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Abstract

Rates of convergence to normality of O (N ~'/2) are obtained for a standardized sum of m random variables
selected at random from a finite set of N random variables in two cases. In the first case, the sum is
randomly normed and the variables are not restricted to being independent. The second case is an
alternative proof of a result due to von Bahr, which deals with independent variables. Both results derive
from a rate obtained by Hoglund in the case of sampling from a finite population.
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1. Introduction

The two results of this paper make use of a theorem due to Hoglund {6] relating to the
rate of approach to normality of a sum of a set of elements randomly selected from a
finite population. Specifically,if x, ... , xy are real numbers, with Zl.N:l(xi —x)? >0,
and m < N, then

N -
iy X = x|’

(1) supl|P Z;’;](XR, —X)
3/2
Zi](xi —)E)z) /

v (pq N — X)?

SV ®)= (pq)‘/z(

where Ry, ..., Ry is a uniform random permutation of 1, ..., N, x = N~! Z,N=1 Xi,
p=1—-—qg = m/N, ® is the standard normal distribution function and B is an
absolute constant. Both results investigate the consequences of replacing the constants
X, ..., xy by random variables X, ..., Xy.
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The first deals with the statistic

@) T=f]n—ﬂ(miﬁx—ﬂjwz

i=1

in which

(3) Yi:XR,v i:17'~'7Na

where R, ..., Ry are as above and independent of X, ..., Xy and Y =N"! Z,N:I Y.
That T converges in distribution to a standard normal variable when Y|, ..., Yy are

finitely exchangeable was proved by Chernoff and Teicher [2]. The first result provides
a rate for this convergence for a special class of exchangeable random variables,
namely those obtained from a set of fairly general random variables via (3). In fact,
the X; we consider will be of the form

“ X, =Vi+W,
in which Vi, ..., Vy are assumed to be independent random variables, independent
of Wy, ..., Wy, which are not assumed independent.

The second result is an alternative proof of a theorem due to von Bahr {1], which
deals with a rate of convergence to normality of

(5) T* = (Zm:Yi—a) /b
i=1

where Y; is as in (3), a and b are now some norming constants, as opposed to the
random norming of the previous result, and the X; of (3) are independent but not
necessarily identically distributed random variables. The proof of von Bahr involves
a combinatoric argument of some complexity, whereas that given here proceeds via
a conditioning argument using (1). An essential part of Hoglund’s proof of (1) is the
use of the Erdos-Rényi form of the characteristic function of Y ., ¥; conditional on
X1, ..., Xy (Erdos and Rényi [4]) and it is of some interest to note that there is a
proof of the von Bahr result which uses this form. Von Bahr, himself, mentions that
he could not see how it could be used. Actually, the result given here is not quite as
general as von Bahr’s, requiring that the X; have finite fourth moments, compared
with his requirement of finite third moments. Also, our bound is in terms of (N pq)~!/?
whereas von Bahr’s involves (N p)~1/2. Our result would seem to imply that p should
be bounded away from 1 as well as 0 for a rate of O(N~"?) to apply, but clearly,
since the X’s are assumed to be independent here, the Berry-Esseen result (Feller [5,
p. 544]) ensures this rate when p is close to 1.
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The first result is used in situations such as permutation tests for two sample prob-
lems under randomization where an assumption of independence and equal variance
for the plots may be unacceptable, but where condition (4) may be assumed. The
second arises in two stage sampling as stated by von Bahr [1].

2. A rate for the statistic T

Let ¥; be given by (3), where X = (X, ..., Xy) is arandom vector with E(X;) =
i, var(X;) = o and E|X; — ;> = ps,. Put

N
(6) SP=N"Y (X - X)
i=1

where X = N™! Z,N:l X, and define 1 = N~} Z,Nzl w;. Let T be given by (2).

THEOREM 1. For arbitrary T > 0, there exists a constant B, depending on t, such
that
N N
sup |P(T < v)~®@)| < B(pg)”*N~>"? (Z o+ Y i — aP) +P(S* < ).

i=1 i=1

PROOF. We denote by I; and H* the indicator function and complement, respect-
ively, of an arbitrary set H. The constant B, here and in the sequel, is not necessarily
the same at each occurrence. Let E, be the set where S? > 7. Then using (1),

|P(T <v) = ®@)| < E(I |P(T < v|X) — ®))) + E(g | P(T < v[X) — @(v)])
N

< B(pq)™'’E (IE, X - x N‘3/ZS‘3) +P (8 <7)

i=1
N
< B(pg) PN Y E|Xi - X'+ P (S <7)

i=]

and the resuit follows applications of the C, and Holder inequalities.

We note that the first term in the bound of Theorem 1 is O (N ~'/?) subject to some
condition on p which ensures it is bounded away from 0 and 1. In this case, since the
X’s are not independent, the p close to 1 exclusion is necessary. The term P(S? < 1)
may well be of O(N~"/?) for a large class of variables. As yet we have imposed
no conditions on the joint distribution of X, ..., Xy. However the particular model
we propose for the X;, namely (4), incorporates some degree of dependency and
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non-stationarity. This model is motivated by the context of randomised agricultural
experiments where the plot error is considered as the sum of an independent random
error and a ‘soil’ error (see for example Neymann, Iwaskiewicz and Kolodziejczyk

[7D.

COROLLARY 1. Suppose X, = V, + W;,i = 1,..., N where V|, ..., Vy are in-
dependent random variables with E(V;) = 0, and independent of the random vari-
ables Wy, ..., Wy. Put EW;) = E(X,) = ;, and for j = 2,3, E|X; —u|’ =
wii, EIW;, — will = w;,; and E\ViJ = v;;. Suppose there exists a positive constant
8 such that

N
@) D va; > 8N.
i=l

Then there exists a constant B, depending on 8, such that

i=1 i=]

N N
sup |P(T < v) — ®()| < B(pg) *N~* (Z i+ Y i — m3> :

PROOF. With W = (W, ..., Wy), we have by (7), E(S*|W) > %8 and so, by
Chebychev’s inequality and Lemma A with £k = 3/2 (see Appendix),

P(S* < 18) < P(|S*— E(S*IW)| > 16)
< BE (E(IS* - E(S*IW)I*|W))

N N
< BN73? (ZU3J + ZE |W, — W|3) .
i=1 i=1

The result follows from Theorem 1 by noting that since X; — u; = W, — u; + V; and
W, and V; are independent, we have v3; < ps,; and ws; < us;.

3. A result due to von Bahr

Let Xy, ..., Xy be independent random variables with E(X;) = u;, and for 1 <
j<4, EIX,| = ,u}v,.. We adopt the same scale as von Bahr by insisting that

N
Z ui =0
i=1

and

N
N~ ZM,ZJ =1
i=1
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put=N" XN:“?
i=1

Let S? be given by (6) and T* by (5) witha = 0 and b = (m(1 — pu?))"/?, where
p=m/N.

THEOREM 2. There exists an absolute constant B such that

sup | P(T* < v) — ®(v)| < B(Npq)™> max (e, )(1 — p?) 2.

PROOF. Let A be the set where $? > 1/4. Then

|P(T* <v) —®W)| = |E(P(T* <v|X)) — ()|
< |Ei| + |Es| + |Es| + | E4]

where

= Y Yi—mX v - puH)'? —m'2X )
fi=E (IA[P ((m(l — p)SsHi2 = (1 = p)§?)1/2 |X

® v(l—pm)lﬂ—m%‘c)}
- ( (EDRE )
_ v(l — p,uz)”z —m\2x v(l — Pﬂz)l/z —m\2X )
EZ‘E<'“{¢( (=57 )_¢< (=7 )] ’
v(l _ PMZ)I/Z _ ml/ZX
E3=E(1A {‘b( (1—p)1/2 )—CD(U)]),

and

Ey = E({P(T* = v|X) — P()].

From (1), we have
N =13

(8) |Ey| < B(pq)"'*N~*"E (IA > Ix - x| S‘3)
i=1

N
< B(pg)"'*N7PY E|X; - X|

i=1

N
< B(pq)'*NT2Y "l

i=]
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Putting F as the distribution function of m'/2X ((1 — u?)p)~'/2, we have

v(l — pMZ)l/Z _ ml/ZX
\E(D( T )—cb(v)

L fE (v = D)V — u
B ‘f_wq’( (1 - p)i72 )dF(«l —;ﬁ)p)'/Z) - W
| v = pu)? — ) ( u )
- V_w F( (1 — u2)p)'~2 ae (1—p)}

~ /°° o ((v —w)(1 — ppd)? ) o <u<1 - puz)”z)

—o (1 — u?)p): (1-p):
©| (vl —pud)'? —u v(l — pud)'? —

: L ’F( (1 = u?)p)'” ) - q’( (1= p2)p)'72 ) @

N
< B —p) PNl

i=1

u
((1 - p)‘/2>

where the last inequality follows from Berry-Esseen rate results for independent,
non-identically distributed random variables (Feller [5, p. 544]). Thus

N
) |Esl < B(1— )™ AN "y + P(AY).

i=1

Now, by Chebychev’s inequality and Lemma A, with k = 3/2, since ES* = (N —
1+ u*)/N > 1/2, we have

N
(10) P(A) < P(IS*— ES?[ > 1/4) < BN 45 .
i=1
As | E4| is bounded by P (A€) we have only |E,| left to consider. So far, we have only
needed to assume the existence of finite third moments for the X; . In dealing with the

term | E,| it appears that we need finite fourth moments to obtain a rate of O(N~'/2).
We have, by Taylor’s theorem

|E;| < BE|S® — 1|

2 _pg)y Lo
sB{E[S ES'|+— }

2
53{(15|52—ES2|2)1/2+1 - }

Now, Lemma A with k¥ = 2 and Holder’s inequality ensure

N
(11 |Ex| < BNT2Y "y

i=1
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The inequalities (8), (9), (10) and (11) essentially establish the result.

Appendix

LEMMA (A). Let X, ..., Xy be independent random variables E(X;) = u;, and
forl < j <2k, E|X; =l = p;; <oo. Putji =N"'Y" w. Thenifk > 1
there exists an absolute constant B, depending on k, such that

N K N N
N> (Xi—X)'-E (N-’ (x,-—X)z) sBN*{Z pari+ Yl — Al
i=1 i=1

i=1

1M

where A = min(k, 1k + 1).

PROOE. First we see that

(12)
N N k
CENY (X - X - EY (X - XY
i=1 i=1
k
<2 [N“E Z(X — ) —EZ(X ~ 7| +E|(X - )2~E(X—ﬂ)2’k
and
N k

E|Y {(Xi— @) - E(X; — 1)’}

i=1

k k

N

Z — (X; — )

S2k»—1E +22k lE

N
D A = ) — EX; — )’}
i=1

Now, from the Marcinkiewicz-Zygmund-Chung inequality (Chung {[3]) and the
Holder inequality, putting v = max(0, 1k — 1),

k N 12 4y 12
< BN (Z [ — ﬁl2k> (Z ﬂzm)
i=l

N
E Y (i — )(Xi — )

i=1 i=1

N N
< B" (z P S m“)
i=1 i=1

and

N
Z(X wy = E(X; — p)?

< BN® Zﬂzkl
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A similar result holds for the last term of (12) and this establishes the lemma.
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