entry 1(v) in Chapter 20 of Ramanujan’s second notebook [1, p. 346] with a
Lambert series representation for a(q) found by both Ramanujan and the Borweins [9], we
find that

a(q3) =
f 3(−q) + 3q f 3(−q9)

f (−q3)
.(3.3)

(For several historical remarks on this Lambert series, see [3, p. 4167].) Hence, by (3.2)
and (3.3), we deduce that

1

α1/3(q3)
=

f 3(−q)

3q f 3(−q9)
+ 1 =

s

3
+ 1,(3.4)

where

s =
f 3(−q)

q f 3(−q9)
.(3.5)

Substituting (3.4) into (2.8) (with q replaced by q3), we find that

γ2(3τ ) =
(s + 3)(s + 9)(s2 + 27)

s(s2 + 9s + 27)
.(3.6)

On the other hand, if we cube Entry 1(iv) in Chapter 20 of Ramanujan’s second notebook
with q replaced by q3 [1, p. 345], we find that

h(q) = s + 9 +
27

s
,(3.7)
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with s given by (3.5). Now, from (3.6) and (3.7),

γ2(3τ ) =
(s2 + 9s + 27− 3s)(s2 + 27 + 9s− 9s)

s(s2 + 9s + 27)

=
(sh(q) + 3s)(sh(q)− 9s)

s2h(q)

= h(q)− 6− 27h(q)−1,

which is (3.1). This completes the proof of Theorem 3.1.

As a corollary, we deduce Theorem 1.1.

Proof of Theorem 1.1 In view of (1.12) and (1.13), we set τ = (3 +
√
−n)/6 in (3.1) to

deduce that

t6
n − 27t−6

n = −32 Jn + 6,(3.8)

since h(−e−π
√

n/3) = −27t−6
n . Solving the quadratic equation (3.8) in t6

n yields (1.14)
immediately. This completes the proof of Theorem 1.1.

Remark Theorem 3.1 can be proved using the theory of modular forms. From M. New-
man’s criterion ([20] or [12]), it is easy to show that h(q) generates the function field as-
sociated with Γ0(9). On the other hand, γ2(3τ ) is a modular function for the group Γ0(9)
[15, p. 250, Proposition 12.3]. Hence, γ2(3τ ) is a rational function of h(q). For detailed
computations of identities similar to (3.1), see [12].

4 Calculating the Polynomials in Theorem 1.2

Proof of Theorem 1.2 It is well known that J11 = 1 [15, p. 261]. Thus, we find that

t11 = (2 · 7− 13)1/6 = 1,

as desired.
Secondly, from a paper of W. E. Berwick [6],

J35 =
√

5

(√
5 + 1

2

)4

.

Hence,

t35 =


2

√
64 · 5

(√
5 + 1

2

)8

− 24
√

5

(√
5 + 1

2

)4

+ 9−

(
16
√

5

(√
5 + 1

2

)4

− 3

)
1/6

=

(
2

√
7349 + 3276

√
5− 117− 56

√
5

)1/6

.

https://doi.org/10.4153/CMB-1999-050-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-050-1


Ramanujan and the Modular j-Invariant 437

It is easy to verify that if a2 − db2 = c2, then

√
a± b

√
d =

√
a + c

2
±

√
a− c

2
.(4.1)

Now, since

73492 − 5 · 32762 = 5892,

we find that√
7349 + 3276

√
5 =

√
7349 + 589

2
+

√
7349− 589

2
=
√

3969 +
√

3380 = 63 + 26
√

5,

by (4.1). Hence,

t35 =
(

2
(

63 + 26
√

5
)
− 117− 56

√
5
)1/6
= (9− 4

√
5)1/6 =

√
5− 1

2
.

Hence, t35 is a root of t2 + t − 1, and the second result is established.
For n = 59, Greenhill [18] showed that u59, defined by (1.4), is a root of the equation

u− 392 · 21/3u2/3 + 1072 · 41/3u1/3 − 2816 = 0.

Since, by (1.4) and (1.12), u59 = −γ3
2/256, where γ2 = γ2( 3+

√
−59

2 ), it follows that γ2

satisfies

γ3
2 + 3136γ2

2 + 68608γ2 + 720896 = 0.(4.2)

Set x := t6 := t6
n . From (3.8), we find that

γ2 = x − 27x−1 − 6.(4.3)

Substituting (4.3) into (4.2) and turning to Mathematica, we find that

x6 + 3118x5 + 31003x4 + 25355x3 − 837081x2 + 2273022x− 19683

= (x3 + 13x2 + 115x− 1)(x3 + 3105x2 − 9477x + 19683)

= 0.

Numerically checking the roots, we see that x is a root of the first factor above, i.e.,

t18 + 13t12 + 115t6 − 1 = 0.

We use Mathematica to factor this polynomial and find that

t18 + 13t12 + 115t6 − 1 = (t3 + 2t − 1)(t3 + 2t + 1)(t6 − 2t4 + 2t3 + 4t2 − 2t + 1)

× (t6 − 2t4 − 2t3 + 4t2 + 2t + 1).
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Again, numerically calculating the roots, we find that

t3 + 2t − 1 = 0,

as claimed by Ramanujan.
For n = 83, u83 is a root of [17]

u− 1740 · 21/3u2/3 + 2000 · 41/3u1/3 − 32000 = 0,

and for n = 107, u107 is a root of [18, p. 405]

u− 79 · 80 · 21/3u2/3 − 69 · 800 · 41/3u1/3 − 17 · 16000 = 0.

The derivations of p83(t) and p107(t) from the relations above are similar to the case n = 59
and we omit the details here. This completes the proof of Theorem 1.2.

Our derivations of pn(t) for n = 59, 83, and 107 are not satisfactory as they involve
Greenhill’s polynomials. Greenhill discovered these polynomials using Russell’s modular
equations and relations between un and Weber’s class invariants. His computations are
laborious. An effective and direct method for evaluating pn(t) is highly desirable.

Let n be squarefree and set ω = (3 +
√
−n)/2. It is well known that if Kn = Q(

√
−n),

3 - n, and n ≡ 3 (mod 4), then Kn

(
γ2(ω)

)
is the Hilbert class field of Kn. This means that

the degree
(

Kn

(
γ2(ω)

)
: Kn

)
= hKn , the class number of Kn. In view of (3.8), we conclude

that Kn

(
γ2(ω)

)
is a subfield of Kn(tn). Now, the class numbers of Kn for n = 11, 35, 59, 83

and 107 are respectively 1, 2, 3, 3, and 3. These class numbers coincide with the degrees of
pn(t) and hence, Kn(tn) = Kn

(
γ2(ω)

)
for these integers. It is therefore natural to conjecture

that for certain integers n, tn generates the Hilbert class field of Kn. Indeed, we have the
following result:

Theorem 4.1 Let n be squarefree, n ≡ 11 (mod 24), and suppose that the class number of
Kn is odd. Then tn is a real unit generating the Hilbert class field of Kn.

In [7, p. 291, Section 8], B. J. Birch relates a function g suggested by A. O. L. Atkin
satisfying

g6(τ )− 27g−6(τ ) = γ2(τ ) + 6,(4.4)

where g(τ ) is real and positive when z is purely imaginary. He then established the follow-
ing [7, p. 292]:

Lemma 4.2 If n ≡ 11 (mod 24), then g2
(
(3 +
√
−n)/2

)
generates the Hilbert class field of

Kn.

Birch did not indicate the explicit form of g(τ ), and so no examples were given to verify
his results. In [25], H. M. Stark successfully determined an expression for g(τ ). Using
Kronecker’s limit formula, he computed the first few numerical examples for (4.4).
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In view of (3.1) and (4.4), we conclude, by solving x − 27/x = y − 27/y, that

g6(τ ) = h(e2πiτ/3) or
27

h(e2πiτ/3)
.

By considering the q-expansion of h(τ ) and γ2(τ ), we conclude that

g6(τ ) = h(e2πiτ/3).(4.5)

Combining the identification (4.5) and Lemma 4.2, we conclude that t2
n =

3
(

g
(

(3 +
√
−n)/2

))−2
generates the Hilbert class field of Kn. We emphasize here that

this result is independent of the condition on the class number of Kn.
To obtain Theorem 4.1, we use the idea given in Birch’s paper. We quote the following

simple but useful lemma (see [7, Lemma 5]):

Lemma 4.3 If K(θ) is a quadratic extension of K with θ2 ∈ K, and if α ∈ K(θ) with
α2 ∈ K, then either α ∈ K or θα ∈ K.

Proof of Theorem 4.1 By Söhngen’s Theorem [24], tn is abelian over Kn. Hence, tn lies in a
quadratic extension Kn(θ), where θ2 ∈ Kn. This implies that tn ∈ Hn(θ), where Hn denotes
the Hilbert class field of Kn. Now, the hypotheses of Lemma 4.3 are satisfied with K = Hn

and α = tn (note that θ2 ∈ Kn ⊂ Hn). Thus, tn ∈ Hn or θtn ∈ Hn.
If tn ∈ Hn, we are done. Otherwise, suppose θtn ∈ Hn. Let

θtn = ζ, with ζ ∈ Hn.

Squaring both sides, we obtain

θ2t2
n = ζ

2.

Next, since all the quantities above are in Hn, we deduce that

N(θ2)N(t2
n) = N(ζ)2,(4.6)

where N denotes the Hn|Kn norm. Now, N(t2
n) = ±1, since tn is a real unit by Deuring’s

Theorem [16], and N(θ2) = θ2h (θ ∈ Kn), where h is the class number of Kn. Since h is
odd, we may rearrange (4.6) and deduce that

θ = ±
N(ζ)

θh−1
or ±

N(ζ)

iθh−1
.

If θ = ±N(ζ)θ1−h, then θ ∈ Kn, and so tn ∈ Hn. If θ = ±N(ζ)(iθh−1)−1, then θ ∈ Kn(i).
This means that we can replace θ by i. But now, if tn ∈ Hn(i), then tn is fixed by complex
conjugation since tn is real. Hence, tn ∈ Hn. This completes the proof of Theorem 4.1.

Historical Remarks It has often been conjectured that Ramanujan had seen Greenhill’s
book [19] on elliptic functions. For example, see a letter by K. Ananda Rau and the follow-
ing commentary in the book by R. A. Rankin and one of the authors [5, pp. 289, 290]. On
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pages 327–329, Greenhill [19] briefly summarizes much of R. Russell’s work on modular
equations. There are several modular equations of the type found by Russell in Ramanu-
jan’s notebooks, and this is further evidence that Ramanujan had seen both of Russell’s
papers [22], [23], and therefore also both of Greenhill’s papers [17], [18], since all four of
these papers appear in volumes 19 and 21 of the Proceedings of the London Mathematical
Society.
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