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BIFURCATION OF POSITIVE ENTIRE SOLUTIONS FOR A
SEMILINEAR ELLIPTIC EQUATION

TSING-SAN HSU AND HUEI-LI LIN

In this paper, we consider the nonhomogeneous semilinear elliptic equation

(*)x -Au + u = XK(x)up + h(x) inRAr,u>0inRN ,u£Hl(RN),

where A ^ 0, 1 < p < (N + 2)/{N - 2), if N > 3, 1 < p < oo, if N = 2, h{x)
G H~l(RN), 0 ^ h(x) > 0 in Rw, K{x) is a positive, bounded and continuous
function on RN. We prove that if K(x) Js K^ > 0 in R^, and lim K(x) = Kx,

| l |-K»

then there exists a positive constant A* such that (*)\ has at least two solutions if
A e (0, A*) and no solution if A > A*. Furthermore, (*)\ has a unique solution for
A = A* provided that h(x) satisfies some suitable conditions. We also obtain some
further properties and bifurcation results of the solutions of (1.1)> at A = A*.

1. INTRODUCTION

In this paper, we consider the semilinear elliptic equation

I Aw + u XKix)^ + h(x) in RN,

where A ̂ 0 , 1 <p< (N + 2)/{N - 2), if N > 3,1 < p < oo, if TV = 2, h(x) 6 H~1(RN),
0 ^ h(x) ^ 0 in RN, K{x) is a positive, bounded and continuous function on RN.
Moreover, h(x) and K(x) satisfy the following conditions:

(hi) h{x) G L2(RN) n L"(RN) for some q > N/2 if W ^ 3, q = 2 if N = 2.

(A;l) K(x) ^ /Coo > 0 in R^, and lim K[x) = *"«,.
|i|-too

The homogeneous case, that is, h{x) = 0, the equation (1.1)A has been studied by
many authors (see [5, 8, 13, 14, 15].) For the nonhomogeneous case {h(x) ^ 0), Zhu
[16], Zhu and Zhou [18] and Cao and Zhou [6], established the existence of multiple
positive solutions of equations with structure unlike that here.
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The main aim of this paper is concerned with the existence and nonexistence of
multiple positive solutions of (1.1)* for the full A G [0, oo). We also obtain some properties
of solutions and some bifurcation results of solutions at A = 0 and A = A*, where A* is
given in Theorem 1.1 below.

Throughout this paper, we always assume that h{x) ^ 0, h(x) £ 0 in R", K(x) is a
positive, bounded and continuous function on RN and u0 is the unique solution of (l.l)o,
unless otherwise specified and we set

a \ 1/2

= (ff \u\Ux) ",
u(x)\,

(\Vu\2 + \u\2) dx : f \u\*+1 dx =
JRN

[
Now, we state our main results in the following.

THEOREM 1 . 1 . Ifh(x) ^ 0 and h{x) £ 0 in R", K{x) is a positive, bounded and
continuous function on RN and K(x) satisfies (fcl). Then there is A*, 0 < A* < oo, such
that:

(i) (1.1)A has at ieast two solutions ux, U\ and ux < Ux if A e (0, A');

(ii) ( l . l )v has a unique solution ux- provided that h(x) satisfies (hi);

(iii) (1.1)A has no positive solutions if A > A*.

Furthermore,

=

(1-2) ^ A* ^ inf (— !& ) = A2

- 3

where ux is the minimal solution of (1.1)*, U\ is the second solution of (1.1)* constructed
in Section 4 and u0 is the unique positive solution of ( l . l)0 .

THEOREM 1 . 2 . If (hi), (Al) hold, h{x) > 0, h{x) £ 0 in RN and K(x) is a
positive, bounded and continuous function on RN. Then

(i) u\ is strictly increasing with respect to A , u* is uniformly bounded in
L°°(RN) n if »(R") for all A e [0, A'] and

u* -» u0 in L°°{RN) n ^ ' ( R ^ ) as A -> 0,

where no is t ie unique positive solution of (l.l)o-
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(ii) U\ is strictly decreasing with respect to A and U\ is unbounded in L00(R;v)
nHl{RN), that is

Um||I/A|| = lim||I/A||oo = oo.

(iii) Moreover, we assume that K(x) and h{x) are in Ca(RN)nL2{RN). then all
solutions of {1.1)x are in C2'a{RN)nH2{RN), and (A',uA.) is a bifurcation
point for (1.1) A and

ux -> u0 in C2'a{RN) n H2{RN) as A -> 0,

where UQ is the unique positive solution of (l.l)o-

We shall organise this paper as follows. In Section 2, we give some notations and
preliminary results. In Section 3, we assert that there exists A* > 0 such that (1.1)A has
a minimal solution for A € [0, A*). In Section 4, we establish the existence of a second
solution Ux for A S (0, A*) and some asymptotic behaviour of the solution of (1.1)A. In
Section 5, we shall give some further properties, and bifurcation of solutions of (1.1)A.

2. PRELIMINARIES

In this section, we shall give some notations and some known results. In order
to get the existence of positive solutions of (1.1)A, we consider the energy functional
Ix : Hl(RN) -> K denned by

u\2) - -^1K{x){u+)"+1 - h{x)u] dx,

where u ± (x) = max{±u(z ) ,0} . Then the critical points of JA are the positive solutions
of (1.1) A. Consider the equation

f - A u + u = XK^vP in R" ,

\u > 0 in R", u e H'{RN),

and its associated energy functional /J0 defined by

/r{u) = L K(|Vu|2 + |u|2) " ^TT*°
It is well known that equation (2.1)A has a unique ground state solution wA and

^{LJX) = sup/A°(fwA) (see Bahri and Lions [3] and the references there).
t>o

Now, we given the following known propositions for later use.
PROPOSITION 2 . 1 . Let K{x) satisfy (fcl) and {uk} be a {PS)C-sequence of Ix

in H\RN) :
h{uk) — c + o(l) as k -> oo,
I'x{uk) = o(l) strongly in H'1^").
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Then there exist an integer I > 0, sequence {x'k} C RN, functions

u 6 Hl{RN), Ui G / ^ ( R ^ ) , 1 ^ i ^ /, such that for some subsequence {uk}, we have

uk -

uk -* u weakly in

««(• - 4 ) I -> 0. as fc -> oo,

-Au + u = \K(x)u>> + h(x) in ^ -

- A i i i + Tli = A/foo^1 in H~l(RN),

\xl
k\ —>• oo, |x]t - r^ | -* oo, 1 ^ i 7 /.

where we agree that in the case I = 0 t ie above holds without uit x\.

P R O O F : The proof can be obtained by using the arguments in Bahri and Lions [3]
(also see [13, 14]). We omit it. D

3. EXISTENCE OF MINIMAL SOLUTION AND DECAY

In this section, by the barrier method, we prove that the existence of minimal positive
solution u\ for all A in some finite interval [0, A*] (that is, for any positive solution u of
(1.1)A, then u ^ u\). Furthermore, we establish a decay estimate for solutions of (1.1)A-

LEMMA 3 . 1 . Let K{x) satisfy (kl). Then (1.1)A has a solution ux ifO < A < Ai
where \\ is given by (1.2).

P R O O F : For A = 0, the existence question is equivalent to the existence of
u0 € HX(RN) such that

(3.1) / V u o - V 0 + uo<£= / hep

for all <t> e Hl{RN). Now, we have that

JR*
Iff-11

According to the Lax-Milgram theorem, there exists a unique u0 € i / ^ R ^ ) satisfies
(3.1). Since 0 ^ ft ^ 0 in R^, by strong maximum principle (see Gilbarg and Trudinger
[10]), we conclude that u0 > 0 in RN.

We consider next the case A > 0. We show first that for sufficiently small A, say
A = Ao, there exists to = t(X0) > 0 such that ho(u) > 0 for ||u|| = to- From the definitions
of/A, we have
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f(t) = -t- XClt" - c2,
Set

where cx = \\K\\oo/{p+l)M~^+1'>'2 and c2 = \\h\\H-i.

It then follows that f(t) achieves a maximum at t\ = (2pAci)~(p~1)"'. Set

Bx = {ueHl(RN):\\u\\<tx}.

Then for all u € dBx = {u 6 H^R") : ||u|| = tx},

h(v) > txf(tx) > tx[tx{p - l)/2p - c2] > 0

provided that A < Ai which Ai is given by (1.2). Fix such a value of A, say Ao, and set

t0 = t(X0). Let 0 ^ <j> ^ 0, 4> € C$°(RN) such that / h<f>dx> 0. Then
JRN

[ h<f><o

for sufficiently small t > 0, and it is easy to see that Ix0 is bounded below on Bto- Set
a — inf{/.\0(u) | u € Bto}- Then a < 0, and since Ixoi

u) > 0 on dBto, the continuity
of /A0 on Hl(RN) implies that there exists 0 < t\ < t0 such that /AO(W) > a for all
u € H1(RN) and ti ^ ||u|| ^ t0. By the Ekeland's variational principle [9], there exists
a sequence {ujt}jfcii C Bh such that Ixoi

uk) — a + o(l) and /Ao(u*) = o(l) strongly in
H~1(RN), as A; —t oo. By Proposition 2.1, we have that there exist a subsequence {uk},
an integer I ^ 0, Wj > 0, 1 < i ^ I (if Z ^ 1), u > 0 in R^ and u in B t l such that

u weakly in f

-AS + u = \0K{x)W + h(x) in H~1{RN),

wf in i /"1(RN), 1 s* i

Moreover,

t = l

) > 0 for i = 1,2, •

(^) = a a n ( l ^AO(")

,I. Since u € Bto, we have ho{u) ^ a.

' ^ ' s a w e a k positive solution
Note that / ^ ( W J ) = /j£(i
We conclude that I = 0,

of(l.l)A0- " D

Now, by the standard barrier method, we get the following Lemma.

LEMMA 3 . 2 . Let K(x) satisfy (fcl). Tien there exists A* > 0 such that for each

A G [0, A*), problem (1.1)A has a minimal positive solution ux and ux is strictly increasing

in A.

P R O O F : Denoting

A* = sup{A ^ 0 : (1.1)A has a positive solution }.

https://doi.org/10.1017/S0004972700035188 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035188


354 T-S. Hsu and H-L. Lin [6]

By Lemma 3.1, we have A* > 0. Now, consider A € [0, A'). By the definition of A*,
we know that there exists A' > A such that A' < A* and (l.l)y has a positive solution
ux' > 0, that is,

-Au v + ux- = \'K(x)ux, + h{x)
> XK{x)uPx, + h{x).

Then uy is a supersolution of (1.1)A- From h{x) ^ 0 and h(x) £ 0, it is easily proved
that 0 is a subsolution of (1.1)A- By the standard barrier method, there exists a solution
ux of (1.1)A such that 0 ^ ux < uy- Since 0 is not a solution of (1.1)A and A' > A, the
maximum principle implies that 0 < ux < uy. Again using a result of Amann [1], we
can choose a minimum positive solution Ux of (1.1)A- This completes the proof of Lemma
3.2. D

Now, we consider a solution u of (1.1)A. Let ox{u) be defined by

(3.2) CTA(u)=inf(/ (\Vw\2+\w\2)dx:weHl(RN), [ pKu^w2 dx = l \
URN JRN J

By the standard direct minimisation procedure, we can show that ax(u) is attained by a
function <px > 0, <px € H^R"), satisfying

(3.3) - A ^ A + <P\ = oxWpKu"-1^ in R*.

LEMMA 3 . 3 . Let K(x) satisfy (kl). For A 6 [0, A*), let ux be the minimal solution

of (1.1)A and OA(«A) be the corresponding number given by (3.2). Then

(i) ox{ux) > A and is strictly decreasing in A, A 6 [0, A*);

(ii) A* < oo, and ( I . I )A ' has a minimal solution ux~-

P R O O F : Consider UA», UA> where A* > A' > A ^ 0. Let ipx be a minimiser of ax(ux),
then by Lemma 3.2, we obtain that

/
JR

pKup
x7

Lipi dx >
R"

and there is t, 0 < t < 1 such that

Therefore,

(3.4) o-y{uy) ^ t2\\<px\\2 < ||VA||2 = crx{ux),

showing the monotonicity of OA(UA), A 6 [0, A*).
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Consider now A € (0,A*). Let A < A' < A*. From (3.3) and the monotonicity of ux,
we get

r
dx+ (ux> - ux)tpx dx

J

°\(ux)p I {uy - ux)Kup
x~

l<pxdx

f r
(ux> -

JR JR"
(3.5) = (A' - A) / Kup

x,ifx dx + X I K(up - up
x)<px dx

> Xp / K<px / tp-ldtdx

^ Xp I Kup
x~

l(uy - ux)tpxdx,

which implies that <Jx(ux) > A, A € (0, A*). This completes the proof of (i).

We show next that A* < oo. Let Ao € (0, A*) be fixed. For any A ^ Ao, (3.4) and
(3.5) imply

A

for all A e [A0)A*). Thus, A* < oo.

By (3.2) and CTA(UA) > A, we have

and

Thus

f (|VuA|2 + Kl2) dx-Xp f Kup
x
+1 dx > 0.

JR" Jut*

f (|VUA|2 + |^A|2) dx- f XKup
x
+l dx- I hux - 0.

7RW JRN JRN

f (|VuA|2 + | « A | 2 )d i= f XKup
x
+1dx+ f

< -

for any 6 > 0. Since p > 1, we can obtain that ||UA|| ^ c < +oo for all A € (0, A*) by
taking 6 small enough. By Lemma 3.2, the solution ux is strictly increasing with respect
to A; we may suppose that

ux - i ux- weakly in H1^) as A -> A',

and hence UA- is a minimal solution of (1.1)A* • This completes the proof of Lemma 3.3. D

LEMMA 3 . 4 . IfK(x) satisfies (fel), then Xi ^ A* ^ A2 ^ A3, where A1( A2 and A3

are given by (1.2).

PROOF: By Lemma 3.1 and the definition of A*, we conclude that A* ^ Ax.
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As in Lemma 3.3, we have ax(ux) > A for all A 6 (0, A*), so for any w £ H1(R; v)\{0},
we have

(3.6) f (\Vw\2 + \w\2)dx> \p [ Kup
x~

lw2dx.
JR*> JRN

Let u0 be the unique solution of (l.l)o, then by (3.6) and UA > u0 for all A € (0, A*], we
obtain that

/ (|VH2 + H2) dx>\p I
JRN JR"

that is,

(3-7) A ̂  inf (—• !!^j!l ) = A2.
V ' weH>(R*>)\{0}\pfKup-lw2dxJ

This implies that A* ^ A2.

For all A € [0, A*], let u\ is a minimal solution of (1.1)A and take w = uA in (3.6),
then we have that

| K | | 2 = A / Kup
x
+1dx+ I huxdx

JRN JUN

< -

This implies that

(3.8) ^ Y

Take w = u\ in (3.7), and by (3.8) and the monotonicity of u\, we get that

Kup+1 dx

D
Finally, we establish the decay estimate for solutions of (1.1)A and this result will be

used in Section 4 and Section 5. Now, we quote two Regularity Lemmas (see Hsu [11]
for the proof).

LEMMA 3 . 5 . Let / : X x R - » R b e a Caratheodory function such that for almost

every x G X, there holds

(3.9) | / (x , u) | ^ c(\u\ + \u\") uniformly in x€X,

where X is a C1'1 domain in RN, 1 < p < (N + 2)/{N - 2) if N > 3, 1 < p < oo if
N = 2. Also, let u € HQ(X) be a weak solution of equation —Au = f(x, u) + h{x) in X,
where h G LN'2{X) n L2(X). Then u € L"(X) for q G [2, oo).
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LEMMA 3 . 6 . Let X be a C1-1 domain in RN, g € L2(X)nL«(X) for some q 6 [2, oo)
and u € H^(X) De a weaJc solution of the equation - A « + w = g in X. Then u € W2'q{X)
satisfies

where c — c(N, q,

LEMMA 3 . 7 . Let h(x) satisfy (hi) and u be a weak solution of (1.1)A,

(i) u(x) —¥ 0 as \x\ -4 <x.

(ii) there exists positive constant c\ such that

(3.10) u(i)^Clexp(-|x|)|a;r(Ar-1) /2 as |z| -* oo.

PROOF: (i) Let u satisfy

-Au + u = XK(x)up + h{x) inif-HR").

Since K is bounded and h e L2(RN) n L«(R^) for some 9 > AT/2. Hence

ft € L2{RN) D LN/2(RW)

and by Lemma 3.5, we have u € Lq(RN) for q G [2,00). Hence

\K{x)v? + h(x) e L2(RN) n L"(RN)

for some q > N/2. Then by Lemma 3.6, we have u € W2<q(RN) for some q > N/2. By
the Sobolev embedding theorem, u € (^ (R^) and there exists c > 0, such that for any

where
B°T = {x £ RN : \x\ > r}.

Hence lim u(x) = 0.
| | +

(ii) It is very easy to show that (l + l/^/\x\)e-^/\x\^N-1^2 is a subsolution of (1.1)A

for all \x\ large. Therefore (3.10) is proved by means of the maximum principle. D

LEMMA 3 . 8 . Let ux be the minimal solution of (1.1)A for A e [0, A*] and O\(u\)
> A. Then for any g(x) € H-l(RN), problem

(3.11)A -AW + W = \pKup
x-

lw + g{x), w e H^R")

has a solution.
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P R O O F : Consider the functional

+ ™2) dx - hp f Kupr1w2dx - f g(x)wdx,
I JRN JRN

where w £ / /^(R^). From Holder inequality and Young's inequality, we have, for any
e > 0, that

(312) $ H ^ \{l ~ ̂ M ^ I M I 2 ~ | £ H I 2 ~ y Il5ll2«
C\\\\2

if we choose e small.

Now, let {wn} C Hl(RN) be the minimising sequence of variational problem

d = inf{#(«;) | w e ^ ( R " ) } .

From (3.12) and <7A("A) > A, we can also deduce that {wn} is bounded in ^/'(R^), if we
choose £ small. So we may suppose that

wn —>• w weakly in i^^R^) as n -* oo,
ti;n —̂  w almost everywhere in RN as n -»• oo.

By Fatou's Lemma,
| |W| | 2^liminf |K| |2 .

By Lemma 3.7, we have that u.\(:r) —* 0 as |:r| —>• oo and the weak convergence imply

/ gwndx -> / gwdx, / A ' u ^ ' ^ d x - ^ / Kup
x~

1w2dx as n -> oo.
./R" 7 R « yR^ JRJV

Therefore
lim $(iun) = d,

n—>oo

and hence $(w) = d which gives that w is a solution of (3.11)v 0

REMARK 3.9. From Lemma 3.8, we know that (3.11)A has a solution w e Hl(RN). Now,
we also assume that K(x),h(x), and g(x) are in C ^ R * ) fl L2{RN), then by the elliptic
regular theory ([10]), we can deduce that w € C2-a(RN) n H2(RN).

LEMMA 3 . 1 0 . Suppose u>. is a solution of ( l . l ) v , tien aA-(uv) = A* and t ie
solution u\- is unique.

P R O O F : Define F : R x / ^ ( R " ) —> H-^R") by

Since 0A(UA) ^ A for A € (0, A*), so O"A-(UA') ^ A*. If CTA-(UA-) > A*, the equation
FU(A*, UA*)0 = 0 n a s n o nontrivial solution. From Lemma 3.8, FU maps R x H1(RN) onto
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H~l{RN). Applying the implicit function theorem to F, we can find a neighbourhood
(A* - 6, A* + S) of A* such that (1.1)A possesses a solution ux if A G (A* - 6, A* + 6). This
is contradictory to the definition of A*. Hence, we obtain that CTA-(UA-) = X*.

Next, we are going to prove that u\~ is unique. In fact, suppose (1-1)A- has another
solution Ux- ^ ux-. Set w = Ux- — ux-; we have

(3.13) -Aw + w = X'K[{w + ux-)p-up
x.}, w > 0 in RN.

By 0>(^A*) = ^*i we have that the problem

(3.14) -Acf> + <f>=X'pKup
x:

14>, <t>£Hl(RN)

possesses a positive solution 4>\ •

Multiplying (3.13) by <f>i and (3.14) by w, integrating and subtracting we deduce
that

0 = /
JusJu

= - p ( p - l ) / A'ffft-

where ^A- € (ux-,ux- + w)- Thus w = 0.

4. EXISTENCE OF SECOND SOLUTION

The existence of a second solution of (1.1)A, A € (0, A*), will be established via the
mountain pass theorem. When 0 < A < A*, we have known that (1.1)A has a minimal
positive solution ux by Lemma 3.2, then we need only to prove that (1.1)* has another
positive solution in the form of Ux = ux + vx, where vx is a solution of the following
problem:

The corresponding variational functional of (4.1)A is

+ v2)-X f f K[(s + ux)"-ul]dsdx, v £ H'(RN).f
The following lemma comes from the fact

and

lim
S-HXl SP
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LEMMA 4 . 1 . For any e > 0, there is a positive constant ce such that

{ux + s)p -up
x- puP

x'
ls ^ eu\~ls + ces"

for all s > 0.

LEMMA 4 . 2 . Under condition (kl), then there exist positive constants p and a,
such that

\\v\\=p.

P R O O F : By Lemma 4.1, we have

\ f f dxMv) =\f (|Vt;|2 + v2) dx - \\p f Kul~\v+f
*• JRN I JRN

-A / / K[{ux + s)p -up
x- puprls] dsdx

(4.2) r J*"Jor J*Jo
~\ (\Vv\2 + v2)dx-\p KUx~

l(v+)2dx\
I URN JRN J

Furthermore, from the definition <Jx(ux) in (3.2), we have

f (\Vv\2 + v2) dx > ox(ux)p I Kup
x-\v

+)2 dx,
JRN JRN

and, therefore, by (4.2) we obtain

{ux) - A - ^ A ) | M | 2 - Ac£(p+ I )" 1 / K(v+)p+1 dx.
II JN

Since ox{ux) > A, by property (ii) in Lemma 3.2, the boundedness of K, and the
Sobolev inequality imply that for small e > 0,

Jx(v) > \ox(ux)-H°x(ux) - X)\\vf - Ac|Mr\

and the conclusion in Lemma 4.2 follows. D

We need the following concentration compactness principle to prove our result:

LEMMA 4 . 3 . Assume condition (kl) holds. Let {vk} be a (PS)C sequence ofJx in

Jx{vk) = c + o(l) as k -> oo,
J'x(vk) = o(l) strong in H~l{RN).

Then there exists a subsequence (still denoted by) {u*} for which the following holds:

there exist an integer I ^ 0, sequence {xl
k} C RN, a solution vx of (A.\)x and solutions
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jJ*A of (2.1)A, for 1 :% i ^ I, such that

vk -> vx weakly in Hl(RN);

- \vx + j > A ( - - 4)1 -> 0 strongly in tf'

where we agree that in the case 1 = 0 the above holds without v\, x\.

P R O O F : Lemma 4.3 can be derived directly from the arguments in Bahri and Lions
[3] (or [4, 14, 17]). We omit it. D

LEMMA 4 . 4 . Assume condition (kl) holds, then

(i) there exists to > 0, such that

Jx{tux) < 0 for all t > t0.

(ii) the following inequality holds

0 < sup Jx(tL>x) < /

PROOF: By wx is the ground state solution of (2.1)A and condition (kl), then we

have

( 4 3 )
X

P +
t>>+l[ XK(x)u/x

+1dx
1 JRN

where Ci = 1/2||O;A||2, c-i = l/(p+l) XKooW^1(x) dx are independent of t. From
(4.3), we conclude the result (i). R

From (i), we easily see that the left hand of (ii) holds and we need only to show that
the right hand of (ii) holds. By (i), we have that there exists t2 > 0 such that

supjx(tujx)= sup Jx(toJx)-

Since J is continuous in i / ^ R ^ ) , there exists U > 0 such that

Jx(tux) <MX
X, forO^t <tv

https://doi.org/10.1017/S0004972700035188 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035188


362 T-S. Hsu and H-L. Lin [14]

Then, to prove (ii) we now only to prove the following inequality:

sup Jx(tux) < I?(wx) = MA°°.

By the definition of Jx, we get

^ f A^wT1 dx

- f f XK{x) [(a + ux)
p - u p

x - sp) ds dx.
Js.N Jo

Since UJX is the ground state solution of (2.1)A and sup/A
x>(twA) = /^ (WA) , then we have

f X(K(x) - KxM
+ldx

l JRN

- / / XK{x) [{s + uxf - «5 - sp] ds dx.

By condition (/cl) and {U + t2)
p ^ (#)<? + 1 \ for all t1^0,t2^0,p> 1. Therefore,

we obtain that

r rtox

[(s + ux)»-up-sp]dsdx

Therefore (ii) holds. D

PROPOSITION 4 . 5 . Suppose condition (kl) holds. Then problem (4.1)A has at
./east one solution for A € (0, A*).

P R O O F : By Lemma 4.4 (i), we know that there is t0 > 0 such that Jxih^x) < 0.
We set

T = { 7 € C([0,1], Hl(RN)) : 7(0) = 0, 7(1) = tou>x},

then, by Lemma 4.2 and Lemma 4.4 (ii) we get

(4.4) 0 < c = inf max Jx(-y(s)) < Aff.

Applying the mountain pass lemma of Ambrosetti and Rabinowitz [2], there exists a
(PS)c-sequence {v*} such that

Mvk) -* c and J'x{vk) -»• 0 in tf-^R").
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By Lemma 4.3, there exist a subsequence, still denoted by {vk}, an integer I ^ 0, a
solution v\ of (4.1)A and solutions v\ of (2.1)x, for 1 ^ i ^ /, such that

By the strong maximum principle, to complete the proof, we only need to prove vx £ 0
in RN. In fact, by (4.4) and (4.5), we have

c = Jx{vx) > oc > 0 if I = 0, M? > c ^ Jx(vx) + M? if l> 1.

This implies wA ̂  0 in RN. D

5. PROPERTIES AND BIFURCATION OF SOLUTIONS

In this section, we shall give some further properties and bifurcation of solutions for

problem (1.1)A- NOW, we set

A = {(A,u) : u satisfies (1.1)A, A G [0,A*]}.

For each (A,u) € A, let ox{u) denote the number defined by (3.2), which is the smallest
eigenvalue of the problem (3.3).

We always assume that condition (hi) and (fcl) hold. By Lemma 3.6, we have
A C L°°(RN) ("I / f ' (E w ) . Moreover, if we assume that,

h(x), K(x) e Ca{RN) n L2(RN),

then by elliptic regular theory ([10]), we can deduce that A C C2'a(RN) n H2(RN).

LEMMA 5 . 1 . Let u be a solution and ux be the minimal solution of (1.1)A for

A <= (0,A*). Then

(i) CTA(U) > A if and only ifu — ux;

(ii) ox{Ux) < A, where Ux is the second solution of (1.1)A constructed in

Section 4.

PROOF: NOW, let ip ^ 0 and tp e /f1(R/ v). Since u and ux are the solution of (1.1)A,

then

f V i p - V ( u x - u ) d x + f i p ( u x - u ) d x =\f K ( u p
x - u " ) i p d x

JRN JK» Jus
(5.1) =A/ U p-1 dtjpKt dx

A / pKup-\ux-u)ipdx.
JR"
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Let tp = (u- ux)
+ ^ 0 and ^ e Hl(RN). If t/> =z§ 0, then (5.1) implies

~ f -A / pKv?-lil>2 dx
JR"

and, therefore, the definition of a\{u) implies

(\Vxp\2 + xp2) dx ^\

<ax(u) I pKu"-1^2 dx

/
JRN
/
RN

which is impossible. Hence i> = 0, and u = ux in R^. On the other hand, by Lemma
3.3, we also have that ax(ux) > A. This completes the proof of (i).

By (i), we get that ax(Ux) $ A for A € (0, A*). We claim that ox(Ux) = A can not
occur. We proceed by contradiction. Set w = U\ — u\\ we have

(5.2) -Aw + w = \K[Uv
x- (Ux - w)p], w > 0 in RN.

By (TX(U\) — A, we have that the problem

(5.3) -A0 + 4> = \pKUl~ V, 4>eH\RN)

possesses a positive solution <f>\.

Multiplying (5.2) by 4>\ and (5.3) by w, integrating and subtracting we deduce that

0= f \K[Ul-{Ux-wy-pUl-lw)fadx

= -5P(P-1) / Afftf-Vfcdi,
2 JRN

where t;x € (ux, Ux). Thus w = 0, that is Ux = ux for A e (0, A*). This is a contradiction.
Hence, we have that ax(Ux) < A for A 6 (0, A*). D

REMARK 5.2. Since ox(Ux) < A, one may employ a similar argument to the used for ux

to show that Ux is strictly decreasing in A, A G (0, A*).

PROPOSITION 5 . 3 . Let ux be the minimal solution of (1.1)A. Then ux is uni-
formly bounded in L°°(RN) n &(&") for all A € [0, A'] and

ux -¥ u0 in L°°(RN) n Hl{RN) as A ->• 0.

where u0 is the unique positive solution of (l.l)o-

P R O O F : By Lemma 3.2, 3.3, and 3.7, we can deduce ||UA||OO ^ ||uv||oo ^ c, for
A G [0, A*]. By (3.8), we have that
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Hence, ux is uniformly bounded in L°°(RN) n Hl(RN) for A 6 [0, A*].

Now, let w\ — u\ — Uo, then w\ satisfies the following equation

(5.4)A -Awx + wx = \Ku\ in RN,

and by uA is uniformly bounded in L°°(RN) n ff'(KJV). we have that

IK| |2= f \KvPxwxdx
JRN

< MlKlUuxW^WuxhWwxh
^ cA,

where c is independent of A. Hence, we obtain that ux —> u0 in H1(RN) as A ->• 0.

Now, let go = N/2 + 2 > max{A^/2,2} and by ux is uniformly bounded in

L (JK J n ri (K ),

then we have that Aifu^ e L'°(RN). By Lemma 3.6 and using (5.4)A, we have

wx€ W2'2(RN)nW2'qo{RN).

By the Sobolev embedding theorem, Lemma 3.6 and ux- ^ WA > 0 for A € [0, A*], we
have that

^ c(A +

where c is independent of A. Hence, we obtain that ux -* u0 in L°°(RN) as A —> 0. D

PROPOSITION 5 . 4 . ForAe (0, A*), let Ux be the positive solution of (l.l)x with
Ux > ux, then Ux is unbounded in L°°(RN) n H*{RN), that is

|HA|| |

PROOF: Firstly, we show that {Ux : A e (0, A*)} is unbounded in Hl(RN). Since
U\ = ux + vx, we only need to show that {DA : A > 0} is unbounded in Hl{RN). If not,
then

(5.5) ||vA|| ^ M

for all A € (0, A*). It is easily to see that for any 6 > 0, {Ux}\^s is bounded in i / ^ R ^ ) ,
we may assume A € {0,6}.
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Choose An 4- 0 and let vXn be the corresponding solutions constructed by Proposition
4.5. By the Holder inequality and the Sobolev embedding theorem, we obtain that

f (|Vt>An|
2 + K | 2 ) d z = f \nK[Uln-uln)vXndx

JRN JRN

for some constant c\, independent oivXn, where we have used (5.5) and the boundedness
of {uXn} in Hl(RN). Hence, we have lim ||UAJ|2 = 0. It implies that

n—>oo

(5.6) lim|K||2=0.
n—*oo

On the other hand, we notice that Ux = ux+ vx is decreasing and ux is increasing in A.
Therefore, vx is decreasing in A, which implies

v\n ^ ^6 for all n,

then we obtain that

IKJ|2> IMI2 > 0 for all n.

which contradicts (5.6). This implies that {Ux : A € (0, A*)} is unbounded in Hl(RN).

Now, we show that {Ux : A G (0, A*)} is unbounded in L°°{RN). We proceed by
contradiction. Assume to the contrary that there exists Co > 0 such that

WxWoo ^ co < oo for all A G (0, A*).

Since Ux is a solution of (1.1)A, we have that

| | { /A | | 2 - f XKUp
x
+ldx+ f hUxdx

where C\ and c-i are independent of A. If we choose

then there exists c > 0, independent of A, such that \\UX\\ ^ c for all A < Ao. This is a
contradiction to that {Ux : A G (0, A*)} is unbounded in / /^(R^). This completes the
proof of Proposition 5.4. D

In order to get bifurcation results we need the following Bifurcation Theorem which
can be found in Crandall and Rabinowitz [7].
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THEOREM A. Let X, Y be Banach space. Let (A, x) £ R x X and let F be a
continuously differentiable mapping of an open neighbourhood of (X,x) into Y. Let the
null-space

N(Fx(X,x))=span{x0}

be one-dimensional and codim R(Fx(X,x)) = 1. Let F\(X,x) g R(Fx(X,x)). If Z is the
complement ofspan{x0} in X, then the solutions of F(X,x) = F(X, x) near (A,5f) form
a curve

(X{s), x(s)) = (A + T{S),X + sx0 + z(s)),

where
s-> (T{S),Z{S)) e R x Z

is continuously differentiable function near s = 0 and r(0) — r'(0) = 0, z(0) — z'(0) = 0.
PROOF OF THEOREM 1.1 AND THEOREM 1.2: Theorem 1.1 now follows from

Lemma 3.2, 3.3, 3.4, 3.10, 5.1 and Proposition 4.5. The conclusion (i) and (ii) of Theorem
1.2 follow immediately from Lemma 3.2, Remark 5.2 and Proposition 5.3, 5.4. Now we
are going to prove that (A*,uA.) is a bifurcation point in C2'a{RN) D H2(RN) by using
an idea in [12]. We also assume that K(x) and h{x) are in CQ(RN) n L2{RN) and define

F : K1 x C2'a(RN) n H2{RN) -> Ca(RN) n L2{RN)

by
F(X, u) = Au-u + XK(u+)p + h(x).

where C2'°(R") n ^ 2 ( R ^ ) and Ca(RN) n L2{RN) are endowed with the natural norm;
then they become Banach spaces. It can be proved easily that F(X, u) is differentiable.
From Lemma 3.8 and Remark 3.9, we know that

FU(A, u)w = Aw - w + XpKup^~lw

is an isomorphism of R1 x C2'a(RN) n H2(RN) onto Ca{RN) n L2(RN). It follows from
Implicit Function Theorem that the solutions of F(X, u) = 0 near (A, u\) are given by a
continuous curve.

Now we are going to prove that (X',u\-) is a bifurcation point of F. We show
first that at the critical point (A*,UA-)I Theorem A applies. Indeed, from Lemma 3.10,
problem (3.14) has a solution fa > 0 in RN. By the standard elliptic regular theory, we
have that fa e C2'a{RN) D H2{RN) if h e C(RN) D L2(RN). Thus

Fu(X',ux.)(j> = 0, <j>eC2'°(RN)nH2(RN)

has a solution fa > 0. This implies that N(Fu(X*,ux')) = span{fa} = 1 is one dimen-
sional and codim /Z(Fu(A*,u\-)) = 1 by the Fredholm alternative. It remains to check
that F A ( A ' , U V ) $? R(Fu(X',ux.)).
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Assuming the contrary would imply existence of v £ 0 such that

From Fu(\*,Ux-)4>\ = 0, we conclude that / Kup
x.<t>\ dx = 0. This is impossible because

K{x) > 0,K(x) £ 0,ux.(x) > 0 and (j>x{x) > 0 in RN.

Applying Theorem A, we conclude that (A*,uA-) is a bifurcation point near which,
the solution of (1.1)A form a curve (A* + T(S),UX- + sfa + z(s)) with s near 5 = 0 and

r(0) = r'(0) = 0,^(0) = z'(0) = 0. We claim that r"(0) < 0 which implies that the
bifurcation curve turns strictly to the left in (A, u) plane.

Since u\' (x) —• 0 as \x\ —> oo, we have, for |x| large,

0 = A<f>x - 4>x + X'pKulT1^ ^ A 0 ! - i ^ .

It is well-known that the equation Aw — w/A = —wp in R^ has a unique positive radial
symmetric solution, denoted by w (see Bahri and Lions [3] and the references there), and
there exists C\ > 0 such that

Since Aw — w/A = —W ^ 0 in HLN, hence we obtain by the maximum principle that

(5.7) <t>i{x) < cae-M/Vr*""1*'2 ^ 1*1 large,

for some c2 > 0.
From (3.10) and (5.7) and the Holder's inequality, we derive that

f Kup
xZ

24>\dx s$ cf Kup-.l<
(5.8) R" R

Since A = A* + T(S), U = ux- + sfa + z(s) in

(5.9) -Au + u- \Kup -h = 0,u>0,u€ C2'Q(RAr) n H2(RN).

Differentiating (5.9) in s twice, we have

-Ausa + uss - XpKup-luas - 2\,pKu"-1us - Xp(p - l)Kup-2u2 - XssKup = 0.

Setting here s = 0 and using the facts that T'(O) = 0, u3 = <f>i(x) and u = U\- as s = 0,

we obtain

(5.10) -Au5S + uss - X'pKu^u,, - Xp(p - l)A-<:Vi - T"{0)KUP
X. = 0
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Multiplying Fu(\', u\-)<j>i = 0 by usa, and (5.10) by <j>i, integrating and subtracting the

result, and by (5.8) we obtain

f A'p(p - l)Kul:2<t>l dx + r"(0) f Kifx.fa dx = 0,
JB." JRN

which immediately gives T"(0) < 0. Thus

uA->uA. in C2*(RN)nH2(RN) as A-^A',

C/A^WA- in C2<a(RN)nH2(RN) as A-»• A*.

Using Lemma 3.8, Remark 3.9, the Implicit Function Theorem and the uniqueness of the

positive ground-state solution of (l.l)o, we can easily prove that

uA->u0 in C2'a{RN)nH2{RN) as A-»0,

which proves Theorem 1.2. D
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