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THE GENERALISED HADAMARD INEQUALITY,
S-CONVEXITY AND FUNCTIONAL STOLARSKY MEANS

E. NEUMAN, C.E.M. PEARCE, J. PECARIC AND V. SIMIC

We explore the role of weighted functional Stolarsky means in providing bounds in
generalised Hadamard-type inequalities for -̂convex functions. Refinements are
given for Levinson's inequality and the generalised Hadamard inequality. Applica-
tions are made to multivariate weighted functional Stolarsky means.

1. INTRODUCTION AND PRELIMINARIES

Weighted functional Stolarsky means have turned out to be a powerful unifying
concept, subsuming a variety of classes of means appearing in the earlier literature.
They have also a role as bounds in generalised Hadamard-type inequalities that apply
to g -convex and g -concave functions. In this paper we explore and develop these
interrelated motifs, connecting and generalising a number of results in the literature.

To introduce the concepts used in the paper, first let

£„_! = {(ui,... ,un_i) :ut ^ 0 (1 < i < n - l ) , ux + • • • + un_i ^ l}

n-l
denote the Euclidean simplex and for u — (u\,... , un-\) € En-\, put un '•— 1 — 5Z u» •

i=l

Throughout the paper n ^ 2 and fx is an arbitrary probability measure on ^n- i • The
weights fj,i (1 ^ i ^ n) of the measure n(-) are defined by

n
and so /ij ^ 0 with 5Z M« = 1 a n d (Mi) • • • iA*n) may be taken as a set of probability

»=i
weights.

We denote by x — (x\,... , xn) a real n-tuple with

£min := min (x) < max (x) =: xmax
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304 E. Neuman, C.E.M. Pearce, J. Pecaric and V. Simic [2]

and put J = [ x m i n , x m a x ] . The inner product of vectors x,y € Rn will be denoted by
x • y. Let / : J ->• E be convex. The inequality

f
has been established in [5, Theorem 4.2] and will be referred to as the generalised
Hadamard inequality. Both inequalities in (1.1) are reversed if / is concave on J.
When n — 2 and /z is Lebesgue measure, (1.1) simplifies to the classical Hadamard
inequality

' ( ^ ) < ^ £ wdt * \ VM+/M •
Let ftg:J-tR. Following [8] the weighted functional Stolarsky mean m/iff(x; /J)

of x is defined by

(1.2) TnJtg(x;v) = r 1 \ [ fog-1(u-G)dfi(u)\,

where G = (g(xi),... ,g(xn)).

To guarantee that the operations involved are all well-defined, this definition pre-
supposes that the functions / and g are continuous and strictly monotone, an assump-
tion that will be implicit in the remainder of this section and in Sections 2 and 5. In
some situations (as here), / and g will be taken to act on J, in others on the range
of a further function h (which we shall also assume to be continuous) defined on J or
an interval [a, b] D J.

Weighted functional Stolarsky means subsume a number of classes of means studied
in the literature. Thus for g(t) — t, the mean mfi9 simplifies to the functional mean
discussed in [3] and [12]. Again, for r G R define er : J -> R by

er(t) :={
[\nt r = 0,

which may be done provided J is an interval of positive numbers. The weighted
Stolarsky-Tobey mean Er<g defined in [10] can be expressed in terms of m/)9 by

(1.3) Eri8(x; n) = mea_Tter{x\ fi)

for r ,s € E. In particular, L(x;/x) := £liO(x;/x) = me_liei(a;;M) is t n e logarithmic
mean defined by Pittenger [11], £(z;/z) := E0<i(x;n) - meit\n(x;n) the logarithmic
mean introduced by Neuman [6] and I(x\n) := Eiti(x;fi) = miniei(x;/x) the weighted
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identric mean considered in [13]. When n = 2 and /* is Lebesgue measure, (1.3)

becomes the unweighted (that is, uniformly weighted) Stolarsky mean Er>a(x,y) (see

[9, 14])-
Finally we introduce g-convexity, the subject of Section 2. Here it is convenient to

deviate from our convention elsewhere and take x to be a real number rather than an
n -tuple. The following definition appears in [9].

DEFINITION 1.1: Suppose h : [a,b] —> R and that g is defined on the range of h.
The function h is said to be g -convex if the inequality

(1.4) h{Xx + (1 - X)y) < g-1 [\(g o h)(x) + (1 - X)(g o h)(y)]

applies for all x,y € [a,b] and A € [0,1]. The function h is said to be g-concave if the
reverse inequality holds.

We shall make use of the following useful property of g -convexity.

PROPOSITION 1 . 2 . Suppose h is g-convex on [a,b] and let 0 < A4 ^ 1 and

4>i > 0 with Xi,yi € [a, b] (i = 1 , . . . , m) . Then

(1.5) ff-

The inequaJity is reversed if h is g -concave.

P R O O F : Suppose h is g-convex. By the standing assumption that g is strictly
monotone and from Definition 1.1,

g o h(XiXi + (1 - Xi)yt) ^ Ajff o h(xi) + (1 - Aj)g o

if g is increasing, with the reverse inequality if g is decreasing. Hence

t=i »=i

in the case of g increasing, with the reverse inequality if g is decreasing. It follows that
(1.5) holds in either case.

A similar argument applies when h is g -concave. D

The paper is organised as follows. Inequalities of Hadamard type for g-convex
functions are derived in Section 2. Some results of this section provide generalisations
of those established in [8]. Section 3 deals with a refinement of Levinson's inequality.
The main result of this section can be regarded as an inequality of Hadamard type. Two
refinements of the generalised Hadamard inequality (1.1), with the probability measure
being Dirichlet measure, are derived in Section 4. In Section 5 we give two inequalities
for the weighted functional Stolarsky means generated by Dirichlet measure.
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2. INEQUALITIES FORP-CONVEX FUNCTIONS

This section deals with inequalities of Hadamard type for g -convex functions, pro-
viding generalisations and improvements of results derived in [8] and [15]. We shall
make use of weighted functional Stolarsky means with n = 2. For facile interplay be-
tween these means and g -convexity, it is convenient to make a change of variable so
that instead of \i acting on E\ we have a probability measure p acting on an interval
[a, b]. We may recast the definition of a bivariate weighted Stolarsky mean as follows.
Throughout this section 0(t) := (t — a)/(b - a) and

a:= f 9(t) dp(t).
J a

DEFINITION 2.1: Suppose x and y are real numbers and / and g are defined on
the interval joining them. The weighted functional Stolarsky mean (with respect to the
functions / , g, the interval [a, b] and the probability measure p on it) is given by

In the case of uniform probability measure p — 6 on [a, b], it is convenient to
suppress p and write rnftg(x,y;p) as m/)9(x, y).

THEOREM 2 . Suppose that h is defined on [a, b] and let f be defined on the

range of h. We define K : [0,1] - • R by

(2.1) K(t) := r 1 1 ^ / o ff"1 (9(x)g o h{tb + (1 - t)x)

+ (l-6(x))goh(ta+(l-t)x)^dp(x)\ .

Then

If h is g-convex, then K(-) is monotone nondecreasing on [0,1]. If h is g-concave,

K(-) is monotone nonincreasing on [0,1].

P R O O F : The values for K(0) and K(l) are immediate. Suppose tha t h is g-

convex. Let x e [a, b] and assume tha t O ^ s ^ t ^ l . By elementary algebra we

have

sb + (1 - s)x = AiX! + (1 -

sa + (1 - s)x — X2x2 + (1 -
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where
_ bt — bs + sx — tx _ bt — as + sx -tx

A l ~ t{b^a) ' A 2 ~ i(b^a) '

xi = x2 — ta + (1 — t)x and yr = y2=tb+ (1 — t)x.

An application of Proposition 1.2 with m = 2, </>i = 6(x), <f>2 = 1 - 0{x) gives

o h(sb + (1 - s)x) + i ^ 1 ^ ^ o h(sa + (1 - s
o — a

f 5 o h(sb + (1 s)x) + i
o — a o — a

A«5 ° ft(to + (x " *)x) + Yl <kO- - xi)9 ° h(ib + (1 -
«=1,2

Since / is strictly monotone, the operator f~l f / a f(-)dp(x) I is monotone nondecreas-

ing. Applying this yields K(s) ^ K(t).

The proof with g -concavity is similar. D

COROLLARY 2 . 3 . Let h be defined on [a,b] and f defined on the range of h.
If h is g -convex, then

f o MO Mt)\ ^ rnftg(h(a), h(b); p) .

The inequality is reversed if h is g -concave.

This result was established in [8] for the case p — 0 as Theorem 3.2.

The next result provides bounds on bivariate weighted functional Stolarsky means.

THEOREM 2 . 4 . Suppose that / , g : J -> R. If either

(i) f o g~l is convex and f decreasing, or

(ii) f ° g~l is concave and f increasing,

Then

(2.2) f-^afiy) + (1 - a)/(x)} ^ mf,g(x,y;p) ^ g-^agb) + (1 - a)g(x)}.

Both inequalities are reversed if either

(iii) / o j " 1 is convex and / increasing, or
(iv) /off"1 is concave and f decreasing.
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P R O O F : Assume that / o j " 1 is convex (respectively concave). By Jensen's in-
equality for integrals we have that

1 [e(t)g(y) + (1 - 0(t))g(x)]dp(t)

9~l [I*
= f o g-^agfy) + (1 - a)g(x)],

which gives the second inequality in (2.1) and its reverse. For the first inequality, assume
/ o </-1 is convex (respectively concave). By Jensen's discrete inequality,

f fog'1 [0{t)g(y) +(l-e(t))g(x)]dp(t)(^) J [o(t)f{v) + (l - 6(t))f(x)]dp(t)

which gives the desired result. D

Corollary 2.3 and Theorem 2.4 can be used to obtain the following generalisation
of [8, Theorem 3.3].

THEOREM 2 . 5 . Let h : [a, b] —¥ R be continuous and f defined on the range of
h. If h is g-convex and either (i) or (ii) of Theorem 2.4 applies, then

< g-l{ag o h(b) + (1 - a)g o h(a)}.

Both inequalities are reversed if h is g-concave and either (iii) or (iv) of Theorem 2.4
applies.

Moreover, if h is g-convex and either (iii) or (iv) of Theorem 2.4 applies, then

Both inequalities are reversed if h is g -concave and either (i) or (ii) of Theorem 2.4
applies.

PROOF: The first inequality in each displayed relation comes from Corollary 2.3
and the second from Theorem 2.4. D
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We now link our ideas with the notion of r -convexity and r -concavity. If h is
positive and r -convex on [a, b], then

(2.3) h(Xx + (1 - X)y) ^ mr(h(x), h{y); X) .

for A G [0,1] and all x, y G [a, b], where the weighted power mean mr of order r G R
of positive numbers v, w (with nonnegative weights A, 1 — A) is given by

mT{v,w;u) := <
[ vxw1~x if r = 0.

We can readily show that the right-hand side of (2.3) is the same as that of (1.4)
when g — er, so that h is g -convex for g = er. Similarly a positive r -concave function,
for which the inequality (2.3) is reversed, is ^-concave for g = er.

Now choose p = 6 and f = ep for p G R. With elementary algebra we derive

(2.4) K(t) = Mp(mT(ho A(b, -,t),ho A(a, •;t);*(•))),

where

A(x,y;X) := Ax + (1 - X)y
denotes the weighted arithmetic mean of positive numbers x, y with weights A and
1 - A (A G [0,1]), and

ii/p

ifp = 0

that is, Mp(f) = e'1 fa ep o f(t)d9(t), is the integral power mean of order p G R of a
positive function / on [a, b]. This gives the following result.

COROLLARY 2 . 6 . Suppose that h is positive on [a, b] (x G [a, b]) and let K :

[0,1] ->• R be defined by (2.4). Then

K(0) = Mp{h) and K(l) = Er+p,r(h(a),h(b)).

If h is r -convex, then K is monotone increasing on [0,1]. If h is r -concave, K is

monotone decreasing on [0,1].

This result was established recently in [15].
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3. A N IMPROVEMENT OF LEVINSON'S INEQUALITY

Levinson [4] has given the following important generalisation of the Ky Fan in-
equality.

THEOREM 3 . 1 . Suppose f has a third-order derivative on ]0, 2a[ and f'"(t)

^ 0. Let m > 0 for all i 6 { 1 , . . . , n } . Then for x{ €]0, o[, we have

(3.1)

If f'"(t) > 0, the inequalities become equalities if and only if x\ = • • • = xn.

This result may be usefully viewed in terms of 3-convexity. We remark that the
notion of n-convexity here is different from that of the previous section.

DEFINITION 3 . 2 . A function f : [a, b] -* R is said to be n-convex (n ^ 0)
on [a, b] if and only if, for all choices of n + 1 distinct points in [a, b], the nth-order
divided difference [xo, . . . , xn]f of f is nonnegative.

Bullen [1] has shown that (3.1) applies if / is a 3-convex function. Since (3.1) may
be rearranged as

we thus have the following.

LEMMA 3 . 3 . If f : [0,2a] - • K is 3-convex, then / (2a - t) - f(t) is convex on

]0,a[.

By combining this result with (1.1), we derive a generalisation of the Levinson
inequality which has generalised-Hadamard form.

THEOREM 3 . 4 . Let f : [0,2a] - > I b e 3-convex. Then for x{ e]0, a[, we have

[f(u-(2a-x))-f(u-x)W(u)
(3.2) V « J ^ J J E -

t = i

E X A M P L E . Suppose f(t) = \nt, so that f(t) is 3-convex on ]0, 1]. Let Xj € ]0,1/2]
(i = 1 , . . . , n ) , where n ^ 2. From (3.2) with a = 1/2 we obtain
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where I{x\,... ,xn;fj.) = I(x;(i) — Eiti(x;n) = min,ei (x;/*) is the weighted identric
mean.

This inequality has been established in [13]. With the choice
dfi(u) — (n - l)!dui • • • dun-\, it is a refinement of the Ky Fan inequality

Gn In < A»
G l ^ 77 ~~* Al

n 2n An

for unweighted means. Here An, Gn and /„ represent respectively the arithmetic,
geometric and identric means of x\,... ,xn and A'n, G'n and I'n those for 1 — x\,... ,1
-xn.

4. DIRICHLET AVERAGES

In this section we make use of the particular choice fi = fif,, Dirichlet measure. For
b = (bi,... , bn) £ R" , this is given by

where du — du\ ... dun_i and B(b) is the multivariate beta function. The associated
weights are

(4.1) Mi = bi/c

(l^i^n), where c = 6i + ••• + &„ (see [2, (4.4-8)]). The Dirichlet average of a
function / : J -> R is defined as

(4.2) F(b;x)= f f(u-x)dfib(u).
JEn-l

Dirichlet averages are useful in the theory of special functions (see [2]). We list below
some basic properties.

(i) F(b; x) is symmetric in the indices 1 , . . . , n , which label the 6-parameters
and the variables x.

(ii) Two or more identical variables can be replaced by a single variable if the

corresponding 6-parameters are replaced by their sum.
(iii) A vanishing b -parameter can be omitted along with the corresponding

variable.

(iv) The Dirichlet average F(b; x) is holomorphic in the elements of b and x
on its domain of definition.
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When fx = fib, (1.1) reduces to

(4.3) / (J2 u.iXi) < F(b; x)

with ^ as in (4.1) (see [2, Exercise 5.2-1]). Two refinements are given in this section.
Applications of these results to weighted functional Stolarsky means are discussed in
Section 5.

For 6 € R5. and 7 € K let b7 - (61, . . . , 6 n _ i , 6 n + 7) . Thus b0 = b. Also, let
a = c/(c + 7) and 0=1-a. I f 7 > 0 , then a > 0, 0 > 0 and a + ft = 1. We define
d = (c, 7 ) , where c = b\ + \-bn and

y = (axi + /3xn,atX2 + 0xn,..., axn + fixn).

THEOREM 4 . 1 . Let / : J - 4 R be convex and suppose 7 > 0. Then

(4.4) F(b; y) < F(67; x) < aF(b; x) + /3f(xn)

and

(4.5) [ Y ^ )
^ i=i ' t=i

where Hi is given by (4.1). Inequalities (4.4) and (4.5) are reversed if f is concave on

J.
P R O O F : Let w = (wi,... ,wn), where u>i = tXi + (1 - t)xn for 1 < i ^ n and

0 ^ t < 1. Clearly tun = x n . We shall employ the result

(4.6) F(hr;x)= [ F(b;w)dnd(t)
Jo

(see [7, Corollary 3.4]). Here fid IS Dirichlet measure on [0,1] with parameters d
= (c, 7 ) . Assume that / is convex on J. For the proof of the first inequality in (4.4),
we combine (4.6) with (4.2) and apply Jensen's inequality for integrals to obtain

F(67; x)= f [ / " / ( «
•/£!„_ 1 Uo

{u-w)dfid(t)\du.b(u)

/•l
Ui / (tXi

Jo
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Since
/•i
/ (txi + (1 - t)xn)dfid(t) = axi + Pxn

Jo

(see [2, (4.4-8)]),

F(by; x) > I f(u • y)dtM)(u) = F(b; y).

For the second inequality in (4.4), we utilise the convexity of F(b;w) in its variables to
obtain

F(b; w) - F(b; tXl + (1 - t)xn,... ,txn + (l- t)xn)

^ t F{b; x) + (l-t)FU>; g n ,xn).

n-times

Since F(b;xn,... ,xn) = f{xn) (see Property (ii)),

Integrating both sides of the last inequality against the Dirichlet measure fid and
using (4.6), we arrive at

F(67;x)= f F(b;w)dv*(t)
Jo

^F(b;x) f tdnd{t) + f{xn) f (l-t)dnd{t)
Jo Jo

= aF(b;x)+/3f(xn).

For the proof of (4.5) we utilise (4.3) with x replaced by w to obtain

J2»i(txi + (1 - *)*n) < F(b\w) ^ Y,^(tXi + (X - ')x»)-

t= l J i=l

Integrating each term against the Dirichlet measure fid and using (4.6) provides (4.5). D

The first and last terms in (4.4) and (4.5) can be bounded below and above, re-

spectively. We have the following.

COROLLARY 4 . 2 . Define vt := bi/ic + j) for 1 ^ i ^ n - 1 and vn
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:= (bn + 7) / (c + 7) • Tien under the assumptions of Theorem 4.1, we have

(4.7)

t = l

REMARK. Combining the first two inequalities in (4.7) with (4.4), we see that the latter
provides a refinement of (4.3) with b replaced by 67. A similar statement applies to
(4.5).

PROOF OF COROLLARY 4.2: From the first inequality in (4.3),

i = l
n

giving the first inequality in (4.7). The others follow similarly. D

For further refinements of (4.3) see [6, Theorem 3].

5. INEQUALITIES FOR FUNCTIONAL STOLARSKY MEANS

Several inequalities for weighted functional Stolarsky means have been obtained in
[8, 9, 10]. In this section we utilise the results of Section 4 to derive two inequalities
involving these means. We deal with the Stolarsky means defined in (1.2) when fj. = nb

and we write m/,s(x;6) instead of m/)S(x;/i(,). It follows from (1.2) and (4.2) that

(5.1) mf,g(x;b) = rl[H(b;G)],

where, as in the remainder of this section, h = f~l o g and H denotes its Dirichlet
average.

THEOREM 5 . 1 . Suppose h = f og~x is increasing. If either h and g are convex

and f increasing, or h and g concave and f decreasing, then

(5.2) mf,g{y; b) ^ mf,g(x; 67) < f~l [aH(b\ G) + Pf(xn)]
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and

(5.3) ms

Inequalities (5.2) and (5.3) are reversed if either h and g are convex and f decreasing
or h and g concave and f increasing.

REMARK. If f~l is convex, then the third members in (5.2) and (5.3) can be bounded
above respectively by

n

oimf%g\x\o)-\-pxn ana y fiiTnfg(Xi,xn,u).
i—l

PROOF OF THEOREM 5.1: Suppose first that h and g are convex and / increasing.
Making use of (4.4), with / replaced by h and x by G = (g(xi),... ,g{xn)), we obtain

(5.4) H(b; Y) ^ H(bY, G) ^ aH(b; G) + f3f(xn),

where

H(b;Y) = J h(u-Y)dfib(u),

with Y = (ag(xi)+Pg(xn),ag(x2) + 0g(xn),... ,ag(xn)+Pg(xn)). Since h is convex
and increasing, we have H(b;Y) ^ H(b;y). In conjunction with (5.4), this gives

H(b; y) ^ fl-(67; G) ^ aH(b; G) + Pf(xn).

Since / is increasing, the last inequality combined with (5.1) gives the desired result
(5.2) for the case when h and g are convex and / increasing. The remaining cases of
(5.2) and (5.3) can be established similarly. Q
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