On a Theorem of Hermite and Joubert

Zinovy Reichstein

Abstract. A classical theorem of Hermite and Joubert asserts that any field extension of degree $n=5$ or 6 is generated by an element whose minimal polynomial is of the form $\lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n}$ with $c_{1}=c_{3}=0$. We show that this theorem fails for $n=3^{m}$ or $3^{m}+3^{1}$ (and more generally, for $n=p^{m}$ or $p^{m}+p^{l}$, if 3 is replaced by another prime p), where $m>I \geq 0$. We also prove a similar result for division algebras and use it to study the structure of the universal division algebra UD(n).

We also provea similar result for division algebras and use it to study the structure of the universal division algebra UD(n).

1 Introduction

Let E / F bea field extension of degreen. For $\mathrm{x} \in \mathrm{E}$, define $\sigma^{(i)}(\mathrm{x}) \in \mathrm{F}$ by

$$
\begin{equation*}
\operatorname{det}\left(\lambda 1_{\mathrm{F}}-\mathrm{x}\right)=\lambda^{\mathrm{n}}+\sigma^{(1)}(\mathrm{x}) \lambda^{\mathrm{n}-1}+\cdots+\sigma^{(n-1)}(\mathrm{x}) \lambda+\sigma^{(n)}(\mathrm{x}), \tag{1}
\end{equation*}
$$

In other words, (1) is the characteristic polynomial of the F -linear transformation $\mathrm{E} \rightarrow \mathrm{E}$ given by $\mathrm{y} \rightarrow \mathrm{xy}$. Note that, in particular, $\sigma^{(1)}(\mathrm{x})=-\operatorname{tr}(\mathrm{x})$ and $\sigma^{(\mathrm{n})}(\mathrm{x})=(-1)^{\mathrm{n}} \operatorname{det}(\mathrm{x})$. In those cases where the reference to the extension E / F is not clear from the context, we will write $\sigma_{\mathrm{E} / \mathrm{F}}^{(\mathrm{i})}(\mathrm{x})$ in place of $\sigma^{(\mathrm{i})}(\mathrm{x})$.

The starting point for this paper is the following theorem.
Theorem 1.1 (Hermite[He], 1861 and Joubert [J], 1867) Let E / F be a field extension of degree 5 or 6 . Assume char $(F) \neq 3$. Then there exists an element $x \in E$ such that $E=F(x)$ and $\sigma^{(1)}(\mathrm{X})=\sigma^{(3)}(\mathrm{X})=0$.

This classical result, originally proved by explicit computations, still seems quite nontrivial. Indeed, suppose e_{1}, \ldots, e_{n} is an F-basis of E. If we write $x=\sum_{i=1}^{n} x_{i} e_{i}$ with indeterminate coefficients $x_{1}, \ldots, x_{n} \in \mathrm{~F}$, then $\sigma^{(1)}(\mathrm{x})$ is a linear form and $\sigma^{(3)}(\mathrm{x})$ a cubic form in $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$. Thus finding a non-zero element $\mathrm{x} \in \mathrm{E}$ with $\sigma^{(1)}(\mathrm{x})=\sigma^{(3)}(\mathrm{x})=0$ amounts to finding a non-trivial solution (in F) of a cubic form in $\mathrm{n}-1$-variables or, equivalently, finding an F -rational point on a cubic hypersurface in $\mathbf{P}_{\mathrm{F}}^{\mathrm{n}-2}$. The latter is quite difficult in general; see, e.g., [C_{1}] or [M]. A proof of Theorem 1.1 along these lines was given by Coray [C_{2}], who also asked about possible generalizations to higher degreeextensions. For simplicity we will temporarily limit our considerations to fields of characteristic zero.

Question 1.2 Let F be a field of characteristic 0 and E be a field extension of F of degree $\mathrm{n} \geq 7$. Is there an element $\mathrm{x} \in \mathrm{E}^{*}$ such that $\sigma^{(1)}(\mathrm{x})=\sigma^{(3)}(\mathrm{x})=0$, or, equivalently, $\operatorname{tr}(\mathrm{x})=\operatorname{tr}\left(\mathrm{x}^{3}\right)=0$?

Received by the editors June 11, 1998.
AM S subject classification: 12E05, 16K 20.
(C)Canadian M athematical Society 1999.

Observe that we do not require x to be a generator of E over F. M ost of the time this will not be an issue for us, since most of our results are negative. (The only exception is Theorem 11.1; see Remark 11.2.) We also note that if $\sigma^{(1)}(x)=\sigma^{(3)}(x)=0$ has a non-zero solution for every field extension E / F of degree n then x can, indeed, be chosen to be a generator; see Remark 4.5.

In view of the above discussion, the answer to Question 1.2 is positive in those cases, where every cubic form over F in $n-1$ variables is known to have a non-trivial solution in F. For example, this occurs if F is a C_{i}-field with $n-1>3^{i}$ or, by a theorem of Davenport [D], if $F=\mathbf{Q}$ and $n \geq 17$; see Remark 9.4. Coray also proved that the answer to Question 1.2 is positive if $n=7$ or 8 , and F is a local (or, more generally, a quasi-local) field; see [C_{2}, Thm 4.2]. In Section 11 we will show that the answer is positive for certain Galois extensions of degree 3^{m}.

These positive results impose significant restrictions on the extension E/F. To study the general case we introduce the "general" field extension L_{n} / K_{n} of degreen. Let a_{1}, \ldots, a_{n} be independent indeterminates over a base field k. Then we define

$$
\begin{equation*}
\mathrm{K}_{\mathrm{n}}=\mathrm{k}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \quad \text { and } \quad \mathrm{L}_{\mathrm{n}}=\mathrm{K}_{\mathrm{n}}[\mathrm{~T}] /(\mathrm{f}), \tag{2}
\end{equation*}
$$

where $f(T)=T^{n}+a_{1} T^{n-1}+\cdots+a_{n-1} T+a_{n} \in K[T]$ is the "general" polynomial of degreen. Note that this construction depends the base field k, which we assume to be fixed throughout.

In this paper we will prove the following result. (Parts (a), (b), and (c) are respectively, Theorems 5.1, 6.1, and 7.1 with $r=p$; see Remark 9.1.)

Theorem 1.3 Let k be a base field of characteristic $0, L_{n} / K_{n}$ be the general field extension defined in (2), p be a prime integer and q be a positive integer which is not divisibleby p.
(a) Suppose $n=p^{m}$ and $q \leq p^{m-1}$. Then $\operatorname{tr}\left(x^{p}\right) \neq 0$ and $\sigma^{(p q)}(x) \neq 0$ for any $0 \neq x \in L_{n}$.
(b) Suppose $n=p^{m}+1$ and $q \leq p^{m-1}$. If $\operatorname{tr}(x)=0$ for some $0 \neq x \in L_{n}$ then $\operatorname{tr}\left(x^{p}\right) \neq 0$ and $\sigma^{(p q)}(x) \neq 0$.
(c) Suppose $n=p^{m}+p^{I}$ with $m>I \geq 1$, and $q \leq p^{I-1}$. If $\operatorname{tr}(x)=0$ for some $x \in L_{n}^{*}$ then $\operatorname{tr}\left(x^{p}\right) \neq 0$ and $\sigma^{(\mathrm{pq})}(\mathrm{x}) \neq 0$.

Setting $p=3$, we see that the answer to Question 1.2 is negative for any $n=3^{m}$ or $3^{m}+3^{l}$, wherem $>1 \geq 0$. N ote that this result is consistent with Theorem 1.1 since $n=5$ and $n=6$, cannot be written in the form 3^{m} or $3^{m}+3^{1}$ with $m>1$. On the other hand, since 6 can bewritten as $3^{1}+3^{1}$, the condition $m>$ I of Theorem 1.3(c) cannot be dropped.

In Section 10 we will show that Theorem 1.3 remains valid if we replace L_{n} / K_{n} by L^{\prime} / K^{\prime}, where K^{\prime} is any field extension of K_{n} of degree prime to p and $L^{\prime}=L_{n} \otimes_{K_{n}} K^{\prime}$; see Theorem 10.1(b). If $p=3$ we conclude that the conjecture of Cassels and Swinnerton-Dyer holds for certain cubic hypersurfaces; see Remark 10.2.

In Sections 12 and 13 we prove the following variant of Theorem 1.3(a) in the setting of division algebras.

Theorem 1.4 Let $r \geq 2$ be an integer and let $U D\left(r^{m}\right)=U D\left(r^{m}, k\right)$ be the universal division algebra of degree r^{m}.
(a) If char(k) $\nmid r$ then $\operatorname{tr}\left(x^{r}\right) \neq 0$ for any $0 \neq x \in U D\left(r^{m}\right)$.
(b) If char $(\mathrm{k})=0, \mathrm{q}$ is relatively prime to r and $\mathrm{q} \leq \mathrm{r}^{\mathrm{m}-1}$, then $\sigma^{(\mathrm{raq})}(\mathrm{x}) \neq 0$ for any $0 \neq x \in U D\left(r^{m}\right)$.

In Sections 15 and 16 we will use Theorem 1.4 (and its prime to- p version) to recover a weak form of the non-cross product theorems of Amitsur, Rowen and Saltman (see Theorem 15.1) and to show that prime-to- p extensions of $\mathrm{UD}(\mathrm{n})$ cannot be defined over fields of low transcendence degree (see Theorem 16.1).

M ost of this paper deals with the question of existence of non-zero solutions to the systems of equations

$$
\begin{equation*}
\operatorname{tr}(\mathrm{x})=\operatorname{tr}\left(\mathrm{x}^{\mathrm{r}}\right)=0 \quad \text { or } \quad \sigma^{(1)}(\mathrm{x})=\sigma^{(\mathrm{r})}(\mathrm{x})=0 \tag{3}
\end{equation*}
$$

in the contexts of étale algebras, field extensions, and division algebras. The context is usually indicated by the section title. Our results are roughly summarized in the following table. Hereweassumethat p is a prime, and $r \geq 2$ isa (possibly composite) integer. Thelast column refers to the existence of solutions of (3) or a closely related system of equations.

Context	Degree	Section	Solutions
Étale algebras	n	4	?
General fld ext. L_{n} / K_{n}, see (2)	$\mathrm{n}=\mathrm{r}^{\mathrm{m}}$	5	No
$\mathrm{L}_{\mathrm{n}} / \mathrm{K}_{\mathrm{n}}$	$n=r^{m}+1$	6	No
$\mathrm{L}_{\mathrm{n}} / \mathrm{K}_{\mathrm{n}}$	$n=r^{m}+r^{\prime}$	7	No
$\mathrm{L}^{\prime} / \mathrm{K}^{\prime}$ with $\mathrm{p} \dagger\left[\mathrm{K}^{\prime}: \mathrm{K}_{\mathrm{n}}\right], \mathrm{L}^{\prime}=\mathrm{L}_{\mathrm{n}} \otimes_{\mathrm{K}_{\mathrm{n}}} \mathrm{K}^{\prime}$	$n=p^{m}, p^{m}+p^{\prime}$	10	No
Galois ext. $\mathrm{E} / \mathrm{F}, \mathrm{Gal}(\mathrm{E} / \mathrm{F}) \nsim(\mathbf{Z} / \mathrm{pZ})^{\mathrm{m}}$	p^{m}	11	Yes
Universal division algebra UD(n)	$n=r^{m}$	13	No
Prime to- p ext. of $U \mathrm{D}(\mathrm{n})$	$\mathrm{n}=\mathrm{p}^{\mathrm{m}}$	14	No

The proofs of all the negative results listed in this table follow the same pattern. The simplest form of this argument is given in Section 5; subsequent proofs go through the same steps in increasingly complicated settings. In each case the punch line is provided by Theorem 3.2 (or its prime-to- p variant Proposition 3.4).

Acknowledgements The author would like to thank J. Buhler, D. J. Saltman, and the refereefor helpful comments.

2 Notation and Preliminaries

Thefollowing notational conventions will be used throughout the paper.

\mathbf{Z}	ring of integers
\mathbf{Q}	field of rational numbers
$\mathbf{0}_{i}$	i-tuple of zeros in \mathbf{Z}^{i}
k	base field
r	integer ≥ 2
p	prime integer
m, I	positive integers
F	field containing k
E	field extension or étale algebra over F, usually of degreen
D	finite-dimensional division algebra with center F
$\sigma^{(i)}(x)$	the coefficient of λ^{n-i} in det $(\lambda 1-x)$; see (1)
L_{n} / K_{n}	general field extension of degreen; see (2)
$U D(n)$	universal division algebra of degree $n ;$ see Section 12
$Z(n)$	center of $U D(n)$
$D_{m, r}$	product of m generic symbol algebras of degree $r ;$ see (17).

We begin with a simple lemma which will be used in the sequel.

Lemma 2.1 Let F be a field which contains a primitive r-th root of unity and $F \subset F^{\prime}$ be a finite field extension. Suppose $z^{r} \in F$ for somez $\in F^{\prime}-F$. Then
(a) $\operatorname{tr}(z)=0$.
(b) Suppose char(F) $=0$. Then $\sigma^{(\mathrm{ri})}(\mathrm{z}) \neq 0$ for any $1 \leq \mathrm{i} \leq\left[\mathrm{F}^{\prime}: \mathrm{F}\right] / \mathrm{r}$.

Proof Let $d=[F(z): F]$. By [L, Thm. VIII.6.10] d is the order of z in $\left(F^{\prime}\right)^{*} / F^{*}$. Thus we may assume without loss of generality that $\mathrm{r}=\mathrm{d}$. Denote z^{r} by $\beta \in \mathrm{F}$. Then the minimal polynomial of z over F is $f(\lambda)=\lambda^{r}-\beta$.
(a) We may assume $F^{\prime}=F(z)$. Then $\left[F^{\prime}: F\right]=r, f(\lambda)$ is the characteristic polynomial of z, and $-\operatorname{tr}(z)$ is the coefficient of λ^{r-1} in $f(\lambda)$. Since $r \geq 2$ by our assumption, this coefficient is 0 .
(b) The characteristic polynomial of z is $\operatorname{det}(\lambda-z)=\left(\lambda^{r}-\beta\right)^{\left[F^{\prime}: F(z)\right]}$. Recall that $\sigma^{(r i)}(z)$ is the coefficient of $\lambda^{r j}$, whereri $+r j=\left[F^{\prime}: F\right]$ or, equivalently, $i+j=\left[F^{\prime}: F(z)\right]$. Since char $(F)=0$, the coefficient of $\lambda^{r j}$ is non-zero for every $j=0, \ldots,\left[F^{\prime}: F(z)\right]$. Thus $\sigma^{(r i)}(z) \neq 0$ for every $i=1, \ldots,\left[F^{\prime}: F(z)\right]=\left[F^{\prime}: F\right] / r$.

3 Pfister Polynomials

In this section we shall assume that k is an arbitrary base field, m is a positive integer, t_{1}, \ldots, t_{m} are independent indeterminates over k, and $I=\left(i_{1}, \ldots, i_{m}\right)$ is an element of \mathbf{Z}^{m}. In order to avoid multiple subscripts, we will usually denote $k\left(t_{1}, \ldots, t_{m}\right)$ by $k(t)$ and $t_{1}^{i_{1}} \cdots t_{m}^{i_{m}}$ by t^{1}.

Recall that the m -fold Pfister form $\mathrm{Q}(\mathrm{x})=\left\langle\left\langle\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}\right\rangle\right\rangle$ is the quadratic form over $\mathrm{k}(\mathrm{t})$ given by

$$
Q(x)=\sum_{i_{1}, \ldots, i_{m}=0,1} t_{1}^{i_{1}} \cdots t_{m}^{i_{m}^{m}} x_{i_{1} \ldots, i_{m}}^{2} \in k(t)\left[x_{i_{1}, \ldots, i_{m}}\right] .
$$

It is well-known that this form is anisotropic, i.e., has no non-trivial solutions over $k(t)$. The proof of this assertion is quite easy: we assume that there is a non-trivial solution and obtain a contradiction by keeping track of the highest degree terms in $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}$; see, e.g., [Pf, p. 111]. The purpose of this section is to extend this result to a wider class of homogeneous polynomials (by a similar method).

We shall consider polynomials $\mathrm{P}(\mathrm{x})$ in the r^{m} variables $\mathrm{x}=\left(\mathrm{x}_{\mathrm{I}}\right)$, where I ranges over $\{0,1, \ldots, r-1\}^{m}$. We define an (r, m)-Pfister polynomial of degreed to be ak-linear combination of monomials of the form

$$
\begin{equation*}
\mathrm{t}^{\mathrm{I}} \mathrm{x}_{\mathrm{I}_{1}} \cdots \mathrm{x}_{\mathrm{ld}} \text { with } \mathrm{rl}=\mathrm{I}_{1}+\cdots+\mathrm{I}_{\mathrm{d}} \in \mathbf{Z}^{\mathrm{m}} . \tag{4}
\end{equation*}
$$

In particular, we requirethat $\mathrm{I}_{1}+\cdots+\mathrm{I}_{\mathrm{d}}$ should be divisible by r , i.e., contained in $\mathrm{r} \mathbf{Z}^{\mathrm{m}}$.
We record the following observation for future reference.
Lemma 3.1 The (r, m)-Pfister polynomials form a k-subalgebra of $k[t]\left[x_{1}\right]$.
Proof Monomials (4) form a semi-group.
We now proceed to the main theorem of this section.
Theorem 3.2 Let $r \geq 2$ and $q \geq 1$ be relatively prime positive integers and let

$$
\begin{equation*}
P(x)=\sum_{1_{1}+\ldots+l_{d}=r \mid} G_{1}, \ldots, l_{d} t^{t} x_{1_{1}} \cdots x_{1_{d}} \in k(t)\left[x_{1}\right] \tag{5}
\end{equation*}
$$

be a homogeneous (r, m)-Pfister polynomial of degree $d=r q$ with $q_{, ~, ., ., ~} \neq 0$ for any $\mathrm{I} \in$ $\{0, \ldots, r-1\}^{m}$. Then $\mathrm{P}(\mathrm{x})$ is anisotropic over $\mathrm{k}(\mathrm{t})$.

Proof For $z=z(t) \in k[t]$, let $\operatorname{deg}_{j}(z)$ be the degree of z in t_{j}. We now want to define the valuation

$$
\text { deg: } \mathrm{k}[\mathrm{t}] \longrightarrow \mathbf{Z}^{\mathrm{m}} \cup\{(-\infty, \ldots,-\infty)\},
$$

where \mathbf{Z}^{m} is viewed as an ordered group with respect to the lexi cographic order. We shall refer to the lexicographic order on $\mathbf{Z}^{m} \cup\{(-\infty, \ldots,-\infty)\}$ by using the terms "minimal" and "maximal" and the symbols $\geq,>, \leq$, and $<$.

If $z=z(t) \in k[t]$ is a monomial in t_{1}, \ldots, t_{m}, set $\operatorname{deg}(z)=\left(\operatorname{deg}_{1}(z), \ldots, \operatorname{deg}_{m}(z)\right)$. In general, set $\operatorname{deg}(z)=\max \left\{\operatorname{deg}\left(z_{0}\right)\right\}, \operatorname{as} z_{0}$ ranges over the monomials of z. In particular, if $z=0$, then $\operatorname{deg}(z)=(-\infty, \ldots,-\infty)$.

Assume, to the contrary, that $\mathrm{P}(\mathrm{y})=0$ for $\mathrm{y}=\left(\mathrm{y}_{\mathrm{l}}\right)$ with $\mathrm{y}_{\mathrm{l}} \in \mathrm{k}(\mathrm{t})$ for everyl and $\mathrm{y}_{\mathrm{l}} \neq 0$ for somel. Multiplying through by a common denominator, we may assume without loss of generality that $y_{\jmath} \in k[t]$ for every J. Let $M_{l_{1}, \ldots, l_{d}}=G_{1, \ldots, I_{d}} t^{l} y_{l_{1}} \cdots y_{l_{d}} \in k[t]$ be obtained
by substituting y_{I} for x_{I} into one of the monomials of $\mathrm{P}(\mathrm{x})$. That $\mathrm{is}, \mathrm{I}_{1}+\cdots+\mathrm{I}_{\mathrm{d}}=\mathrm{rl}$ and $\mathrm{c}_{1, \ldots, I_{d}} \in$ k. Let

$$
e\left(I_{1}, \ldots, I_{d}\right) \stackrel{\text { def }}{=} \operatorname{deg}\left(M_{l_{1}, \ldots, I_{d}}\right) .
$$

Choose $I_{\max }$ so that $e\left(I_{\max }, \ldots, I_{\max }\right)$ is maximal among all $\mathrm{e}(\mathrm{I}, \ldots, \mathrm{I})$ with respect to the lexicographic order. We will obtain a contradiction by showing that

$$
\begin{equation*}
e\left(I_{\max }, \ldots, I_{\max }\right)>e\left(I_{1}, \ldots, I_{d}\right) \tag{6}
\end{equation*}
$$

for any $\left(I_{1}, \ldots, I_{d}\right) \neq\left(I_{\max }, \ldots, I_{\max }\right)$. Clearly $\mathrm{y}_{\mathrm{I}_{\max }} \neq 0$; hence, $\mathrm{e}\left(I_{\max }, \ldots, I_{\max }\right) \neq$ $(-\infty, \ldots,-\infty)$. Consequently, (6) implies

$$
\operatorname{deg}\left(P\left(y_{1}\right)\right)=\mathrm{e}\left(I_{\max }, \ldots, I_{\max }\right) \neq(-\infty, \ldots,-\infty)
$$

i.e., $\mathrm{P}\left(\mathrm{y}_{\mathrm{l}}\right) \neq 0$, contradicting our assumption.

We will prove(6) in two stages. First assume $I_{1}=\cdots=I_{d}=I \neq I_{\text {max }}$. By our choice of $I_{\max }$, wehavee $(I, \ldots, I) \leq e\left(I_{\max }, \ldots, I_{\max }\right)$. Thus weonly need to provethat the inequality is strict. Since $\mathrm{y}_{\mathrm{I}_{\max }} \neq 0$, we may therefore assume without loss of generality that $\mathrm{y}_{1} \neq 0$. Since $c_{1}, \ldots, l \neq 0$, we have

$$
\mathrm{e}(\mathrm{l}, \ldots, \mathrm{l})=\operatorname{deg}\left(\mathrm{t}^{\mathrm{q} \mid} y_{\mathrm{l}}^{\mathrm{d}}\right) \equiv \mathrm{ql}+\operatorname{deg}\left(y_{\mathrm{l}}^{\mathrm{rq}}\right) \equiv \mathrm{ql} \quad(\bmod r) .
$$

Similarly $\left.\mathrm{e}\left(I_{\max }, \ldots, I_{\max }\right) \equiv \mathrm{q}\right|_{\max }$ modulo r. Thus $(I, \ldots, I)=\mathrm{e}\left(I_{\max }, \ldots, I_{\max }\right)$ implies $\mathrm{ql} \equiv \mathrm{ql}_{\max }(\operatorname{modr})$. Sincel, $\mathrm{I}_{\max } \in\{0, \ldots, r-1\}^{\mathrm{m}}$ and q is relatively primeto r, this is only possibleif $I=I_{\max }$, contradicting our choice of I . Thuse $\left(I_{\max }, \ldots, I_{\max }\right) \neq \mathrm{e}(\mathrm{I}, \ldots, \mathrm{I})$, i.e.,

$$
\begin{equation*}
\mathrm{e}\left(I_{\max }, \ldots, I_{\max }\right)>\mathrm{e}(I, \ldots, I), \tag{7}
\end{equation*}
$$

as claimed.
We are now ready to finish the proof of the inequality (6) for an arbitrary choice of $\left(I_{1}, \ldots, I_{d}\right) \neq\left(I_{\text {max }}, \ldots, I_{\text {max }}\right)$. Indeed, if $e\left(I_{1}, \ldots, I_{d}\right)=(-\infty, \ldots,-\infty)$ then there is nothing to prove. Otherwise since $\mathrm{c}_{\mathrm{l}}, \ldots, \mathrm{l} \neq 0$ for any I , we have

$$
\mathrm{M}_{\mathrm{l}_{1}, \ldots, \mathrm{l}_{\mathrm{d}}}^{\mathrm{d}}=\mathrm{CM} \mathrm{I}_{\mathrm{I}_{1}, \ldots, \mathrm{I}_{1}} \cdots \mathrm{M}_{\mathrm{l}_{\mathrm{d}}, \ldots, \mathrm{I}_{\mathrm{d}}},
$$

where $c \in k^{*}$. (M ore precisely, $c=\frac{c_{1}^{d}, \ldots, l_{d}}{G_{1} \ldots, l_{1} \cdots q_{d}, \ldots, l_{d}}$.) Taking deg on both sides and dividing by d , we obtain $\mathrm{e}\left(\mathrm{l}_{1}, \ldots, \mathrm{l}_{\mathrm{d}}\right)=\mathrm{d}^{-1}\left(\mathrm{e}\left(\mathrm{l}_{1}, \ldots, \mathrm{l}_{1}\right)+\cdots+\mathrm{e}\left(\mathrm{l}_{\mathrm{d}}, \ldots, \mathrm{l}_{\mathrm{d}}\right)\right)$. The right hand side is, in fact, $\leq \mathrm{e}\left(\mathrm{I}_{\max }, \ldots, I_{\max }\right)$ because

$$
\begin{equation*}
e\left(l_{j}, \ldots, l_{j}\right) \leq e\left(l_{\max }, \ldots, I_{\max }\right) \tag{8}
\end{equation*}
$$

for each $\mathrm{j}=1, \ldots$, d by the definition of $\mathrm{I}_{\text {max }}$. M oreover, since we are assuming $\mathrm{I}_{\mathrm{j}} \neq \mathrm{I}_{\text {max }}$ for some $\mathrm{j}=1, \ldots, \mathrm{~d},(7)$ tells us that at least one of the d inequalities in (8) is strict. Consequently, $e\left(I_{1}, \ldots, I_{d}\right)<e\left(I_{\max }, \ldots, I_{\max }\right)$ for any $\left(I_{1}, \ldots, I_{d}\right) \neq\left(I_{\max }, \ldots, I_{\max }\right)$, as claimed. This completes the proof of Theorem 3.2.

Remark 3.3 Note that if k is an algebraically closed field then by the Tsen-Lang Theorem any polynomial of degree r in $\geq r^{m}+1$ variables defined over $k(t)=k\left(t_{1}, \ldots, t_{m}\right)$ is isotropic; see [Pf, Sect. 5.1]. Thus the Pfister polynomials we considered in Theorem 3.2 (with $\mathrm{q}=1$) are "optimal" among all anisotropic polynomials over $\mathrm{k}(\mathrm{t})$ in the sense that they have degree r and depend on r^{m} variables.

If $r=p$ is a prime, we can further strengthen Theorem 3.2. Recall that a a finite field extension $F \subset F^{\prime}$ is called prime to- p if its degree is not divisible by p.

Proposition 3.4 Let $r=p$ be a primenumber. Then under the assumptions of Theorem 3.2
(a) the Pfister polynomial $\mathrm{P}(\mathrm{x})$ is anisotropic over any primeto- p extension K^{\prime} of $\mathrm{k}(\mathrm{t})=$ $\mathrm{k}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}\right)$. M oreover,
(b) suppose $\alpha_{1}, \ldots, \alpha_{N}$ arealgebraically independent variables over $\mathrm{k}(\mathrm{t})$. Then $\mathrm{P}(\mathrm{x})$ is anisotropic over any prime to- p extension $\mathrm{K}^{\prime \prime}$ of $\mathrm{k}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}, \alpha_{1}, \ldots, \alpha_{\mathrm{N}}\right)$.

Proof (a) By [L, Cor. XII.6.2], every discrete valuation $\mu: \mathrm{k}(\mathrm{t})^{*} \rightarrow \mathbf{Z}$ extends to a valuation $\nu:\left(\mathrm{K}^{\prime}\right)^{*} \rightarrow \mathbf{Z}[1 / \mathrm{e}$, where the ramification index $\mathrm{e}=\mathrm{e}(\nu \mid \mu)$ is not divisible by p . In particular, let $\mu=\operatorname{deg}_{j}$ be the degree in t_{j}, as in the proof of Theorem 3.2. Then deg g_{j} can be extended to a valuation $\nu_{j}: \mathrm{K}^{\prime} \rightarrow \mathbf{Z}\left[1 / \mathrm{e}_{\mathrm{j}}\right]$, where e_{j} is not divisible by p .

Now the proof of Theorem 3.2 goes through unchanged if we replace $k(t)$ by K^{\prime} and $\operatorname{deg}_{j}: \mathrm{k}(\mathrm{t})^{*} \rightarrow \mathbf{Z}$ by $\mathrm{e}_{\mathrm{j}} \nu_{\mathrm{j}}:\left(\mathrm{K}^{\prime}\right)^{*} \rightarrow \mathbf{Z}$ for $\mathrm{j}=1, \ldots, \mathrm{~m}$.
(b) We absorb the new variables into the base field. That is, we set $\mathrm{k}^{\prime}=\mathrm{k}\left(\alpha_{1}, \ldots, \alpha_{N}\right)$, view $\mathrm{K}^{\prime \prime}$ as an extension of $\mathrm{k}^{\prime}(\mathrm{t})$ and apply part (a).

4 Étale Algebras

Let F be a field. An F-algebra E is called étale if $E=E_{1} \oplus \cdots \oplus E_{m}$, where each E_{i} is a finite separable field extension of F . If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an n-tuple of algebraically independent indeterminates over F then we define the $\mathrm{F}(\alpha)$-algebra $\mathrm{E}(\alpha)$ by

$$
\mathrm{E}(\alpha)=\mathrm{E} \otimes_{\mathrm{F}} \mathrm{~F}(\alpha)=\mathrm{E}_{1}(\alpha) \oplus \cdots \oplus \mathrm{E}_{\mathrm{m}}(\alpha) .
$$

As in the case of fields, we shall write $\operatorname{tr}(\mathrm{x})=\operatorname{tr}_{\mathrm{E} / \mathrm{F}}(\mathrm{X})$ for the trace of multiplication by x ; similarly for $\operatorname{det}(\mathrm{x})$ and $\sigma^{(i)}(\mathrm{x})$. The latter is defined as the coefficient of $\lambda^{\mathrm{n}-\mathrm{i}}$ in the expansion of $\operatorname{det}\left(\lambda 1_{\mathrm{E}}-\mathrm{x}\right)$, as in (1).

Throughout this section L_{n} / K_{n} will be the general field extension of degree n defined in (2). Notethat our discussion in the beginning of Section 1 remains valid if E / F is an étale algebra and not necessarily a field extension. In this section we shall prove, in particular, that the answer to Question 1.2 is positive for every n -dimensional étale algebra E / F with $\mathrm{k} \subset \mathrm{F}$ if and only if it is positive for $\mathrm{F}=\mathrm{K}_{\mathrm{n}}$ and $\mathrm{E}=\mathrm{L}_{n}$; see Corollary 4.4. Considering all étale algebras, as opposed to just field extensions, provides a greater pool of potential counterexamples. We will take advantage of this phenomenon in proving Theorems 6.1 and 7.1.

We begin with the following lemma.

Lemma 4.1 Let F be a field containing k , and let E be an étale F -algebra of dimension n . Then the following conditions are equivalent:
(a) There exists an embedding of fields $\mathrm{K}_{\mathrm{n}} \hookrightarrow \mathrm{F}$ such that $\mathrm{E} \simeq \mathrm{L}_{\mathrm{n}} \otimes \mathrm{K}_{\mathrm{n}} \mathrm{F}$ (as F -algebras).
(b) There exists an element $\mathrm{y} \in \mathrm{E}$ such that $\sigma^{(1)}(\mathrm{y}), \sigma^{(2)}(\mathrm{y}), \ldots, \sigma^{(\mathrm{n})}(\mathrm{y})$ are algebraically independent over k.

Proof Recall that $K_{n}=k\left(a_{1}, \ldots, a_{n}\right)$, where a_{1}, \ldots, a_{n} are algebraically independent over k and that $L_{n}=K_{n}[T] /(f)$, where $f(T)=T^{n}+a_{1} T^{n-1}+\cdots+a_{n-1} T+a_{n}$; see (2).

To prove that (a) implies (b), take $\mathrm{y}=\mathrm{T} \otimes 1_{\text {F }}$.
Conversely, suppose (b) holds. Then we have an embedding of fields ϕ : $\mathrm{K}_{\mathrm{n}} \hookrightarrow \mathrm{F}$ given by $\phi\left(\mathrm{a}_{\mathrm{i}}\right)=\sigma^{(\mathrm{i})}(\mathrm{y})$. We want to show that this embedding has the property claimed in part (a). Indeed, the tensor product $L_{n} \otimes_{k_{n}} F$ formed via ϕ is isomorphic (as an F-algebra) to $\mathrm{F}[\mathrm{s}] /(\mathrm{g}(\mathrm{s})$), where

$$
g(s)=s^{n}-\sigma^{(n-1)}(y) s^{n-1}+\cdots+(-1)^{n} \sigma^{(n)}(y) .
$$

Let $\psi: \mathrm{F}[\mathrm{s}] /(\mathrm{g}(\mathrm{s})) \rightarrow \mathrm{E}$ be the homomorphism of F -algebras given by $\psi(\mathrm{s})=\mathrm{y}$. We claim that ψ is an isomorphism. Since both $\mathrm{F}[\mathrm{s}] / \mathrm{g})$ and E are n -dimensional F -algebras, it is enough to show that ψ is injective, or, equivalently, $1, y, \ldots, y^{\mathrm{n}-1}$ are linearly independent over F. Assume, to the contrary, that y satisfies a polynomial of degree $\leq n-1$ over F. Then the F -linear operator $\mathrm{E} \rightarrow \mathrm{E}$ given by multiplication by y , has multipleeigenvalues. On the other hand, the characteristic polynomial $\mathrm{g}(\mathrm{s})$ of this operator (or, equivalently, of y) has a non-zero discriminant because its coefficients are assumed to be algebrai cally independent over k . Thus $\mathrm{g}(\mathrm{s})$ has distinct roots, a contradiction. This shows that $1, \mathrm{y}, \ldots, \mathrm{y}^{\mathrm{n}-1}$ are F-linearly independent and thus ψ is an isomorphism, as claimed.

Theorem 4.2 Let F bea field, E be an étale algebra of dimension n and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right)$ be an n-tuple of algebraically independent indeterminates over F. Then there exists an inclusion of fields $\mathrm{K}_{\mathrm{n}} \hookrightarrow \mathrm{F}(\alpha)$ which induces an isomorphism $\mathrm{E}(\alpha) \simeq \mathrm{L}_{\mathrm{n}} \otimes_{\mathrm{K}_{\mathrm{n}}} \mathrm{F}(\alpha)$ of $\mathrm{F}(\alpha)$-algebras.

Proof By Lemma4.1 it is sufficient to construct an element $\mathrm{y} \in \mathrm{E}(\alpha)$ such that $\sigma^{(1)}(\mathrm{y}), \ldots$, $\sigma^{(n)}(\mathrm{y})$ are algebraically independent over k . Let $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be an F -basis of E . We claim that $\mathrm{y}=\alpha_{1} \mathrm{v}_{1}+\cdots+\alpha_{n} \mathrm{v}_{\mathrm{n}}$ has the desired property.

Indeed, let F be the separable closure of F. Then $E \otimes_{F} F \simeq(F)^{\oplus n}$. Write

$$
v_{i}=v_{i 1} \oplus \cdots \oplus v_{\mathrm{in}},
$$

where $v_{i j} \in F$. Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is an F-basis of E, it is also an F-basis of $E \otimes_{F} F$; hence, the $\mathrm{n} \times \mathrm{n}$-matrix $\left(\mathrm{v}_{\mathrm{ij}}\right)$ is non-singular. The element $\mathrm{y} \in \mathrm{E}(\alpha) \subset \mathrm{F}(\alpha)^{\oplus \mathrm{n}}$ can now be written as

$$
y=I_{1}(\alpha) \oplus \cdots \oplus I_{n}(\alpha),
$$

where $\mathrm{I}_{\mathrm{j}}(\alpha)=\alpha_{1} \mathrm{v}_{1 \mathrm{j}}+\cdots+\alpha_{n} \mathrm{~V}_{\mathrm{nj}} \in \mathrm{F}(\alpha)$. Sincethematrix $\left(\mathrm{v}_{\mathrm{i} j}\right)$ is non-singular, $\mathrm{I}_{1}(\alpha), \ldots$, $I_{n}(\alpha)$ are linearly independent over F. Hence,

$$
\operatorname{trdeg}_{\mathcal{F}} \mathrm{F}\left(\mathrm{I}_{1}(\alpha), \ldots, \mathrm{I}_{\mathrm{n}}(\alpha)\right)=\operatorname{trdeg}_{\mathrm{F}} \mathrm{~F}\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right)=\mathrm{n} .
$$

Note that $\mathrm{I}_{1}(\alpha), \ldots, \mathrm{I}_{\mathrm{n}}(\alpha)$ are the eigenvalues of y and thus, up to sign, $\sigma^{(\mathrm{i})}(\mathrm{y})$ is the i -th elementary symmetric polynomial in $\mathrm{I}_{1}(\alpha), \ldots, \mathrm{I}_{\mathrm{n}}(\alpha)$. Consequently,

$$
\operatorname{trdeg}_{\mathrm{F}} \mathrm{~F}\left(\sigma^{(1)}(\mathrm{y}), \ldots, \sigma^{(\mathrm{n})}(\mathrm{y})\right)=\operatorname{trdeg}_{\mathrm{F}} \mathrm{~F}\left(\mathrm{I}_{1}(\alpha), \ldots, \mathrm{I}_{\mathrm{n}}(\alpha)\right)=\mathrm{n} .
$$

In other words, $\sigma^{(1)}(\mathrm{y}), \ldots, \sigma^{(n)}(\mathrm{y})$ are algebraically independent over F , and, hence over k, as claimed.

Remark 4.3 Theorem 4.2 may be viewed as a commutative analogue of [RV, Lemma 3.1] or of Theorem 12.1.

Corollary 4.4 Let F be an infinite field containing k, E be an n -dimensional étale F -algebra, $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{d}} \in\{1, \ldots, \mathrm{n}\}$, and $\mathrm{e}_{1}, \ldots, \mathrm{e}_{d}$ be positive integers. Suppose $\sigma_{\mathrm{L}_{n} / \mathrm{K}_{n}}^{\left(\mathrm{a}_{1}\right)}\left(\mathrm{x}^{\mathrm{e}_{1}}\right)=\cdots=$ $\sigma_{\mathrm{L}_{\mathrm{n}} / K_{n}}^{\left(\mathrm{a}_{n}\right)}\left(\mathrm{x}^{\mathrm{e}_{\mathrm{d}}}\right)=0$ for some $0 \neq \mathrm{x} \in \mathrm{L}_{\mathrm{n}}$. Then there exists an element $0 \neq \mathrm{y} \in \mathrm{E}$ such that $\sigma_{\mathrm{E} / \mathrm{F}}^{\left(\mathrm{a}_{1}\right)}\left(\mathrm{y}^{\mathrm{e}_{1}}\right)=\cdots=\sigma_{\mathrm{E} / \mathrm{F}}^{\left(\mathrm{a}_{\mathrm{d}}\right)}\left(\mathrm{y}^{\mathrm{e}_{\mathrm{d}}}\right)=0$.

Proof Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an n-tuple of algebraically independent indeterminates over F. Write $\mathrm{E}(\alpha)=\mathrm{L}_{\mathrm{n}} \otimes_{\mathrm{K}_{\mathrm{n}}} \mathrm{F}(\alpha)$, as in Theorem 4.2 and let $\mathrm{z}=\mathrm{x} \otimes 1 \in \mathrm{E}(\alpha)$. Then $\sigma_{\mathrm{E}(\alpha) / \mathrm{F}(\alpha)}^{\left(\mathrm{a}_{1}\right)}\left(\mathrm{z}^{\mathrm{A}_{1}}\right)=\cdots=\sigma_{\mathrm{E}(\alpha) / \mathrm{F}(\alpha)}^{\left(\mathrm{a}_{\mathrm{d}}\right)}\left(\mathrm{z}^{\mathrm{e}_{\mathrm{d}}}\right)=0$.

We shall now construct $y \in E$ with $\sigma_{\mathrm{E} / \mathrm{F}}^{\left(\mathrm{a}_{1}\right)}\left(\mathrm{y}^{\mathrm{e}_{1}}\right)=\cdots=\sigma_{\mathrm{E} / \mathrm{F}}^{\left(\mathrm{a}_{\mathrm{d}}\right)}\left(\mathrm{y}^{\mathrm{e}_{\mathrm{i}}}\right)=0$ by specializing $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right)$ to an n -tuple of elements of F . Choose an F -basis $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ for E over F and write

$$
z=r_{1}(\alpha) v_{1}+\cdots+r_{n}(\alpha) v_{n},
$$

where $r_{1}(\alpha), \ldots, r_{n}(\alpha) \in \mathrm{F}(\alpha)$. Since $z \neq 0$, we may assume without loss of generality that $r_{1}(\alpha) \neq 0$. Since F is an infinite field, we can choose $c=\left(c_{1}, \ldots, c_{n}\right) \in F^{n}$ so that (i) $r_{1}(\alpha), \ldots, r_{\mathrm{n}}(\alpha)$ are well defined at $\alpha=c$ (i.e., their denominators don't vanish) and
(ii) $r_{1}(c) \neq 0$. Now set

$$
\begin{equation*}
y=r_{1}(c) v_{1}+\cdots+r_{n}(c) v_{n} \in E . \tag{9}
\end{equation*}
$$

Then, $\mathrm{y} \neq 0$ and $\sigma_{\mathrm{E} / \mathrm{F}}^{\left(\mathrm{a}_{1}\right)}\left(\mathrm{y}^{\mathrm{e}_{1}}\right)=\cdots=\sigma_{\mathrm{E} / \mathrm{F}}^{\left(\mathrm{a}_{\mathrm{d}}\right)}\left(\mathrm{y}^{\mathrm{e}_{\mathrm{a}}}\right)=0$, as desired.
Remark 4.5 If char(k) does not divide $\binom{n}{\substack{n \\ i}}$ for some $i=1, \ldots, d$ then the element y in Corollary 4.4 can be chosen so that $\mathrm{E}=\mathrm{F}[\mathrm{y}]$.

To prove this assertion, note that $\mathrm{K}_{\mathrm{n}}(\mathrm{x})=\mathrm{L}_{\mathrm{n}}$. Indeed, assume the contrary. Since the general extension L_{n} / K_{n} has no intermediate subfields, this means $x \in K_{n}$. But then $\sigma^{\left(\mathrm{a}_{\mathrm{i}}\right)}(\mathrm{x})=\binom{n}{\mathrm{a}_{i}} \mathrm{x}^{\mathrm{a}_{\mathrm{i}}}$, which is non-zero for some i by our assumption on char (k). This contradiction proves that $K_{n}(x)=L_{n}$. Now let z be as in the proof of Corollary 4.4. Since $K_{n}(x)=L_{n}$, the elements $1_{L_{n}}, x, \ldots, x^{n-1}$ are linearly independent over K_{n} and, hence, $1_{\mathrm{E}(\alpha)}, \mathrm{z}, \ldots, \mathrm{z}^{\mathrm{n}-1}$ are linearly independent over $\mathrm{F}(\alpha)$. In other words, if $\mathrm{z}^{\mathrm{i}}=\mathrm{r}_{\mathrm{i} 1}(\alpha) \mathrm{v}_{1}+$ $\cdots+r_{i n}(\alpha) v_{n}$ with $r_{i j}(\alpha) \in F(\alpha)$ (and, in particular, $r_{1 j}(\alpha)=r_{j}(\alpha)$ for $j=1, \ldots, n$) then $\operatorname{det}\left(\mathrm{r}_{\mathrm{ij}}(\alpha)\right) \neq 0$ in $\mathrm{F}(\alpha)$. Now choose $\mathrm{c} \in \mathrm{F}^{\mathrm{n}}$ so that every $\mathrm{r}_{\mathrm{ij}}(\mathrm{c})$ is well-defined and $\operatorname{det}\left(\mathrm{r}_{\mathrm{ij}}(\mathrm{c})\right) \neq 0$ in F . Then for y as in (9) we have

$$
\sigma_{\mathrm{E} / \mathrm{F}}^{\left(a_{1}\right)}\left(\mathrm{y}^{\mathrm{e}_{1}}\right)=\cdots=\sigma_{\mathrm{E} / \mathrm{F}}^{\left(a_{\mathrm{d}}\right)}\left(\mathrm{y}^{\mathrm{e}_{\mathrm{i}}}\right)=0
$$

and $\mathrm{l}_{\mathrm{E}}, \mathrm{y}, \ldots, \mathrm{y}^{\mathrm{n}-1}$ are linearly independent over F , i.e., $\mathrm{F}[\mathrm{y}]=\mathrm{E}$, as claimed.

Remark 4.6 If E is a separable field extension of F then Corollary 4.4 can be proved by specializing L_{n} / K_{n} to E / F, as in [K, Thm 1]; see also [S, Thm. 5.1] or [BR, Thm 7.4]. This specialization argument can begeneralized to the case where E / F is an étale algebra. Wefeel that the alternative approach wetook, based on immersing $\mathrm{L}_{\mathrm{n}} / \mathrm{K}_{\mathrm{n}}$ in a rational extension of E / F, is more transparent. Along the way we also proved Theorem 4.2, which will be used again in Sections 10 and 13.

5 Field Extensions of Degree r^{m}

In this section we prove the following theorem.
Theorem 5.1 Let k be a base field, L_{n} / K_{n} be the general field extension of degree n defined in (2), $n=r^{m}, m \geq 1$, and $r \geq 2$.
(a) If char(k) $\nmid r$ then $\operatorname{tr}\left(x^{r}\right) \neq 0$ for any $0 \neq x \in L_{n}$.
(b) Suppose $\mathrm{q} \in\left[1, \mathrm{r}^{\mathrm{m}-1}\right]$ is relatively prime to r . If char $(\mathrm{k})=0$ then $\sigma^{(r q)}(\mathrm{x}) \neq 0$ for any $0 \neq x \in L_{n}$.

In order to prove Theorem 5.1 it is sufficient to construct an infinite field F containing k and a field extension E / F of degreen $=r^{m}$ such that for any $0 \neq x \in E(a) \operatorname{tr}_{E / F}\left(x^{r}\right) \neq 0$, and (b) $\sigma_{\mathrm{E} / \mathrm{F}}^{(\mathrm{raf}}(\mathrm{x}) \neq 0$; see Corollary 4.4 with (a) $\mathrm{d}=1, \mathrm{a}_{1}=1$, and $\mathrm{e}_{1}=\mathrm{r}$ and (b) $\mathrm{d}=1$, $\mathrm{a}_{1}=\mathrm{rq}$, and $\mathrm{e}_{1}=1$. (Recall that $\sigma^{(1)}=-$ tr.) We now proceed to construct a field extension E/F with the desired properties. Theorem 5.1 will then follow from Proposition 5.3.

Let $E=k\left(z_{1}, \ldots, z_{m}\right)$ and $F=k\left(t_{1}, \ldots, t_{m}\right)$, where z_{1}, \ldots, z_{m} are algebraically independent indeterminates over k and $t_{i}=z_{i}^{r}$ for $\mathrm{i}=1, \ldots, \mathrm{~m}$. Given

$$
I=\left(i_{1}, \ldots, i_{m}\right) \in\{0,1, \ldots, r-1\}^{m},
$$

we shall write z^{l} for $z_{1}^{i_{1}} \cdots z_{m}^{i_{m}}$ and t^{l} for $t_{1}^{i_{1}} \cdots t_{m}^{i_{m}^{m}}$. The elements z^{l} form a basis for E as an F -vector space, as I ranges over $\{0,1, \ldots, r-1\}^{m}$.

Lemma 5.2 Let $x=\sum_{\mid} x_{1} z^{\prime}$, wherel ranges over $\{0, \ldots, r-1\}^{m}$ and each x_{1} is a variable taking values in F. Supposei be a positive integer. Then
(a) $\operatorname{tr}\left(x^{i}\right)$ is a homogeneous (r, m)-Pfister polynomial of degreei in the variables x_{1}.
(b) Assumechar $(\mathrm{k})=0$ and $\mathrm{i} \leq \mathrm{r}^{\mathrm{m}}$. Then $\sigma^{(\mathrm{i})}(\mathrm{x})$ is a homogeneous (r, m)-Pfister polynomial of degreei in the variables x_{1}.

Proof (a) Expand x^{i} and use the fact that $\operatorname{tr}\left(\mathrm{z}^{1}\right)=0$ for any $\mathrm{I} \notin \mathrm{r} \mathbf{Z}^{\mathrm{m}}$; see Lemma 2.1(a).
(b) Recall that Newton's formulas express $\sigma^{(i)}(x)$ as a polynomial with rational coefficients in $\operatorname{tr}(x), \ldots, \operatorname{tr}\left(x^{i}\right)$. The desired conclusion now follows from part (a) and Lemma 3.1.

Proposition 5.3 Let E and F be as above and let $\mathrm{q} \leq \mathrm{r}^{\mathrm{m}-1}$ be an integer which is relatively primeto r.
(a) Assume char $(k) \nmid r$. Then $\operatorname{tr}\left(x^{r}\right) \neq 0$ for any $0 \neq x \in E$,
(b) Assumechar $(\mathrm{k})=0$. Then $\sigma^{(\mathrm{rq})}(\mathrm{x}) \neq 0$ for any $0 \neq \mathrm{x} \in \mathrm{E}$.

Proof Write

$$
\begin{equation*}
x=\sum_{1} x_{1} z^{\prime} \tag{10}
\end{equation*}
$$

with each $x_{1} \in F$.
(a) By Lemma $5.2(\mathrm{a}), \operatorname{tr}\left(\mathrm{x}^{r}\right)$ is a homogeneous($\left.\mathrm{m}, \mathrm{r}\right)$-Pfister polynomial of degreed $=\mathrm{r}$, i.e., is of the form $\sum_{l_{1}+\ldots+l_{r}=r \mid} g_{1}, \ldots, I_{r}{ }^{1} \times{I_{1}}_{1} \cdots x_{I_{r}}$ with $g_{1}, \ldots, l_{r} \in k$. We want to show that this polynomial is anisotropic. By Theorem 3.2 it is sufficient to check that $\mathrm{q}_{\mathrm{q}, \ldots, \mathrm{I}} \neq 0$ for every $\mathrm{I} \in\{0, \ldots, \mathrm{r}-1\}^{\mathrm{m}}$. To verify that $\mathrm{c}_{1}, \ldots, \mathrm{I} \neq 0$, we substitute $\mathrm{x}_{\mathrm{I}}=1$ and $\mathrm{x}_{\mathrm{l}^{\prime}}=0$ for every $I^{\prime} \neq \mathrm{I}$. We then obtain

$$
\mathrm{c}_{1}, \ldots, \mathrm{t}^{t^{\prime}}=\operatorname{tr}\left(z^{\mathrm{r}}\right)=\operatorname{tr}\left(\mathrm{t}^{\prime}\right)=\mathrm{r}^{m} \mathrm{t}^{\prime},
$$

and thus $c_{1}=r^{m} \neq 0$, as claimed.
(b) By Lemma 3.1, $\sigma^{(r q)}(\mathrm{x})$ is a homogeneous (m, r)-Pfister polynomial of degreed $=\mathrm{rq}$ in the variables x_{1}, i.e., a polynomial of the form (5). We want to show that this polynomial is anisotropic. By Theorem 3.2 it is sufficient to check that $\mathrm{c}_{1}, \ldots, 1 \neq 0$. (Note that our assumption about r and q being relatively prime is used here; otherwise Theorem 3.2 does not apply.) Since $\mathrm{q}_{1, \ldots, \mathrm{t}^{\mathrm{ta}}}=\sigma^{\mathrm{rq}}\left(\mathrm{z}^{\mathrm{l}}\right)$, the desired inequality follows from Lemma 2.1(b).

This completes the proof of Proposition 5.3 and thus of Theorem 5.1.

6 Field Extensions of D egree $r^{m}+1$

In this section we will prove the following theorem.
Theorem 6.1 Let k be a base field, L_{n} / K_{n} be the general field extension of degree n defined in (2), $n=r^{m}+1, m \geq 1$, and $r \geq 2$. Supposetr $(x)=0$ for some $0 \neq x \in L_{n}$.
(a) If char(k) $\nmid r\left(r^{m(r-1)}+(-1)^{r}\right)$ then $\operatorname{tr}\left(x^{r}\right) \neq 0$.
(b) If char $(\mathrm{k})=0$ then $\sigma^{(\mathrm{rq})}(\mathrm{x}) \neq 0$ for any $\mathrm{q} \in\left[1, \mathrm{r}^{\mathrm{m}-1}\right]$ which is relatively primeto r .

In order to prove Theorem 6.1 it is sufficient to construct an infinite field F containing k and an $\mathrm{n}=\mathrm{r}^{\mathrm{m}}+1$-dimensional étale F -algebra E such that (a) no $\mathrm{x} \in \mathrm{E}^{*}$ satisfies $\operatorname{tr}(\mathrm{x})=\operatorname{tr}\left(\mathrm{x}^{\mathrm{r}}\right)=0$ and (b) no $\mathrm{x} \in \mathrm{E}^{*}$ satisfies $\operatorname{tr}(\mathrm{x})=\sigma^{(\mathrm{ra})}(\mathrm{x})=0$. (Indeed, apply Corollary 4.4 with $d=2, a_{1}=e_{1}=1$, and (a) $a_{2}=1, e_{2}=r$ and (b) $a_{2}=r q, e_{2}=1$.) We now proceed to construct an étale algebra with these properties. Theorem 5.1 will then follow from Proposition 6.5.

Let z_{1}, \ldots, z_{m} be algebraically independent indeterminates over k and let $t_{i}=z_{i}^{r}$ for $\mathrm{i}=1, \ldots, \mathrm{~m}$. Set $\mathrm{F}=\mathrm{k}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}\right)$ and $\mathrm{E}_{0}=\mathrm{k}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{m}}\right)$. (Note that F is the same as in the previous section, and E_{0} is the field we previously called E.) For the rest of this section E will denote the étale algebra $\mathrm{E}_{0} \oplus \mathrm{~F}$. Observe that the dimension of E over F is, indeed, $\mathrm{r}^{\mathrm{m}}+1$.

We will write the elements of E ase $\oplus f$, wheree $\in E_{0}$ and $f \in F$. Given

$$
\mathrm{I}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}}\right) \in\{0,1, \ldots, r-1\}^{\mathrm{m}},
$$

we shall write z^{1} for $z_{1}^{i_{1}} \cdots z_{m}^{i_{m}} \in E_{0}$ and t^{1} for $t_{1}^{i_{1}} \cdots t_{m}^{i_{m}} \in F$, as we did in the previous section. Let

$$
\mathrm{v}=-1_{\mathrm{E}_{0}} \oplus \mathrm{r}^{\mathrm{m}} 1_{\mathrm{F}}
$$

In the sequel we shall denote the m-tuple of zeros in \mathbf{Z}^{m} by $\mathbf{0}_{m}$.
Lemma $6.2 \operatorname{tr}\left(v^{i}\right)=(-1)^{i} r^{m}+r^{m i}$ for any positive integer i.
Proof $\operatorname{tr}_{E / F}\left(V^{i}\right)=\operatorname{tr}_{E_{0} / F}\left(-1_{E_{0}}\right)^{i}+\operatorname{tr}_{F / F}\left(r^{m i} 1_{F}\right)=(-1)^{i} r^{m}+r^{m i}$, as claimed.

Lemma 6.3

(a) Let W be the subset of E consisting of elements x with $\operatorname{tr}(\mathrm{x})=0$. Then W is an F -vector subspace of E of dimension r^{m}.
(b) $B=\left\{v, z^{\prime} \oplus 0_{F} \mid \mathbf{0}_{\mathrm{m}} \neq \mathrm{I} \in\{0,1, \ldots, r-1\}^{\mathrm{m}}\right\}$ is a basis of W.

Proof (a) W is the kernel of the non-zero F-linear form tr: E $\rightarrow \mathrm{F}$.
(b) First of all, every element of B lies in W . Indeed, $\operatorname{tr}(\mathrm{v})=0$ by Lemma 6.2 and $\operatorname{tr}_{E / F}\left(z^{\prime} \oplus 0_{F}\right)=\operatorname{tr}_{E_{0} / F}\left(z^{\prime}\right)=0$ for everyl $\notin r Z^{m}$ by Lemma 2.1(a).

Since B has r^{m} elements, it is enough to show that they are linearly independent. This follows from the fact that the elements $z^{1} \oplus 0_{F}$ are F-linearly independent and v does not lie in their span.

Lemma 6.4 Let $x=\mathrm{X}_{\mathbf{0}_{\mathrm{m}}} \mathrm{v}+\sum_{\mathrm{I} \neq \mathbf{0}_{\mathrm{m}}} \mathrm{X}_{\mathrm{I}}\left(\mathrm{z}^{\mathrm{I}} \oplus \mathrm{O}_{\mathrm{F}}\right)$, where the sum is evaluated over all I \in $\{0, \ldots, r-1\}^{m}-\left\{\mathbf{0}_{m}\right\}$ and each X_{l} is a variable taking values in F. Suppose i is a positive integer. Then
(a) $\operatorname{tr}\left(x^{i}\right)$ is a homogeneous (r, m)-Pfister polynomial of degreei in the variables x_{1}.
(b) Assume char $(\mathrm{k})=0$ and $\mathrm{i} \leq \mathrm{r}^{\mathrm{m}}+1$. Then $\sigma^{(\mathrm{i})}(\mathrm{x})$ is a homogeneous (r, m)-Pfister polynomial of degreei in the variables x_{1}.

Proof Same as the proof of Lemma 5.2.
Proposition 6.5 Let E and F beasaboveand let $\mathrm{q} \in\left[1, \mathrm{r}^{\mathrm{m}-1}\right]$ bean integer which is relatively primeto r. Assume $0 \neq x \in E$ and $\operatorname{tr}(x)=0$.
(a) If char $(k) \nmid r$ then $\operatorname{tr}\left(x^{r}\right) \neq 0$.
(b) If char $(k)=0$ then $\sigma^{(r q)}(x) \neq 0$.

Proof We argue as in the proof of Proposition 5.3. By Lemma 6.3, we can write x as

$$
x=x_{\mathbf{o}_{\mathrm{m}}} v+\sum_{1 \neq \mathbf{o}_{\mathrm{m}}} \mathrm{x}_{\mathrm{l}}\left(\mathrm{z}^{\mathrm{I}} \oplus 0_{\mathrm{F}}\right),
$$

wherel ranges over $\{0, \ldots, r-1\}^{m}-\left\{\mathbf{0}_{m}\right\}$ and each $x_{1} \in F$.
(a) By Lemma 6.4, $\operatorname{tr}\left(x^{r}\right)$ is a homogeneous (m, r)-Pfister polynomial of degreed $=r$, i.e., is of the form (5) with $\mathrm{c}_{1}, \ldots, \mathrm{l}_{\mathrm{d}} \in \mathrm{k}$. We want to show that this polynomial is anisotropic.

By Theorem 3.2 it is sufficient to check that $\mathrm{c}_{1}, \ldots, \mathrm{l} \neq 0$ for every $\mathrm{I} \in\{0, \ldots, r-1\}^{\mathrm{m}}$. For $\mathrm{I} \neq \mathbf{0}_{\mathrm{m}}$

$$
\mathrm{c}_{1}, \ldots, \mathrm{t}^{\prime}=\operatorname{tr}_{\mathrm{E} / \mathrm{F}}\left(\mathrm{z}^{\mathrm{rl}} \oplus 0_{\mathrm{F}}\right)=\operatorname{tr}_{\mathrm{E}_{0} / \mathrm{F}}\left(\mathrm{z}^{\mathrm{rl}^{\mathrm{I}}}\right)=\mathrm{r}^{\mathrm{m} t^{\prime} \neq 0 .}
$$

On the other hand, $\mathrm{c}_{\mathrm{m}}, \ldots, \mathrm{o}_{\mathrm{m}}=\operatorname{tr}\left(\mathrm{v}^{r}\right)$ is non-zero by Lemma 6.2 and our assumption on char(k).
(b) By Lemma 6.4 $\sigma^{(r a)}(\mathrm{x})$ is a homogeneous ($\left.\mathrm{m}, \mathrm{r}\right)$-Pfister polynomial of degreed $=\mathrm{rq}$ in the variables x_{1}, i.e., a polynomial of the form (5). We want to show that this polynomial is anisotropic. By Theorem 3.2 we only need to check that $c_{, \ldots, \ldots} \neq 0$. Equivalently, we need to show
(i) $\sigma^{(r a)}\left(z^{1} \oplus 0_{\mathrm{F}}\right) \neq 0$ for every $\mathrm{I} \in\{0, \ldots, r-1\}^{m}-\left\{\mathbf{0}_{\mathrm{m}}\right\}$ and
(ii) $\sigma^{r q}(v) \neq 0$.
(i) holds because $\sigma_{\mathrm{E} / \mathrm{F}}^{(\mathrm{rq})}\left(\mathrm{z}^{\prime} \oplus 0_{\mathrm{F}}\right)=\sigma_{\mathrm{E}_{0} / \mathrm{F}}^{(\mathrm{rq})}\left(\mathrm{z}^{\prime}\right) \neq 0$, by Lemma 2.1(b). To prove (ii), note that the characteristic polynomial of v equals

$$
\lambda^{r^{m}+1}+\sum_{i=0}^{r^{m}} \sigma^{\left(r^{m}+1-i\right)}(v) \lambda^{i}=\operatorname{det}\left(\lambda 1_{E}-v\right)=\left(\lambda-r^{m}\right)(\lambda+1)^{r^{m}}
$$

Expanding $\left(\lambda-r^{m}\right)(\lambda+1)^{r^{m}}$, we see that the coefficient of $\lambda^{r^{m}}$ equals zero, and all other coefficients are non-zero. This means that $\sigma^{(1)}(v)=0$ (or, equivalently, $\operatorname{tr}(\mathrm{v})=0$, which we already know from Lemma 6.2) and $\sigma^{(j)}(v) \neq 0$ for every $\mathrm{j}=2, \ldots, \mathrm{r}^{\mathrm{m}}$. In particular, $\sigma^{(r a)}(v) \neq 0$, as claimed.

This completes the proof of Proposition 6.5 and thus of Theorem 6.1.

7 Field Extensions of D egree $r^{m}+r^{l}$ with $m>I \geq 1$

In this section we will prove the following theorem.
Theorem 7.1 Let k bea basefield and L_{n} / K_{n} bethegeneric field extension defined in (2) with $n=r^{m}+r^{\prime}$ and $r \geq 1$. Assume $m \geq I \geq 1$ if r is even and $m>I \geq 1$ if r is odd. Suppose $\operatorname{tr}(\mathrm{x})=0$ for some $0 \neq \mathrm{x} \in \mathrm{L}_{\mathrm{n}}$.
(a) If char(k) $\nmid r\left(r^{(m-1)(r-1)}+(-1)^{r}\right)$ then $\operatorname{tr}\left(x^{r}\right) \neq 0$.
(b) If char $(\mathrm{k})=0$ then $\sigma^{(\mathrm{rq})}(\mathrm{x}) \neq 0$, provided that q is relatively prime to $\mathrm{r}, \mathrm{q} \leq \mathrm{r}^{\mathrm{l}-1}$, and one of the following conditions is satisfied:
(i) $\sum_{i=1}^{r q}(-1)^{i}\left(\begin{array}{rl}r^{m}-i\end{array}\right)\left(\begin{array}{l}r_{i}^{\prime}\end{array}\right) r^{(m-1) i} \neq 0$,
(ii) there exists a prime p such that $\mathrm{p}^{\mathrm{e}} \mid r$ and $\mathrm{q} \leq \frac{\mathrm{m}^{\mathrm{me}}}{r}$,
(iii) $q \leq r^{\frac{m}{9}-1}$, whereg is the number of prime divisors of r.

In order to prove Theorem 7.1 is sufficient to construct an infinite field F containing k and étale algebra E of dimension $r^{m}+r^{\prime}$ over F such that no $x \in E^{*}$ satisfies (a) $\operatorname{tr}(x)=$ $\operatorname{tr}\left(\mathrm{x}^{\mathrm{rq}}\right)=0$ or $(\mathrm{b}) \operatorname{tr}(\mathrm{x})=\sigma^{(\mathrm{rq})}(\mathrm{x})=0$. (This follows from Corollary 4.4 with $\mathrm{d}=2$, $a_{1}=e_{1}=1$ and (a) $a_{2}=1, e_{2}=r$ and (b) $a_{2}=r q$ and $e_{2}=1$.) We now proceed
to construct an étale algebra with these properties. Theorem 7.1(a) will then follow from Proposition 7.5(a); Theorem 7.1(b) will follow from Propositions 7.5(b) and 8.2.

Let $z_{1}, \ldots, z_{m}, w_{1}, \ldots, w_{l}$ be $m+1$ independent variables over k. Denote z_{i}^{r} by t_{i} and w_{j}^{r} by s_{j} for all $i=1, \ldots, m$ and $j=1, \ldots, l$. For the rest of this section we set $F=$ $\mathrm{k}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{m}}, \mathrm{s}_{1}, \ldots, \mathrm{~s}_{1}\right)$ and $\mathrm{E}=\mathrm{E}_{1} \oplus \mathrm{E}_{2}$, where $\mathrm{E}_{1}=\mathrm{F}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{m}}\right)$ and $\mathrm{E}_{2}=\mathrm{F}\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{1}\right)$.

Unless otherwise specified, I, I_{1}, I_{2}, etc., will be assumed to be elements of $\{0, \ldots$, $r-1\}^{m}, J, J_{1}, J_{2}$, etc., will be elements of $\{0, \ldots, r-1\}^{\prime}$, and $(I, J),\left(I_{1}, J_{1}\right),\left(I_{2}, J_{2}\right)$, etc., will be elements of $\{0, \ldots, r-1\}^{m+1}$. We will denotethem-tuple of zeros by $\mathbf{0}_{m}=(0, \ldots, 0) \in$ \mathbf{Z}^{m}; similarly for $\mathbf{0} \in \mathbf{Z}^{\mid}$and $\mathbf{0}_{\mathrm{m}+1} \in \mathbf{Z}^{\mathrm{m}+1}$.

If I $=\left(i_{1}, \ldots, i_{m}\right)$, we will writez z^{\prime} for $z_{1}^{i_{1}} \cdots z_{m}^{i_{m}}$ and t^{\prime} for $t_{1}^{i_{1}} \ldots t_{m}^{i_{m}}$; similarly for w^{\jmath} and s^{J}. The elements z^{1} form a basis of E_{1}, and the elements z^{J} form a basis of E_{2}, as I ranges over $\{0,1, \ldots, r-1\}^{m}$ and J ranges over $\{0,1, \ldots, r-1\}^{\prime}$.

Lemma 7.2 Let $v=-1_{E_{1}} \oplus r^{m-1} 1_{E_{2}} \in E$. Then $\operatorname{tr}\left(v^{i}\right)=r^{m}\left((-1)^{i}+r^{(m-1)(i-1)}\right)$.
Proof Write $\operatorname{tr}_{E / F}\left(v^{i}\right)=\operatorname{tr}_{E_{1} / F}\left(-1_{E_{1}}\right)^{i}+\operatorname{tr}_{E_{2} / F}\left(r^{(m-l) i} 1_{E_{2}}\right)$. The first term equals $(-1)^{i} r^{m}$, the second term is $r^{(m-l) i+1}$, and the desired equality follows.

Lemma 7.3

(a) Let W be the subset of E consisting of elements x with $\operatorname{tr}(\mathrm{x})=0$. Then W is an F -vector subspace of E of dimension $r^{m}+r^{1}-1$.
(b) Let v be asin Lemma 7.2. Then $\mathrm{B}=\left\{\mathrm{v}, \mathrm{z}^{\prime} \oplus 0_{\mathrm{E}_{2}}, 0_{\mathrm{E}_{1}} \oplus \mathrm{~W}^{\mathrm{J}}\right\}$ is a basis of W . Herel ranges $\{0,1, \ldots, r-1\}^{m}-\left\{\mathbf{0}_{m}\right\}$ and J ranges over $\{0,1, \ldots, r-1\}^{\prime}-\left\{\mathbf{0}_{\mid}\right\}$.

Proof Same as the proof of Lemma 6.3.
Lemma 7.4 Let $x=X_{\left(\mathbf{o}_{m}, \mathbf{0}_{\mathbf{1}}\right)} v+\sum_{\left(\neq \mathbf{o}_{m}\right.} \mathrm{X}_{(1,0,0}\left(z^{\prime} \oplus 0\right)+\sum_{j \neq \mathbf{0}_{1}} \mathrm{X}_{\left(\mathbf{o}_{\mathrm{m}}, \mathrm{J}\right)}\left(0 \oplus \mathrm{w}^{\mathrm{J}}\right)$, where each $X_{(1, J)}$ is a variabletaking values in F. Suppose i is a positive integer. Then
(a) $\operatorname{tr}\left(x^{i}\right)$ is a homogeneous $(r, m+1)$-Pfister polynomial of degreei in the r^{m+1} variables $x_{(1, J)}$.
(b) Assume char $(\mathrm{k})=0$ and $\mathrm{i} \leq \mathrm{r}^{m}+\mathrm{r}^{\prime}$. Then $\sigma^{(\mathrm{i})}(\mathrm{x})$ is a homogeneous $(\mathrm{r}, \mathrm{m}+\mathrm{I})$-Pfister polynomial of degreei in the variables $x_{(1, J)}$.

Notethat here we are viewing $\operatorname{tr}\left(\mathrm{x}^{\mathrm{i}}\right)$ and $\sigma^{(\mathrm{i})}(\mathrm{x})$ as polynomials is the r^{m+1} variables $\mathrm{X}_{(1, J)}$. It is clear from the definition that, in fact, these polynomials depend only on ther ${ }^{l}+r^{m}-1$ variables $\mathrm{x}_{(1, J)}$ with $\mathrm{I}=\mathbf{0}_{\mathrm{m}}$ or $\mathrm{J}=\mathbf{0}_{\mathrm{I}}$. We need the "extra" variables in order to interpret $\operatorname{tr}\left(\mathrm{x}^{\mathrm{i}}\right)$ and $\sigma^{(\mathrm{i})}(\mathrm{x})$ as Pfister polynomials.

Proof (a) Write $x=y_{1} \oplus y_{2}$, where

$$
y_{1}=-x_{\left(\mathbf{o}_{m}, \mathbf{0}_{1}\right)} 1_{E_{1}}+\sum_{\mid \neq \mathbf{o}_{m}} x_{\left(1, \mathbf{0}_{\mid}\right)} z^{1}
$$

and

$$
y_{2}=r^{m-l} x_{\left(\mathbf{o}_{m}, \mathbf{0}\right)} 1_{E_{2}}+\sum_{J \neq \boldsymbol{0}_{\mathbf{a}}} x_{\left(\mathbf{o}_{m}, J\right)} w^{J} .
$$

Since $\operatorname{tr}_{E_{\mathcal{F}}}\left(x^{i}\right)=\operatorname{tr}_{E_{1} / F}\left(y_{1}^{i}\right)+\operatorname{tr}_{E_{2} / F}\left(y_{2}^{i}\right)$, it is sufficient to show that both $\operatorname{tr}_{E_{1} / F}\left(y_{1}^{i}\right)$ and $\operatorname{tr}_{\mathrm{E}_{2} / \mathrm{F}}\left(\mathrm{y}_{2}^{i}\right)$ are homogeneous (r, m+I)-Pfister polynomials of degree i . To see this, expand y_{1}^{i} and y_{2}^{i} and use the fact that $\operatorname{tr}_{E_{1} / F}\left(z^{\prime}\right)=\operatorname{tr}_{E_{2} / \mathrm{F}}\left(w^{\mathrm{J}}\right)=0$ for every $I \in \mathbf{Z}^{m}-r \mathbf{Z}^{m}$ and every J $\in \mathbf{Z}^{1}-$ r $\mathbf{Z}^{\text {' }}$; see Lemma 2.1(a).
(b) Recall that Newton's formulas express $\sigma_{\mathrm{E} / \mathrm{F}}^{(\mathrm{i})}(\mathrm{x})$ as a polynomial with rational coefficients in $\operatorname{tr}(\mathrm{x}), \operatorname{tr}\left(\mathrm{x}^{2}\right), \ldots, \operatorname{tr}\left(\mathrm{x}^{\mathrm{i}}\right)$. The desired conclusion now follows from part (a) and Lemma 3.1.

Proposition 7.5 Let E and F be as above, with $\mathrm{m} \geq \mathrm{I} \geq 1$ if r is even and $\mathrm{m}>\mathrm{I} \geq 1$ if r is odd. Assume $0 \neq x \in E$ and $\operatorname{tr}(x)=0$.
(a) If char(k) $\nmid r\left(r^{(m-1)(r-1)}+(-1)^{r}\right)$ then $\operatorname{tr}\left(x^{r}\right) \neq 0$.
(b) Assume char $(\mathrm{k})=0, \mathrm{q}$ is relatively prime to $\mathrm{r}, \mathrm{q} \leq \mathrm{r}^{1-1}$, and $\sigma^{(\mathrm{rq})}(\mathrm{v}) \neq 0$, where $v=-1_{\mathrm{E}_{1}} \oplus \mathrm{r}^{\mathrm{m}-\mathrm{l}} \mathrm{E}_{\mathrm{E}_{2}} \in \mathrm{E}$. Then $\sigma^{(r q)}(\mathrm{x}) \neq 0$.

Note that $\sigma^{(r q)}(\mathrm{v}) \neq 0$ is a numerical condition on q ; we shall investigate it more closely in the next section.

Proof By Lemma 7.3 we can write

$$
\begin{equation*}
x=x_{\left(0_{m}, 0\right)} v+\sum_{1 \neq \mathbf{o}_{m}} x_{(I, 0)}\left(z^{1} \oplus 0\right)+\sum_{j \neq \boldsymbol{a}} x_{\left(\mathbf{o}_{m}, \mathrm{~J}\right)}\left(0 \oplus w^{\jmath}\right) \tag{11}
\end{equation*}
$$

with $x_{(1,0)}, x_{\left(0_{m}, J\right)} \in F$ for every I and J.
(a) Let

$$
\begin{equation*}
P\left(x_{(1, J)}\right)=\operatorname{tr}\left(x^{r}\right)+\sum_{1 \neq 0_{m}, \boldsymbol{l} \neq \boldsymbol{a}} t^{\prime} s^{J} x_{(1, J)}^{r} . \tag{12}
\end{equation*}
$$

Notethat anon-zero solution of $\operatorname{tr}\left(\mathrm{x}^{\mathrm{r}}\right)=0$ with x asin (11) gives riseto a non-zero solution of $P\left(x_{(I, J)}\right)=0$, if we set $\mathrm{x}_{(I, J)}=0$ whenever $\mathrm{I} \neq \mathbf{0}_{\mathrm{m}}$ and $\mathrm{J} \neq \mathbf{0}$. Thus we only need to prove that the polynomial $P\left(x_{(1, J)}\right)$ defined by (12) is anisotropic.

By Lemma 7.4, $\operatorname{tr}\left(\mathrm{x}^{r}\right)$ is a homogeneous ($\mathrm{r}, \mathrm{m}+\mathrm{I}$)-Pfister polynomial of degreer in $\left.\mathrm{x}_{(1, \mathrm{~J}}\right)$. Since the second term in (12) is clearly a homogeneous ($r, m+I)$-Pfister polynomial of degreer, so is $\mathrm{P}\left(\mathrm{x}_{(1, \mathrm{~J})}\right)$; see Lemma 3.1.

We now want to apply Theorem 3.2 to conclude that $\mathrm{P}\left(\mathrm{x}_{(1, \mathrm{~J})}\right)$ is anisotropic. To do so, we need to verify that $\mathrm{P}\left(\mathrm{x}_{(1, J)}\right)$ contains the monomial

$$
c_{(1, J), \ldots,(1, j)} t^{1} s^{\prime} x_{(1, J)}^{r}
$$

with $0 \neq \mathrm{c}_{(1, J), \ldots,(I, J)} \in \mathrm{k}$. If $\mathrm{I} \neq \mathbf{0}_{\mathrm{m}}$ and $\mathrm{J} \neq \mathbf{0}_{\text {I }}$ then by the definition (12) of $\mathrm{P}\left(\mathrm{x}_{(1, J)}\right)$, we have $c_{(1, J), \ldots,(1, J)}=1$. (Indeed, the first term only depends on the variables $\mathrm{x}_{(1, J)}$ with $I=\mathbf{0}_{\mathrm{m}}$ or $\mathrm{J}=\mathbf{0}_{\mathbf{I}}$.) Now consider $\mathrm{c}_{(1, \mathrm{~J}), \ldots,(I, J)}$ with $\mathrm{J}=\mathbf{0}$, but $\mathrm{I} \neq \mathbf{0}_{\mathrm{m}}$. Setting $\mathrm{x}_{(I, \mathbf{0})}=1$ and $\mathrm{x}_{\left(l^{\prime}, \mathbf{0}\right)}=\mathrm{x}_{\left(\mathbf{o}_{\mathrm{m}}, \mathrm{J}\right)}=0$ for all J and all $\mathrm{I}^{\prime} \neq 1$, we obtain

$$
c_{(1,0,0), \ldots,(1,0,0)} t^{t}=\operatorname{tr}_{E_{1} / F}\left(z^{r^{r}}\right)=r^{m} t^{1} \neq 0 .
$$

Similarly for any J $\neq \mathbf{0}$, we have

$$
c_{\left(\mathbf{o}_{m}, J\right), \ldots,\left(\mathbf{o}_{m}, J\right)}=r^{m} \neq 0
$$

Finally, $\mathrm{C}_{\left(\mathbf{0}_{m}, \mathbf{0}_{\mathbf{i}}\right), \ldots,\left(\mathbf{0}_{m}, \mathbf{0}_{\mathbf{i}}\right)}=\operatorname{tr}\left(\mathrm{v}^{r}\right)=r^{m}\left((-1)^{r}+r^{(m-1)(r-1)}\right)$ by Lemma 7.2. This expression is non-zero under our assumption on char(k).
(b) Set $d=r q$ and

$$
\begin{equation*}
Q\left(x_{(1, J)}\right)=\sigma^{(r q)}(x)+\sum_{1 \neq \mathbf{o}_{m, J} \neq \mathbf{o}_{1}} t^{q l} s^{q]} x_{(I, J)}^{d} \tag{13}
\end{equation*}
$$

Note that a non-zero solution of $\sigma^{(r q)}(x)=0$ with x as in (11) gives rise to a non-zero solution of $Q\left(x_{(1, J)}\right)=0$, if we set $x_{(I, J)}=0$ whenever $I \neq \mathbf{0}_{\mathrm{m}}$ and $\mathrm{J} \neq \mathbf{0}_{\text {. }}$. Thus we only need to prove that the polynomial $\mathrm{Q}\left(\mathrm{x}_{(1, \mathrm{~J})}\right)$ defined by (13) is anisotropic.

We claim that $\mathrm{Q}\left(\mathrm{x}_{(1, \mathrm{~J})}\right)$ is a Pfister polynomial in $\mathrm{x}_{(1, \mathrm{~J})}$. By Lemma 7.4, $\sigma^{(\mathrm{rq})}(\mathrm{x})$ is an $(r, m+I)$-Pfister polynomial of degreed $=r q$. The same is true of the second term in (13), and, hence, of their sum; see Lemma 3.1. This proves our claim.

We now want to apply Theorem 3.2 to conclude that $\mathrm{Q}\left(\mathrm{x}_{(1, \mathrm{~J})}\right)$ is anisotropic. To do so, we only need to check that $\mathrm{Q}\left(\mathrm{x}_{(1, \mathrm{~J})}\right)$ contains every monomial of the form

$$
c_{(1, J), \ldots,(1, J)} t^{q l} s^{q j} x_{(1, J)}^{d}
$$

with $0 \neq \mathrm{c}_{(1, \mathrm{~J}), \ldots,(\mathrm{I}, \mathrm{J})} \in \mathrm{k}$. If I $\neq \mathbf{0}_{\mathrm{m}}$ and $\mathrm{J} \neq \mathbf{0}$, then this monomial can only come from the second term in (13); hence, in this case $\mathrm{c}_{(1, \mathrm{~J}), \ldots,(\mathrm{I}, \mathrm{J})}=1$. If I $\neq \mathbf{0}_{\mathrm{m}}$ and $\mathrm{J}=\mathbf{0}_{\text {I }}$ then

$$
\left.\mathrm{c}_{(1,0,0}\right), \ldots,(\mathrm{I}, \mathbf{0})^{\mathrm{t}}{ }^{\mathrm{ta}}=\sigma^{(\mathrm{rq})}\left(\mathrm{z}^{\mathrm{l}} \oplus 0_{\mathrm{E}_{2}}\right)=\sigma_{\mathrm{E}_{1} / \mathrm{F}}^{(\mathrm{rq})}\left(\mathrm{z}^{\mathrm{l}}\right) \neq 0
$$

by Lemma 2.1(b). Similarly,

$$
\mathrm{C}_{\left(\mathbf{o}_{\mathrm{m}}, \mathrm{~J}\right), \ldots,\left(\mathbf{o}_{\mathrm{m}}, \mathrm{~J}\right)} \mathrm{s}^{\mathrm{q} J}=\sigma^{(\mathrm{rq})}\left(0_{\mathrm{E}_{1}} \oplus \mathrm{w}^{J}\right)=\sigma_{\mathrm{E}_{2} / \mathrm{F}}^{(\mathrm{rq})}\left(\mathrm{w}^{\mathrm{J}}\right) \neq 0 .
$$

Note that our argument here relies on the assumption that $q \leq r^{1-1}$; otherwise Lemma 2.1(b) does not apply and we, indeed, have $\sigma^{(\mathrm{rq})}\left(0_{\mathrm{E}_{1}} \oplus \mathrm{w}^{\mathrm{J}}\right)=0$. Finally,

$$
c_{\left(\mathbf{o}_{m+1}, \ldots, \mathbf{o}_{m+1}\right)}=\sigma^{(\mathrm{rq})}(\mathrm{v}) \neq 0
$$

by our assumption. This completes the proof of Proposition 7.5.

8 The Condition $\sigma^{(r a)}(\mathrm{v}) \neq 0$

In this section we complete the proof of Theorem 7.1(b) by investigating the condition $\sigma^{(\mathrm{rq})}(\mathrm{v}) \neq 0$, which appearsin thestatement of Proposition 7.5(b). Throughout this section we shall assume that F is a field of characteristic $0, r \geq 2, E_{1}$ and E_{2} are field extensions of F of degree, respectively, r^{m} and $r^{1}, E=E_{1} \oplus E_{2}$, and

$$
\mathrm{v}=-1_{\mathrm{E}_{1}} \oplus \mathrm{r}^{\mathrm{m}-\mathrm{I}} 1_{\mathrm{E}_{2}} \in \mathrm{E}
$$

Lemma 8.1

(a) $\operatorname{tr}\left(v^{i}\right)=r^{m}\left((-1)^{i}+r^{(m-1)(i-1)}\right)$.
(b) Let p be a prime and let p^{e} be the largest power of p dividingr. If $m>I$ then $\sigma^{(i)}(v) \neq 0$ for any integer $\mathrm{i} \in\left[2, \ldots, \mathrm{p}^{\mathrm{me}}\right]$. If $\mathrm{m}=\mathrm{I}$ then $\sigma^{(\mathrm{i})}(\mathrm{v}) \neq 0$ for any even integer $\mathrm{i} \in$ $\left[2, \ldots, p^{m e}\right]$.

Proof (a) Same as in Lemma 7.2.
(b) Set $t_{i}=\operatorname{tr}\left(v^{i}\right)$. If $a \neq 0$ is an integer, denote the highest power of p dividing a by $\nu_{\mathrm{p}}(\mathrm{a})$. In particular, $\nu_{\mathrm{p}}(\mathrm{r})=$ e. Sincet ${ }_{1}=0$, we can write

$$
(-1)^{i} i!\sigma^{(i)}(v)=\operatorname{det}\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
t_{2} & 0 & 2 & 0 & \ldots & 0 & 0 \\
t_{3} & t_{2} & 0 & 3 & \ldots & 0 & 0 \\
t_{4} & t_{3} & t_{2} & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
t_{i-1} & t_{i-2} & t_{i-3} & t_{i-4} & \ldots & 0 & i-1 \\
t_{i} & t_{i-1} & t_{i-2} & t_{i-3} & \ldots & t_{2} & 0
\end{array}\right) ;
$$

see [MD, p. 20]. Denote the above determinant by Δ. One of the terms in the expansion of Δ is $T_{0}=(-1)^{i}(\mathrm{i}-1)!\mathrm{t}_{\mathrm{i}}$; other non-zero terms are of the form

$$
\mathrm{T}= \pm \frac{(\mathrm{i}-1)!}{\mathrm{i}_{1} \cdots \mathrm{i}_{\mathrm{s}}} \mathrm{t}_{\mathrm{j}_{1}} \cdots \mathrm{t}_{\mathrm{j}_{\mathrm{s}+1}},
$$

where $1 \leq \mathrm{s}, \mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{s}} \leq \mathrm{i}-1$, and $2 \leq \mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{s}+1} \leq \mathrm{i}-1$. We will prove that $\Delta \neq 0$ (and thus $\sigma^{(\mathrm{i})}(\mathrm{v}) \neq 0$) by showing that $\nu_{\mathrm{p}}(\mathrm{T})>\nu_{\mathrm{p}}\left(\mathrm{T}_{0}\right)$ for every T of the above form. In other words, $\Delta \equiv \mathrm{T}_{0} \not \equiv 0\left(\bmod \mathrm{p}^{\nu_{p}}\left(\mathrm{~T}_{0}\right)+1\right)$.

Roughly speaking, the inequality $\nu_{p}(T)>\nu_{p}\left(T_{0}\right)$ holds because each t_{j} is divisible by (the same) high power of p. Since T has ≥ 2 factors of t_{j}, and T_{0} has only one such factor (namely, t_{i}), T will be divisible by a higher power of p then T_{0}.

We now complete the proof of part (b) by making this argument precise. Since $1 \leq$ $\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{s}} \leq \mathrm{i}-1<\mathrm{p}^{\mathrm{me}}$, we have $\nu_{\mathrm{p}}\left(\mathrm{i}_{1}\right), \ldots, \nu_{\mathrm{p}}\left(\mathrm{i}_{\mathrm{s}}\right)<$ me. On the other hand, by part (a)

$$
\nu_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{j}}\right)= \begin{cases}\mathrm{me}+1 & \text { if } \mathrm{m}=\mathrm{l} \text { and } \mathrm{p}=2 \\ \mathrm{me} & \text { in all other cases }\end{cases}
$$

for any $\mathrm{j} \geq 2$. (Note that if $m=1$ then j_{1}, \ldots, j_{s+1} are necessarily even, since otherwise $\mathrm{T}=0$.) In particular, $\nu_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{j}}\right)=\nu_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{i}}\right) \geq$ mefor any $\mathrm{j}=2, \ldots, \mathrm{i}-1$ and thus $\nu_{\mathrm{p}}(\mathrm{T})=$ $\nu_{\mathrm{p}}((\mathrm{i}-1)!)-\nu_{\mathrm{p}}\left(\mathrm{i}_{1}\right)-\cdots-\nu_{\mathrm{p}}\left(\mathrm{i}_{\mathrm{s}}\right)+\nu_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{j}_{1}}\right)+\cdots+\nu_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{j}_{\mathrm{s}+1}}\right)>\nu_{\mathrm{p}}((\mathrm{i}-1)!)-\operatorname{sem}+(\mathrm{s}+1) \nu_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{i}}\right) \geq$ $\nu_{\mathrm{p}}((\mathrm{i}-1)!)-\operatorname{sem}+\operatorname{sem}+\nu_{\mathrm{p}}\left(\mathrm{t}_{\mathrm{i}}\right)=\nu_{\mathrm{p}}\left(\mathrm{T}_{0}\right)$, as claimed.

Proposition 8.2 Let F, E, and v be as above. Then
(i) $\quad \sigma_{E / F}^{(r q)}(v)=\sum_{i=1}^{r q}(-1)^{i}\binom{r^{m}}{r q-i}\binom{r^{\prime}}{i} r^{(m-1) i}$

(ii) there exists a prime p such that $p^{e} \mid r$ and $q \leq \frac{p^{m e}}{r}$,
(iii) $\mathrm{q} \leq \mathrm{r}^{\frac{\mathrm{m}}{9}-1}$, whereg is the number of primedivisors of r .

Proof (i) The characteristic polynomial of v over F is $(\lambda+1)^{r^{m}}\left(\lambda-r^{m-1}\right)^{r}$. Reading off the coefficient of $\lambda^{n-r q}$ (wheren $=r^{m}+r^{\prime}$), we obtain the desired formula.
(ii) We may assume without loss of generality that p^{e} is largest power of p which divides r. Now apply Lemma 8.1 with $\mathrm{i}=$ rq.
(iii) In view of (ii), it is enough to show that $r^{\frac{m}{9}} \leq p^{m e}$ for some prime p such that p^{e} divides . Indeed, assumethe contrary: $r=p_{1}^{e_{1}} \ldots p_{g}^{e_{g}}$ and $r^{\frac{m}{9}}>p_{i}^{m e}$ for everyi $=1, \ldots, g$. Multiplying these g inequalities together, we obtain $r^{m}>r^{m}$, a contradiction.

9 Remarks

Having proved Theorems 5.1, 6.1 and 7.1, we now pause to make a few observations about these results.

Remark 9.1 If $r=p$ is a prime and $\operatorname{char}(\mathrm{k})=0$, then Theorems 5.1, 6.1, and 7.1 become, respectively, parts (a), (b), and (c) of Theorem 1.3. Note that in this case condition (iii) of Theorem 7.1(b) is automatically satisfied because $\mathrm{g}=1$ and $\mathrm{q} \leq \mathrm{r}^{\mathrm{m}-1}$ follows from $\mathrm{q} \leq \mathrm{r}^{\mathrm{l}-1}$.

Remark 9.2 It is quite possible that conditions (ii) and (iii) of Theorem 7.1(b) can be relaxed. In fact, we do not know a single example where condition (i) fails. Note, however, the assumption $\mathrm{q} \leq \mathrm{r}^{1-1}$ in Proposition $7.5(\mathrm{~b})$ is essential, since any element of the form $\mathrm{x}=0_{\mathrm{E}_{1}} \oplus \mathrm{y}$ with $\operatorname{tr}_{\mathrm{E}_{2} / \mathrm{F}}(\mathrm{y})=0$ satisfies $\operatorname{tr}(\mathrm{x})=\sigma^{(\mathrm{i})}(\mathrm{x})=0$ for any $\mathrm{i}>\mathrm{r}^{\prime}$. Similarly, condition $\mathrm{m}>\mathrm{I}$ is necessary if r is odd; otherwise $\operatorname{tr}(\mathrm{x})=\operatorname{tr}\left(\mathrm{x}^{\mathrm{r}}\right)=\sigma^{(\mathrm{r})}(\mathrm{x})=0$ for $\mathrm{x}=\mathrm{v}$.

Remark 9.3 Lemmas 5.2(b), 6.4(b), and 7.4(b) remain true even if k is a field of finite characteristic. Our proofs go through if char(k) > i; for general k these results can be established by expanding $\sigma^{(i)}(\mathrm{x})$ as in [A, Theorem A], instead of appealing to Newton's formulas.

A closer examination of the proof of Theorem 5.1(b) shows that it goes through if char $(k) \nmid\left(r^{m}\right)$!. Similarly Theorems 6.1(b) and 7.1(b) are true are char(k) $\dagger n$! (where $\mathrm{n}=\mathrm{r}^{\mathrm{m}}+1$ and $\mathrm{r}^{\mathrm{m}}+\mathrm{r}^{\mathrm{l}}$, respectively) and $\sigma^{(\mathrm{rq})}(\mathrm{v}) \neq 0$ in k .

Remark 9.4 A theorem of Davenport [D] says that every cubic form in ≥ 16 variables over the field \mathbf{Q} of rational numbers has a non-trivial rational solution (see also [HB] for a related result of H eath-Browns). As we explained in the Introduction, Davenport'stheorem implies that the answer to Question 1.2 is positive for $\mathrm{F}=\mathbf{Q}$ and $\mathrm{n} \geq 17$. That is, given an irreducible polynomial $f(t)=t^{n}+r_{1} t^{n-1}+\cdots+r_{n-1} t+r_{n} \in \mathbf{Q}[t]$ of degreen ≥ 17 there exist $s_{0}, \ldots, s_{n-1} \in \mathbf{Q}$, not all zero, such that

$$
x=s_{0}+s_{1} \mathrm{t}+\cdots+s_{n-1} \mathrm{t}^{\mathrm{n}-1} \in \mathrm{E}=\mathbf{Q}[\mathrm{t}] /(\mathrm{f})
$$

satisfies $\sigma^{(1)}(\mathrm{x})=\sigma^{(3)}(\mathrm{x})=0$. In this context Theorems 1.3 says that if $\mathrm{n}=3^{m}$ or $3^{m}+3^{1}$ with $\mathrm{m}>\mathrm{I}$ then there is no formula which expresses $\mathrm{s}_{0}, \ldots, s_{n-1}$ as rational functions in r_{1}, \ldots, r_{n}. This somewhat surprising conclusion is consistent with thefact that Davenport's theorem is proved by the circle method, which is intrinsically non-algebraic.

10 Prime-to-p Extensions

Throughout this section p will be a primenumber. Recall that a finitefield extension $F \subset F^{\prime}$ is called prime to- p if its degree is not divisible by p.

Theorem 10.1 Assumer $=p$ is a prime.
(a) Propositions 5.3, 6.5 and 7.5 remain valid if (in each case) we replace F by a prime to- p extension F^{\prime} of $\mathrm{F}\left(\alpha_{1}, \ldots, \alpha_{\mathrm{N}}\right)$ and E by $\mathrm{E}^{\prime}=\mathrm{E} \otimes_{\mathrm{F}} \mathrm{F}^{\prime}$. Here $\alpha_{1}, \ldots, \alpha_{\mathrm{N}}$ arealgebraically independent indeterminates over F and $N \geq 0$.
(b) Theorems 5.1, 6.1 and 7.1 remain valid if we replace K_{n} by a prime to p extension K^{\prime} and L_{n} by $\mathrm{L}^{\prime}=\mathrm{L}_{\mathrm{n}} \otimes_{\mathrm{K}} \mathrm{K}^{\prime}$.

Proof (a) The proofs presented in Sections 5-7 go through unchanged, if we use Proposition 3.4(b) in place of Theorem 3.2.
(b) We will only show that Theorem 5.1(a) remains valid; the other assertions are proved in the same way.

Let E and F be as in Section 5. Denote $\mathrm{F}\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right)$ by $\mathrm{F}(\alpha)$ and $\mathrm{E}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ by $\mathrm{E}(\alpha)$. By Theorem 4.2 there is an inclusion of fields $\mathrm{K}_{\mathrm{n}} \hookrightarrow \mathrm{F}(\alpha)$ such that

$$
\mathrm{E}(\alpha) \simeq \mathrm{L}_{\mathrm{n}} \otimes_{\mathrm{k}_{\mathrm{n}}} \mathrm{~F}(\alpha) .
$$

We shall thus view K_{n} as a subfield of $F(\alpha)$ and L_{n} as a subfield of $E(\alpha)$. Let $\mathrm{F}^{\prime}=K^{\prime} F(\alpha)$ be a composite of K^{\prime} and $F(\alpha)$ in the algebraic closure of $F(\alpha)$. Then $\left[F^{\prime}: F(\alpha)\right] \mid\left[K^{\prime}: K_{n}\right]$; thus F^{\prime} is a prime to- p extension of $\mathrm{F}(\alpha)$. To sum up, we have the diagram given above. By part $(a), \operatorname{tr}_{E^{\prime} / F^{\prime}}\left(y^{p}\right) \neq 0$ for any $y \in\left(E^{\prime}\right)^{*}$. Thus $\operatorname{tr}_{L^{\prime} / K^{\prime}}\left(x^{p}\right)=\operatorname{tr}_{E^{\prime} / F^{\prime}}\left(x^{p}\right) \neq 0$ for any $x \in L^{\prime}$, as claimed.

Remark 10.2 Coray's proof of Theorem 1.1, which we mentioned in the Introduction, is based on verifying the following conjecture in two special cases.

Conjecture(Cassels and Swinnerton-D yer) Let $X \subset \mathbf{P}_{k}^{n}$ beahypersurfacegiven by $f=0$, where f is a cubic form with coefficients in a field K. If $X\left(K^{\prime}\right) \neq \varnothing$ for some prime-to-3 extension K^{\prime} of K then $X(K) \neq \varnothing$.

In our situation $K=K_{n}$, as in (2), and the hypersurface $X=X_{n} \subset \mathbf{P}_{K}^{n-1}$ is given by

$$
\sigma^{(1)}(x)=\sigma^{(3)}(x)=0 .
$$

For $n=5,6$ Coray first showed that (i) $X_{n}\left(K^{\prime}\right) \neq \varnothing$ for a particular prime-to-3 extension K^{\prime} of K_{n}, then (ii) verified the above conjecture for X_{n}; see $\left[C_{2}\right]$. If $n=3^{m}$ or $3^{m}+3^{1}$ with $m>$ I then Theorem 1.3 (with $p=3$) says that X_{n} has no K_{n}-points. It is, therefore, natural to ask if, perhaps, X_{n} provides a counterexample to the above conjecture, that is, if step (i) of Coray's argument can still be reproduced for these values of n. Theorem 10.1(b) shows that this cannot be done. In other words, if $n=3^{m}$ or $3^{m}+3^{l}$ with $m>1$ then the conjecture of Cassels and Swinnerton-Dyer holds for the hypersurface X_{n} "by default", i.e., because $X_{n}\left(K^{\prime}\right)=\varnothing$ for every prime-to-3 extension K^{\prime} of K_{n}. For the same reason the conjecture is valid for any hypersurface $X \subset P_{K}^{3^{m}-1}$ which is cut out by a cubic Pfister polynomial of the form (5) with $K=k\left(t_{1}, \ldots, t_{m}\right), r=d=3, q=1$, and $c_{, ~}, \mathrm{l}, \mathrm{l} \neq 0$ for any $I=\{0,1,2\}^{m}$; see Proposition 3.4(a).

11 G alois Extensions of Degree p^{m}

In this section we prove the following theorem.
Theorem 11.1 Let p be a prime number and let E / F bea G alois extension of degree p^{m} with Galois group G. Assume F contains a primitive p^{2}-th root of unity and $G \nsucceq(\mathbf{Z} / p \mathbf{Z})^{m}$. Then there exists an element $0 \neq x \in E$ such that $\operatorname{tr}\left(x^{p}\right)=0$ and $\operatorname{tr}\left(x^{i}\right)=0$ for every $i \geq 1$ which is not divisibleby p.

Proof First note that we may assume without loss of generality that G has exponent p. Indeed, otherwise, there exists an element $g \in G$ of order p^{2}. Diagonalizing the action of g on E, we construct an element $x \in E^{*}$ such that $g(x)=\zeta x$, where ζ is a primitive p^{2}-th root of unity. Then $g\left(x^{i}\right)=\zeta^{i} x^{i}$; taking the trace on both sides, we see that $\operatorname{tr}\left(x^{i}\right)=0$ for every i which is not divisible by p^{2}.

We can therefore assume that G has exponent p. Our assumption that $G \not \approx(\mathbf{Z} / \mathrm{pZ})^{\mathrm{m}}$ is now equivalent to saying that G is not abelian. Note that if $p=2$ this completes the proof, since every group of exponent 2 is abelian. Thus from now on we shall assume $p \geq 3$.

If H is a normal subgroup of G such that G / H is not abelian, then it is enough to prove the theorem for the extension E^{H} / F, since

$$
\operatorname{tr}_{E / F}(\mathrm{y})=|\mathrm{H}| \cdot \operatorname{tr}_{E^{H} / \mathrm{F}}(\mathrm{y})
$$

for any $y \in E^{H}$. In other words, we can replace E by E^{H} and G by G / H. Thus we may assume without loss of generality that G / H is an abelian group for every normal subgroup H of G. In particular, $G / Z(G)$ is an abelian group, where $Z(G)$ is the center of G.

We now proceed to construct an element $x \in E^{*}$ whose existence is asserted by the theorem. Let a and b be elements of G such that $b^{-1} a^{-1} b a=c \neq 1_{G}$. Since $G / Z(G)$ is abelian, c is a central element of G . Since we are assuming that G has exponent p, the abelian subgroup $\langle\mathrm{a}, \mathrm{c}\rangle$ of G is isomorphic to $(\mathbf{Z} / \mathrm{pZ})^{2}$. Diagonalizing the action of this subgroup on E, we construct an element $y \in E^{*}$ such that $a(y)=y$ and $c(y)=\omega y$, where ω is a primitive p -th root of unity. Denoteb(y) by z . Then

$$
a(z)=a b(y)=\omega^{-1} a b c(y)=\omega^{-1} b a(y)=\omega^{-1} b(y)=\omega^{-1} z .
$$

To summarize, we have chosen $0 \neq y, z \in E$ so that

$$
\begin{equation*}
z=b(y), \quad a(y)=y, \quad a(z)=\omega^{-1} z, \quad c(y)=\omega y, \text { and } \quad c(z)=\omega z . \tag{14}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\operatorname{tr}\left(y^{i} z^{j}\right)=0, \tag{15}
\end{equation*}
$$

unless both i and j are divisible by p. Indeed, by (14), we have

$$
a\left(y^{i} z^{j}\right)=\omega^{-j} y^{i} z^{j} \quad \text { and } \quad c\left(y^{i} z^{j}\right)=\omega^{i+j} z^{i} y^{j} .
$$

Taking the trace on both sides, we see that $\operatorname{tr}\left(y^{i} z^{j}\right)=0$ unless $\omega^{-j}=\omega^{i+j}=0$, which can only happen if both i and j are divisible by p , as claimed.

We will now complete the proof by showing that $x=y-z$ has the properties claimed in the theorem. Expanding $x^{i}=(y-z)^{i}$, taking the trace of each term, and applying (15), we see that $\operatorname{tr}\left(x^{i}\right)=0$ if i is not divisible by p . M oreover, if $\mathrm{i}=\mathrm{p}$, we obtain

$$
\operatorname{tr}\left(\mathrm{x}^{\mathrm{p}}\right)=\operatorname{tr}\left(\mathrm{y}^{\mathrm{p}}-\mathrm{z}^{\mathrm{p}}\right)=\operatorname{tr}\left(\mathrm{y}^{\mathrm{p}}\right)-\operatorname{tr}\left(\mathrm{b}\left(\mathrm{y}^{\mathrm{p}}\right)\right)=0 .
$$

(Note that the first equality uses the assumption that p is odd. This assumption allows us to write $(-z)^{p}$ as $-z^{p}$ in the binomial expansion of $(y-z)^{p}$.)

It remains to show $x \neq 0$. Indeed, assume the contrary. Then $y=z$. Since $a(y)=y$ and $\mathrm{a}(\mathrm{z})=\omega \mathrm{z}$, we conclude that $\mathrm{y}=0$, which contradicts our choice of y . This completes the proof of Theorem 11.1.

Remark 11.2 Note that the element x constructed in the above proof will not usually bea generator for E over F .

12 Division Algebras: Preliminaries

Let D be a finite-dimensional division algebra. Denote its center by F. Recall that $\operatorname{dim}_{\mathrm{F}} \mathrm{D}=$ n^{2}, where n is a positive integer, called the degree of D. Every maximal subfield of D is of dimension n over F. M oreover D has a maximal subfield F^{\prime} which is separable over F and

$$
D \subset D \otimes_{F} F^{\prime} \simeq M_{n}\left(F^{\prime}\right) .
$$

Thus D inherits the functionstr, det, and more generally $\sigma^{(i)}$ from $M_{n}\left(F^{\prime}\right)$; these functions are independent of the choice of F^{\prime} and take values in F. If the reference to D is not clear from the context, we shall write $\sigma_{\mathrm{D} / \mathrm{F}}^{(\mathrm{i})}(\mathrm{x})$ in place of $\sigma^{(\mathrm{i})}(\mathrm{x})$. M oreover, for any $\mathrm{x} \in \mathrm{F}^{\prime}$,

$$
\sigma^{(\mathrm{i})}(\mathrm{x})=\sigma_{\mathrm{F}^{\prime} / \mathrm{F}}^{(\mathrm{i})}(\mathrm{x}) .
$$

For proofs of these facts and a detailed exposition of the structure theory of finite-dimensional division algebras, we refer the reader to $\left[\mathrm{Ro}_{1}\right]$ and $\left[\mathrm{Ro}_{3}\right]$.

Given a division algebra D, we can ask if there exists an element $0 \neq x \in D$ such that $\sigma^{(1)}(x)=\sigma^{(r)}(x)=0$, as we did in the case of fields. Generally speaking, there is more "room to maneuver" in a division algebra than in a field, so that such systems of equations are "easier" to solve. To illustrate this point, suppose D is a division algebra of degree 3, whose center F contains a primitive cube root of unity. By a theorem of Wedderburn, D is cyclic; see $\left[\mathrm{Ro}_{1}\right.$, Thm 3.2.21]. Hence, there exists a non-central element $x \in D$ such that $x^{3} \in \mathrm{~F}$; this element satisfies

$$
\begin{equation*}
\sigma^{(1)}(x)=\sigma^{(2)}(x)=0 \tag{16}
\end{equation*}
$$

On the other hand, if a E / F is field extension, F contains a primitive cube root of unity and $0 \neq x \in E$ satisfies (16), then E is necessarily cyclic over F. In particular, the system (16) has no non-trivial solutions for the general field extension L_{3} / K_{3} because this extension is not cyclic. (Alternatively, (16) has no non-trivial solutions in L_{3} / K_{3} by Theorem 6.1, with $r=2$ and $m=1$.)

In view of the above example it is somewhat surprising that Theorem 5.1 remains true in the setting of finite-dimensional division algebras. We will prove this fact in the next section. Theorems 6.1 and 7.1 will fail in general; see Remarks 14.3 and 14.4.

The role of the general extension L_{n} / K_{n} in the setting of division algebras is played by the the universal division algebra $U D(n)$. Recall that $U D(n)=U D(n, k)$ is defined as follows. Let $X=\left(x_{i j}\right)$ and $Y=\left(y_{i j}\right)$ be generic $n \times n$-matrices; herethe $2 n^{2}$ entries $x_{i j}$ and $y_{i j}$ are assumed to be algebraically independent commuting variables over the base field k. Let G_{n} be the k-subalgebra of $M_{n}\left(k\left[x_{i j}, y_{i j}\right]\right)$ generated by X and Y. Then G_{n} is a domain and $U D(n)$ is the division algebra (of degreen) obtained from G_{n} by inverting all non-zero central elements. We shall denotethe center of $U D(n)$ by $Z(n)$. For a more detailed account of the construction and properties of $U D(n)$ we refer the reader to [$\left.R o_{1}, 3.2-3.3\right]$.

The role of Theorem 4.2 in the setting of division algebras is played by the following result.

Theorem 12.1 ([RV, Thm. 1]) Let D be a division algebra of degreen with center F. Suppose $k \subset F$ and $\operatorname{trdeg}_{k} F \geq \operatorname{trdeg}_{k} Z(n)=n^{2}+1$. Then there exists there exists an inclusion of fields $Z(n) \hookrightarrow F$ (defined over k) such that $D \simeq U D(n) \otimes_{Z(n)} F$.

Using this theorem we can derive the division algebra analogue of Corollary 4.4.
Corollary 12.2 Let D be division algebra of degree n whose center F contains k.
(a) If $\operatorname{tr}\left(x^{r}\right)=0$ for some $0 \neq x \in U D(n)$ then $\operatorname{tr}\left(y^{r}\right)=0$ for some $0 \neq y \in D$.
(b) If $\sigma^{(r q)}(x)=0$ for some $0 \neq x \in U D(n)$ then $\operatorname{tr}\left(y^{r}\right)=0$ for some $0 \neq y \in D$.

Proof Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n^{2}+1}\right)$ be a collection of $\mathrm{n}^{2}+1$ algebraically independent (commuting) variables over F . By Theorem $12.1 \mathrm{UD}(\mathrm{n})$ is a subalgebra of $\mathrm{D}(\alpha)$. Thus there exists $0 \neq z \in D(\alpha)$ such that (a) $\operatorname{tr}\left(z^{r}\right)=0$ and $(b) \sigma^{(r q)}(z)=0$. We can now construct y by specializing $\alpha_{1}, \ldots, \alpha_{n}$ in F , as in the proof of Corollary 4.4. (Note that since D is a division algebra, F is an infinite field by a theorem of Wedderburn.)

Remark 12.3 An alternative proof of Corollary 12.2(a) proceeds as follows. After multiplying x by a non-zero central element, we may assume $x \in G_{n}$, where $G_{n}=k\{X, Y\}$ is the algebra of generic $n \times n$-matrices defined above. Given $a, b \in D$, we can define a ring homomorphism $\phi: \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{D}$ by $\phi(\mathrm{X})=\mathrm{a}$ and $\phi(\mathrm{X})=\mathrm{b}$. Set $\mathrm{y}=\phi(\mathrm{x})$. Choose a and b so that they generate D as an F-algebra and $y \neq 0$. (Both conditions are open; the latter is non-empty because D satisfies the same polynomial identities as G_{n}; see $\left[\mathrm{Ro}_{3}\right.$, Cor. 6.1.46'].) Then y has the desired properties. Part (b) can be proved in the same way.

Either proof of Corollary 12.2 can be extended to show that if there exists an $0 \neq x \in$ $\mathrm{UD}(\mathrm{n})$ such that $\sigma^{\left(\mathrm{a}_{1}\right)}\left(\mathrm{x}^{\mathrm{e}_{1}}\right)=\cdots=\sigma^{\left(\mathrm{a}_{\mathrm{d}}\right)}\left(\mathrm{x}^{\mathrm{e}_{\mathrm{d}}}\right)=0$ for some $0 \neq \mathrm{x} \in \mathrm{L}_{\mathrm{n}}$ then there exists a $0 \neq \mathrm{y} \in \mathrm{E}$ such that $\sigma_{\mathrm{E} / \mathrm{F}}^{\left(\mathrm{a}_{1}\right)}\left(\mathrm{y}^{\mathrm{e}_{1}}\right)=\cdots=\sigma_{\mathrm{E} / \mathrm{F}}^{\left(\mathrm{a}_{\mathrm{d}}\right)}\left(\mathrm{y}^{\mathrm{e}_{\mathrm{i}}}\right)=0$, as in Corollary 4.4. This generalization of Corollary 12.2 will not be used in the sequel.

13 Division Algebras of Degree r^{m}

In this section we prove Theorem 1.4. First of all, note that we may assume without loss of generality that k is contains a primitive r -th root of unity. Secondly, by Corollary 12.2 it is enough to construct a division algebra D of degree n (whose center contains k) such that (a) $\operatorname{tr}\left(\mathrm{x}^{\mathrm{r}}\right) \neq 0$ and (b) $\sigma^{(\mathrm{raq})}(\mathrm{x}) \neq 0$ for any $\mathrm{x} \in \mathrm{D}^{*}$. We now proceed to construct such an algebra. Theorem 1.4 will then follow from Proposition 13.3.

Let $\zeta \in \mathrm{k}$ be a primitive r -th root of unity, let $\mathrm{t}_{1}, \ldots, \mathrm{t}_{2 \mathrm{~m}}$ be independent variables over k, and let $\left(t_{2 i-1}, t_{2 i}\right)_{r}$ be the symbol algebra given by $z_{2 i-1}^{r}=t_{2 i-1}, z_{2 i}^{r}=t_{2 i}$ and $z_{2 i-1} z_{2 i}=\zeta z_{2 i} z_{2 i-1}$. (For more on symbol algebras see[Ro ${ }_{3}, \mathrm{pp}$. 194-197].) For the rest of this section we set $D=D_{m, r}$ where

$$
\begin{equation*}
D_{m, r}=\left(t_{1}, t_{2}\right)_{r} \otimes_{F} \cdots \otimes_{F}\left(t_{2 m-1}, t_{2 m}\right)_{r} \tag{17}
\end{equation*}
$$

is the product of m generic symbol algebras of degree m. By construction D is a division algebra of degree r^{m} over its center F . If $\mathrm{I}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{2 m}\right) \in \mathbf{Z}^{2 m}$, we will write z^{1} for $z_{1}^{\mathrm{i}_{1}} \cdots \mathrm{z}_{2 \mathrm{~m}}^{\mathrm{i} 2 \mathrm{~m}}$.

Lemma 13.1

(a) $\operatorname{tr}\left(z^{1}\right)=0$ for any $\mathrm{I} \notin \mathrm{rZ}$.
(b) $\sigma^{(r i)}\left(z^{\prime}\right) \neq 0$ for any $i=1, \ldots, r^{m-1}$.
(c) Theelements z^{1} form an F -basis of D , as ranges over $\{0,1, \ldots, r-1\}^{2 m}$.

Proof Parts (a) and (b) follow from Lemma 2.1 with $\mathrm{F}^{\prime}=$ maximal subfield of D containing z'. To prove part (c) it is enough to show that the elements z^{\prime} are linearly independent. Indeed, assume $\sum_{1} x_{\mid} z^{1}=0$ for some $x_{1} \in F$. To prove $x_{\jmath}=0$ multiply both sides by z^{-1}, then take the trace and apply part (a).

Lemma 13.2 Let $x=\sum_{i \in\{0,1, \ldots, r-1\}^{2 m}} x_{\mid} z^{1}$, where each $x_{\mid} \in F$. Then
(a) $\operatorname{tr}\left(\mathrm{x}^{\mathrm{i}}\right)$ is an $(\mathrm{r}, 2 \mathrm{~m})$-Pfister polynomial of degreei for any $\mathrm{i} \geq 1$.
(b) $\sigma^{(i)}(x)$ is an $(r, 2 m)$-Pfister polynomial of degreei for any $i=1,2, \ldots, r^{m}$.

Proof We argue as in the proof of Lemma 5.2. (a) We expand x^{i} and use Lemma 13.1(a). (b) Follows from Newton's formulas, part (a), and Lemma 3.1.

Proposition 13.3 Let k be a base field containing a primitive r -th root of unity and let $\mathrm{D}=$ $D_{m, r}$ be as in (17). Then
(a) $\operatorname{tr}\left(x^{r}\right) \neq 0$ for any $x \in D^{*}$.
(b) Suppose char(k) $=0$ and $\mathrm{q} \in\left[1, \mathrm{r}^{\mathrm{m}-1}\right]$ is an integer which is relatively primeto r . Then $\sigma^{(r a)}(\mathrm{x}) \neq 0$ for any $\mathrm{x} \in \mathrm{D}^{*}$.

Proof (a) By Lemma 13.1(c) any $x \in D$ can be written as

$$
x=\sum_{\mid \in\{0,1, \ldots, r-1\}^{2 m}} x_{1} z^{\prime},
$$

where $x_{1} \in F$.
(a) By Lemma 13.2(a), $\operatorname{tr}\left(x^{r}\right)$ is a homogeneous $(r, 2 m)$-Pfister polynomial of degree r. We want to conclude that $\operatorname{tr}\left(x^{r}\right)$ is anisotropic by appealing to Theorem 3.2. In order to do so, we need to check that $\operatorname{tr}\left(x^{r}\right)$ contains the monomial $q_{1}, \ldots, t^{1} \times 1$ with $q_{1}, \ldots, 1 \neq 0$ for every $I \in\{0,1, \ldots, r-1\}^{2 m}$. Note that $q_{1}, \ldots, t^{1}=\operatorname{tr}\left(z^{r l}\right)=\operatorname{tr}\left(t^{\dagger}\right)$ and thus $q_{,}, \ldots, 1=r^{m}$, which is non-zero in k. (Indeed, char(k) $\dagger r$ because k is assumed to have a primitive r-th root of unity.)
(b) By Lemma 13.2(b), $\sigma^{(r q)}(x)$ is a homogeneous $(r, 2 m)$-Pfister polynomial of degree rq. Now we apply the same argument as in part (a), using Lemmas 13.1(b) and 13.2(b).

This completes the proof of Proposition 13.3 and thus of Theorem 1.4.

14 Prime-to-p Extensions of D ivision Algebras

Let D bea finite-dimensional division algebra with center F. We shall say that D^{\prime} is a prime to- p extension of D if $D^{\prime} \simeq D \otimes_{F} F^{\prime}$, where F^{\prime} is a prime-to- p field extension of D. Note that if the degree of D equals p^{m} then D^{\prime} is also a division algebra of degree $p^{m} ; \operatorname{see}\left[R o_{1}\right.$, Cor. 3.1.19].

Theorem 14.1 Assume $\mathrm{r}=\mathrm{p}$ is a prime and let $\alpha_{1}, \ldots, \alpha_{\mathrm{N}}$ be algebraically independent indeterminates over k .
(a) Let $r=p$ be a prime, $D_{m, r}$ be as in (17), $F=k\left(t_{1}, \ldots, t_{2 p}\right)$ be the center of $D_{m, r}$, and $\alpha_{1}, \ldots, \alpha_{N}$ be algebraically independent indeterminates over \mathbf{F}. Then Proposition 13.3 remains valid if we replace $D=D_{m, r}$ by $D=D_{m, r} \otimes_{F} F^{\prime}$, where F^{\prime} is a primeto- p extension of $\mathrm{F}\left(\alpha_{1}, \ldots, \alpha_{N}\right)$.
(b) Theorem 1.4 remains valid if we replace $U D_{n}$ by $U D_{n} \otimes_{Z(n)} Z^{\prime}$, where Z^{\prime} is a prime to- p extension of $Z(\mathrm{n})$.

Proof (a) Our proof of Proposition 13.3 goes through unchanged, if we use Proposition 3.4(b) in place of Theorem 3.2.
(b) Repeat the argument of Theorem $10.1(\mathrm{~b})$ with $\mathrm{K}_{\mathrm{n}}, \mathrm{K}^{\prime}$, and E replaced by $\mathrm{Z}(\mathrm{n}), \mathrm{Z}^{\prime}$, and $D_{m, r}$, respectively.

Remark 14.2 Suppose D is a division algebra of degreen with center F, F^{\prime} is a prime-to- p extension of F and $D^{\prime}=D \otimes_{F} F^{\prime}$. If n is not a power of p then D^{\prime} may not be a division algebra; however, it will remain a central simple algebra with well-defined functionstr, det, and, more generally, $\sigma^{(i)}: D^{\prime} \rightarrow F^{\prime}$. It $n=p^{m}+1$ or $p^{m}+p^{\prime}$ with $I \geq 1$, one can ask if prime-to- p versions of (respectively) Theorems 6.1 and 7.1 remain valid in this setting. We claim that they do not. M ore precisely,

Let n be an integer which is not a power of p and let D be a division algebra of degree n with center F. Then there is a primeto- p extension F^{\prime} of F and a non-zero element $x \in \mathrm{D}^{\prime}=\mathrm{D} \otimes_{\mathrm{F}} \mathrm{F}^{\prime}$ such that $\operatorname{tr}(\mathrm{x})=\operatorname{tr}\left(\mathrm{x}^{\mathrm{i}}\right)=\sigma^{\mathrm{j}}(\mathrm{x})=0$ for any $\mathrm{i} \geq 1$ and any $\mathrm{j}=1, \ldots, \mathrm{n}$.

Indeed, by $\left[R o_{1}\right.$, Theorem 3.1.21] we can choose F^{\prime} so that $D^{\prime} \simeq M_{n_{0}}\left(D_{0}\right)$ with $n_{0} \geq 2$. Then D^{\prime} contains a non-zero nilpotent element x which has the desired property.

Remark 14.3 If $r=2$ then Theorems 6.1 and 7.1 fail in the setting of division algebras. That is,

Let n be an integer which is not a power of 2 and let D be a division algebra of degree n with center F. Then there exists a non-zero element $x \in D$ such that $\operatorname{tr}(\mathrm{x})=\operatorname{tr}\left(\mathrm{x}^{2}\right)=0$ (or, equivalently, $\sigma^{(1)}(\mathrm{x})=\sigma^{(2)}(\mathrm{x})=0$).

This observation was first made by Rowen; see [Ro ${ }_{2}$, Corollary 5]. For convenience of the reader we present a short proof under the assumption char(F) $\neq 2$; cf. [F, Remark 7].

Proof By Remark 14.2 there is an extension $\mathrm{F}^{\prime} / \mathrm{F}$ of odd degree such that

$$
\begin{equation*}
\operatorname{tr}\left(x^{\prime}\right)=\operatorname{tr}\left(\left(x^{\prime}\right)^{2}\right)=0 \tag{18}
\end{equation*}
$$

for some $0 \neq x^{\prime} \in D^{\prime}=D \otimes_{F} F^{\prime}$. Denote the F-vector space of trace-free elements of D by V. Let $q: V \rightarrow F$ be the trace form, i.e., $q(y)=\operatorname{tr}\left(y^{2}\right)$. Then (18) says that $q \otimes F^{\prime}: V \otimes F^{\prime} \rightarrow F^{\prime}$ is isotropic. Consequently, by a theorem of Springer [Pf, Thm. 6.1.12], q is isotropic over F. That is, there exists $0 \neq x \in D$ such that $\operatorname{tr}(x)=\operatorname{tr}\left(x^{2}\right)=0$, as claimed.

Remark 14.4 If $m=1$ then Theorem 6.1(b) fails in the setting of division algebras for every r. Indeed, by a theorem of Brauer, every division algebra of degree $n=r+1$ has a non-zero element x such that $\sigma^{(1)}(\mathrm{x})=\sigma^{(r)}(\mathrm{x})=0$; see [Ro ${ }_{3}$, Prop. 7.1.43].

15 Crossed Products

Let D be a division algebra of degree n with center F and let G be a finite group. Then D is called a G-crossed product if D has a maximal subfield E which is Galois over F with $\mathrm{Gal}(\mathrm{E} / \mathrm{F}) \simeq \mathrm{G}$.

Amitsur's famous theorem states that the universal division algebra $U D\left(p^{m}\right)$ is not a crossed product for any prime p and any integer $m \geq 3$; moreover, $U D\left(p^{m}\right)$ does not
contain any Galois extension of its center of degree $\geq \mathrm{p}^{3}$; see [Ro_{1}, Thm 3.3.12]. Rowen and Saltman showed that a prime-to- p extension of $\mathrm{UD}\left(\mathrm{p}^{m}\right)$ cannot be a crossed product for any $m \geq 3$; see $[R S$, Thm. 2.1].

On the other hand, by a theorem of Albert, UD(p) has a prime-to- p extension which is a \mathbf{Z} / pZ-crossed product. Rowen and Saltman proved that $U D\left(\mathrm{p}^{2}\right)$ has a prime-to- p extension which is a $(\mathbf{Z} / \mathrm{pZ})^{2}$-crossed product; see [RS, Sect. 1].

Thefollowing theorem is a (weaker) version of the above-mentioned non-crossed product results of Amitsur, Rowen and Saltman. Our proof is a variant of Amitsur's original argument. This argument assumes a particularly simple form here, in view of the results of the last four sections.

Theorem 15.1 Let p be a prime which does not divide the characteristic of the base field k, and let D bea primeto- p extension of the universal division algebra $U D\left(p^{m}\right)$ or of the algebra $D_{m, r}$ defined in (17). Denote the center of D by F. Suppose E is a Galois extension of F, which is contained in D. Then $\operatorname{Gal}(E, F) \simeq(\mathbf{Z} / \mathrm{pZ})^{[E: F]}$.

Proof We may assume without loss of generality that k contains a primitive p^{2} th root of unity (otherwise we can simply extend the scalars).

Suppose, to the contrary, that $\operatorname{Gal}(\mathrm{E}, \mathrm{F}) \npreceq(\mathbf{Z} / \mathrm{p} \mathbf{Z})^{[\mathrm{EFF]}]}$. Then by Theorem 11.1 $\operatorname{tr}_{\mathrm{D} / \mathrm{F}}\left(\mathrm{x}^{\mathrm{p}}\right)=0$ for some $0 \neq \mathrm{x} \in \mathrm{E}$, contradicting Theorem 14.1(b).

16 The Field of Definition of a Division Algebra

We now turn to another application of Theorem 14.1. Let F be a field, A be an F -algebra of dimension d and F_{0} be a subfield of F. We will say that A is defined over F_{0} if there exists an F_{0}-algebra A_{0} such that $A \simeq A_{0} \otimes_{F_{0}} F$ (as F-algebras). Equivalently, A is defined over F_{0} if there exists an F-basis $\mathrm{e}_{1}, \ldots, e_{d}$ of A such that

$$
\mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{j}}=\sum_{\mathrm{h}=1}^{\mathrm{d}} \mathrm{c}_{\mathrm{ij}}^{\mathrm{h}} \mathrm{e}_{\mathrm{h}}
$$

and all of the structure constants $\mathrm{c}_{\mathrm{ij}}^{\mathrm{h}}$ are contained in F_{0}.
We will now prove that a "sufficiently general" division algebra cannot be defined over a "small" field.

Theorem 16.1 Let p be a prime and let D be a primeto- p extension of $U D\left(p^{m}\right)$ or of the algebra $D_{m, r}$ defined in (17). Denote the center of D by F.
(a) Let A bea p^{5}-dimensional F-subalgebra of D. Assume A is defined over $F_{0} \subset F$ such that F_{0} contains k . Then $\operatorname{trdeg}\left(\mathrm{F}_{0}\right) \geq \mathrm{s}$.
(b) Suppose D is defined over a subfield F_{0} of F such that $k \subset F_{0}$. Then trdeg $\left(F_{0}\right) \geq 2 m$.
(c) Suppose $y \in D,[F(y): F]=p^{t}$ and the minimal polynomial of y over F is

$$
y^{p^{t}}+a_{1} y^{p^{t}-1}+\cdots+a_{p^{t}-1} y+a_{p^{t}} .
$$

Then $\operatorname{trdeg} k\left(a_{1}, \ldots, a_{p^{t}}\right) \geq t$.

Proof (a) We may assume without loss of generality that $\mathrm{k}=\overline{\mathrm{k}}$ is an algebraically closed field (otherwise we simply extend the scalars in the definitions of $U D(n)$ and $D_{m, r}$).

By our assumption $A \simeq A_{0} \otimes F_{0} F$, where A_{0} is a p^{5}-dimensional F_{0}-algebra. Let e_{1}, \ldots, e_{p} be an F_{0}-basis of A_{0}. Write $x=\sum_{i=1}^{p_{i}^{s}} x_{i} e_{1}$, with $x_{i} \in F_{0}$.

Assume the contrary: $\operatorname{trdeg}_{k}\left(\mathrm{~F}_{0}\right) \leq \mathrm{s}-1$. Then by the Tsen-Lang Theorem F_{0} is aC $\mathrm{s}_{\mathrm{s}-1^{-}}$ field; see[Pf, Sect. 5.1]. In particular, $\operatorname{tr}_{\mathrm{D} / \mathrm{F}}\left(\mathrm{x}^{\mathrm{p}}\right)=0$, viewed as a homogeneous polynomial equation of degree p in $x_{1}, \ldots, x_{p s}$, has a non-trivial solution. In other words, there exists an element $0 \neq x \in A$ such that $\operatorname{tr}_{\mathrm{D} / \mathrm{F}}\left(\mathrm{x}^{\mathrm{p}}\right)=0$. This contradicts Theorem 14.1.
(b) Set $\mathrm{A}=\mathrm{D}$ and apply part (a).
(c) Set $A=F(y)$. Viewing A as an F-algebra and examining the structure constants in the basis $1, y, \ldots, y^{p^{t}-1}$, we see that A is defined over $F_{0}=k\left(a_{1}, \ldots, a_{p^{t}}\right)$. Thus part (c) follows from part (a).

References

[A] S. A. Amitsur, On the characteristic polynomial of a sum of matrices. Linear and Multilinear Algebra 8(1980), 177-182.
[BR] J. Buhler and Z. Reichstein, On the essential dimension of a finite group. Compositio Math. 106(1997), 159-179.
[C C_{1}] D. Coray, Algebraic points on cubic hypersurfaces. Acta Arith. 30(1976), 267-296.
$\left[C_{2}\right] \quad, \quad$ Cubic hypersurfaces and a result of Hermite. DukeJ. M ath. 54(1987), 657-670.
[D] H. Davenport, Cubic forms in sixteen variables. Proc. Royal Soc. London Ser. A 272(1963), 285-303.
[F] E. Formanek, Some remarks about the reduced trace. Israel M ath. Conf. Proc. 1(1989), 337-343.
[HB] D. R. Heath-Brown, Cubic forms in ten variables. Proc. London M ath. Soc. (3) 47(1983), no. 2, 227-257.
[He] C. Hermite, Sur l'invariant du dix-huitième ordre des formes du cinquième degré. J. Crelle 59(1861), 304305.
[J] P. Joubert, Sur l'equation du sixième degré. C. R. Acad. Sci. Paris 64(1867), 1025-1029.
[K] W. Kuyk, On a theorem of E. N oether. Nederl. Acad. Wetensch. Proc. Ser. A 67(1964), 32-39.
[L] S. Lang, Algebra. First edition, Addison-Wesley, 1965.
[M] Yu. I. M anin, Cubic Forms. North Holland, Amsterdam, 1974.
[M D] I. G. M acD onald, Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford, 1979.
[Pf] A. Pfister, Quadratic Forms with Applications to Geometry and Topology. Cambridge University Press, 1995.
[RV] Z. Reichstein and N. Vonessen, An embedding property of universal division algebras. J. Algebra 177(1995), 451-462.
[Ro1] L. H. Rowen, Polynomial Identities in Ring Theory. Academic Press, 1980.
[Ro2] ——Brauer factor sets and simple algebras. Trans. Amer. M ath. Soc. (2) 282 (1984), 767-772.
[Ro3] _, Ring Theory II. Academic Press, 1988.
[RS] L. H. Rowen and D. J. Saltman, Prime to p extensions of division algebras. Israel J. M ath. 78(1992), 197207.
[S] D. J. Saltman, Generic Galois extensions and problems in field theory. Advances in M ath. 43(1982), 250283

Department of Mathematics
Oregon State University
Corvallis, OR 97331-4605
USA
email: zinovy@math.orst.edu

