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P. Erdds and R. Rado [1] proved that to each pair of
positive integers n and k, with k > 3, there corresponds a
least positive integer ¢(n, k) such that if F is a family of more
than ¢(n, k) sets, each set with n elements, then some k of
the sets have pair-wise the same intersection. They also
proved

n-1
<o(n k)<nl(k-1)"{1- =
i=0 (i+1)k-1)

(1) (k-1)° ! }

i
and conjectured that there is a constant ¢ such that

(2) o(n, k) < ¢ (k-1)"
It is clear that ¢(4, k) = k-1 for all k. (This is also a con-
sequence of (1).) The only other value of ¢ which is known is
»(2, 3) = 6. That ¢(2,3)< 6 follows from (1), and it is not
difficult to see that in the family {(1,2),(1, 3), (2, 3), (4, 5), (4, 6),
(5, 6)} no three sets have pairwise the same intersection.
The main result that we establish in this paper is
n

((k— 1) + [5;—1])7 if nis even,

(3) o(n, k) >
n-1

(k- 1) ((k-i)z +[5;—1]> "2 if nis odd.

It is clear that the lower bound for ¢(n, k) given by (3) is
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better than that given by (1) for all k> 3 and n> 2.

In order to prove (3) we shall need some preliminary
theorems and results.

THEOREM 1. For all positive integers a, b and Kk,
with k > 3, we have

(4) ela+b, k) > ¢(a, kle(b, k).

h bl ’ e ey A- d
Proof Let {A1 A2 ola, 1()} an

{B1, B ., B } be families of sets having the desired

2’ (b, k)
property, thatis, no k of the A's, and no k of the B's, have
pairwise the same intersection. As the notation implies, each

A has a elements and each B has b elements. We assume
also that AMB_ = ¢ for all i and j. Let
1)

3 = {AUBJ_:1=1,2,...,¢(a, k), j=1,2, ..., 0, K)} .
1

The number of sets in F is ¢(a, k)o(b, k) and each member of
F has a+b elements. The proof of the theorem will be
complete if we show that no k members of F have pairwise
the same intersection.

Suppose there exist distinct sets Fi' FZ’ v, Fk in F
and a set SCUF such that F,ﬂFJ. =S for i, j=1,2,...,k,1#].
1

Partition S into two sets R and T, an element being placed
in R if it belongs to LJAi and in T if it belongs to U Bi'

Thenif F,=A |JUB , we musthave A MA = R and
i m, n, m, m.
i i i j
BnﬂB =T for i, j=1,2,...,k,i#]j. I the sets
i T
A, A s e ey A are all distinct or if the sets
m m m
1 2 k
B ,B yeee, B are all distinct we have a contradiction.
n n
1 2
If this is not the case, then A = A = ... = A and
m m m
1 2 k
Bn =Br1 =,.. =B and hence F1=F2=...=Fk. This
1 2 "

contradicts the fact that the F's were chosen as distinct
members of 3. The proof of the theorem is complete.

1

s
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It tollows easily trom (4) that

(2, k)n/Z’ if n is even,

(5)  eoln, k) >

n-1/2

(k- 1)e(2, k) . if n is odd.

We turn our attention now to the derivation of a lower
bound for ¢(2, k).

THEOREM 2.

2 k-1
(6) o(2, k) > (k- 1)° +[Z5].
Proof. Let N={1,2,...,2k-1}. Letus take the case

where k 1is odd and let ¢ = k—éi— . We show how to select

2
(k-1) +4 subsets of N, each set with two elements, no k of
which have pairwaise the same intersection. Let

Gy =@ i=t,2, 005 =k, L, 2k 1)
32= {G, jei=eg+1,...,k-1;j=k+2+1,...,2k-1}
Bo= (b 9 =g 4 k- =042, k< )
}'4: {1, j)i =k, ooo, k¥l -1; j=k+1, ..., k+4;i<j}.
It is not difficult to check that the families of f}i, 3’—2, ’}3 and

3—4 are pairwise disjoint and that
I§1! =l(k’ 1):

13,1 = (-2 -2 “1)?
and
1 +1
13,1 = 1%, = L5

Let 75 = GPGZU%U?‘;' Then
131= 13,1+ 13,1 + 13,1 + 13,

2(k-1) +(k-2)(k-¢ —1)2+2(£ +1)
= (k-i)2 +4
= e-1)® + [551 )
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One can readily show that each of 1,2,...,2k-1 appears in
exactly k-1 members of 7. Thus if k members of F are
to have pairwise the same intersection, they must be pairwise
disjoint. But this contradicts the fact that [ JJ| = 2k - 1.

The case where k is even can be disposed of in a very
similar fashion and we shall not present the details here. It
follows from (5) and (6) that (3) holds.

We mention briefly what is perhaps the most interesting
special case of this problem, namely the case where k = 3.
It is not difficult to verify that among the following sets no
three have pairwise the same intersection:

(1,2,7), (4,6,8), (2,3,9), (7,8,9),

(1,3,7), (5,6,8), (4,5,10), (7,8,10),
(2,3,7), (1,2,9), (4,6,10), (7,9,10),
(4,5,8), (1,3,9), (5,6,10), (8,9, 10).

Thus,
®(3, 3) > 16.

From (4) it now follows easily that

¢(3m, 3) > 16
o(3m+1, 3) > 2(16)"
o(3m+2, 3) > 6(16) .

This lower bound for ¢{(n, 3) is better than the one afforded by
(3).

The determination of ¢(n, k) is closely related to the
following extremal problem in number theory: What is the
largest positive integer f(n, k) (k > 3) for which there exists a
sequence of integers a, az, ey af(n’ k) satisfying

i) 1< <a_<...< <

() 122 <2, *f(n, k) ="

(ii) No k of the a's have pairwise the same greatest
common divisor ?

Erdds [2] proved that there is a constant c, such that

log n

f(n, k) 2 £(n, 3)> ¢, log log n
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and pointed out that if one could prove (2), it would follow that
logn
£(n, k) < CZ log log n

for some constant CZ'

The following result appears to be new: For every
¢ >0 and every fixed m and k,

log n

+
(7) f(n, k) > o(m, k) (1+¢ )m log log n ,

provided n > no(m, k, €).

To pro 7), let A,A., ..., A be a family
prove (7), let { 12 w(m,k)} Y
of sets each with m elements, and with no k of the sets
having pairwise the same intersection. Let {JA = {ai, P URERE az} .

Let r be a positive integer and consider the first {r primes
and arrange these in an array

r 1 2 3 r -
p1 P’l pi Pi
1 2 3 r
P
PZ 2 PZ PZ
1 2 3 r
P3 P3 P3 P3
A = i
pl p? P2 ... PF
Y/ Y/ 4 2

. . .th .
From the primes in the j column of A form the ¢(m, k)
numbers

[§Y)

N = i t =1, . o(m, k).

t a.e A T

It is clear that no k of the N's have pairwise the same

. r
greatest common divisor. Now form the set S of the ¢(m, k)
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numbers

2
N, N° ... N
i i i
1 2 r
where il,iz,...,i take on the values 1,2,...,¢(m, k). An
r

argument similar to that used to prove Theorem 1 can be used
to show that no k of the numbers in S have pairwise the same
greatest common divisor.

Each number in S is the product of rm primes, the

largest of which is at most Prl . (Ps denotes the sth prime.)

Thus the largest number in S is at most

nn P

<P<P .
r{-rm = rf

Let ¢ >0 be given and choose

_ logn
' _[(1 +e¢)m log log n] ’

Then the prime number theorem and some straight forward
calculations show that, if n is sufficiently large,

i P < n

<P<P
r{-rm - rf

It follows that (7) holds.
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