
BULL. AUSTRAL. MATH. SOC. 16W10, 17B60

VOL. 71 (2005) [471-478]

CARTER SUBGROUPS IN THE GROUP OF UNITS OF AN
ASSOCIATIVE ALGEBRA

THORSTEN BAUER AND SALVATORE SICILIANO

In this paper we examine some properties of the Carter subgroups in the group of
units of certain associative algebras. A description of the Carter subgroups in the
case of a solvable associative algebra is obtained. Moreover, given an associative
algebra A, we study relationships between the Cartan subalgebras of the Lie algebra
associated with A and the Carter subgroups of the group of units of A.

1. INTRODUCTION

A subgroup if of a group G is called a Carter subgroup if H is nilpotent and self-
normalising in G. By a famous theorem due to Carter ([1]), a finite solvable group
contains exactly one conjugacy class of Carter subgroups and it is conjectured by sev-
eral authors that an arbitrary finite group contains at most one conjugacy class of such
subgroups (see for example, [2, 3, 11]). In general, Carter's theorem does not hold for
infinite groups. The infinite dihedral group is a simple example of a solvable infinite
group containing Carter subgroups which are not conjugate.

Recall that a nilpotent and self-normalising subalgebra of a finite-dimensional Lie
algebra L is called a Cartan subalgebra. Analogies between properties of Carter subgroups
and properties of Cartan subalgebras have already been considered in various places (see
for instance [6, 10]). Given a unitary associative algebra A of finite dimension over a field,
we can consider both the group of units A* of A and, on the other hand, the Lie algebra
ALie associated to A by means of the Lie product (x, y) = xy - yx for every x,y & A.
From results obtained in [9] (see Theorem 3 of the next section) we know, in particular,
that the Cartan subalgebras of ALie are associative subalgebras of A. Following [5], we
say that A is solvable if A/ Rad(^4) is commutative. We present two results which exhibit
a close relationship beetwen the Cartan subalgebras of Aiie, the Carter subgroups of A*,
and the complements of Rad(A) in A in the solvable case. Our first main result is a
group-theoretic analogue of a result previously proved for the Cartan subalgebras of ALie

(see Theorem 3 of Section 2):
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THEOREM 1. Let A be a finite dimensional solvable associative algebra over a
Geld F such that A/ Rad(-A) is separable. A subset C of A is a Carter subgroup of A* if
and only if there exists a complement T of Rad(^4) in A such that C = C&- (T*).

As a consequence, if F ^ F2) the Carter subgroups of A* are exactly the groups of
units of the Cartan subalgebras of Aue- In Section 4, we apply Theorem 1 in order to
prove the following:

THEOREM 2 . Let F be a Geld and G a finite group such that FG is solvable and
FG/Rad(FG) is separable. Then every Carter subgroup of G is contained in a Carter
subgroup of(FG)*.

2. PRELIMINARIES AND NOTATIONS

Given a positive integer n, the set of all positive integers ^ n will be denoted by
n,. Throughout this paper, the term "associative algebra" means an associative unitary
algebra of finite dimension over a field. For a subset 5 of an associative algebra A over a
field F, we denote by (S)F the vector space spanned by 5. Obviously, if S is a subgroup
of A* then (S)F coincides with the associative subalgebra generated by S in A. In the
next lemma, we collect some known facts about associative algebras which will be used
in the sequel.

LEMMA 1. Let A be an associative algebra over a fieid F. If H is a complement
of Rad(J4) in A, the following hold:

(1) If J is an ideal of A such that J C Rad(^4) then l + J is a nilpotent normal
subgroup of A*.

(2) A* = H*t< (l + Rad(A)).

(3) {H*)p is a complement of Rad(A) in (A*)F-

(4) If A is solvable and B is a subalgebra of A then Rad(B) = B n Rad(/1).

In particular, the group of units of a solvable associative algebra is always a solvable
group.

As usual, for a finite dimensional vector space V and a linear tranformation / of V,
we denote by V0(f) the null Fitting component of V with respect to / . More generally,
if C is any subset of End V, we write Vo(£) for the null Fitting component of V with
respect to C, that is,

V0(C) = {veV\Vf€C3neN vfn = 0}.

Now let L be a finite dimensional Lie algebra. Then it is well known that a nilpotent
subalgebra H of L is a Cartan subalgebra if and only if H = L0{zAH) (see for example,
[4, Proposition 1, Chapter 111,1]).
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We say that an element x of an associative algebra A over a field F is semisimple if
the minimum polynomial of x has no multiple roots in any extension field of F. A torus

of A is defined to be an Abelian subalgebra of A consisting of semisimple elements. In
[9], the following results about the Cartan subalgebras of ^Lie were obtained:

THEOREM 3 . Let A be an associative algebra over a field F.

(1) A subset H of A is a Cartan subalgebra of Aue if and only if there exists
a maximal torus T of A such that H = CA(T).

(2) If A is solvable such that A/ Rad(A) is separable, the maximal tori of A
are exactly the complements ofRa.d(A) in A.

COROLLARY 1. Let A be a solvable associative algebra over a Geld F such that
A/Ha.d(A) is separable. A subset H of A is a Cartan subalgebra of ALie if and only if
there exists a complement T ofRa.d(A) in A such that H = CA{T).

3. CARTER SUBGROUPS OF SOLVABLE ASSOCIATIVE ALGEBRAS

In order to prove Theorem 1, the following preliminary result is needed which may
be of independent interest:

LEMMA 2 . Let A be a solvable associative algebra over a Geld F such that
A/ Ra.d(A) is separable. IfN is a nilpotent subgroup of A*, then the subalgebra (N)F is
Lie nilpotent.

PROOF: Put B := (N)F and consider a complement H of Rad(B) in B. The proof
consists in showing that B = CB(H): from this the claim follows by applying Corollary 1
to the algebra B.

_ r
Let h G H and <7i,S2,..., <?r

 e ^ , ai>a2, • • • ,av G F such that h = £] a ^ . Since
B* = H* ix (1 4- Rad(B)), for alii G r, there exist hi G H* and y{ G Rad(B) such that
g{ = ht(l + Vi). Then

«=i «=i t=i
r

hence £ &iKyi € H (~\ Rad(5) = {0}. Moreover, for all i G r, we have tha t

hi = 5,(1 + yt)~l G N(l + Rad(B)) . It follows that

(1) tf

Now put
J := {x G B | V/i € H 3n G N x(ad/ i ) n G Rad(f l ) 2 } .

As B is solvable, J is an ideal of B. By (1) of Lemma 1,1 + (Rad(B) n J) is a normal
subgroup of B*. Again by the solvability of B it is immediate that N' ^ 1 + RaA(B).

We show that N' is contained in 1 + (Rad(5) D J).
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Let z 6 N'. Then x := z - 1 is an element of Rad(S) and, in particular,

z~l = Y. ( - I ) '* ' - L e t h e H*D (N(1 + Rad(B))) and g € N, y e Rad(B) such
~ i e N ° v '

that h = g{l + y)-1. Then

(2) [z,g)=f^2(-l)ixi\g-1(l + x)g = l + xs-x modRad(B)2.

Since (1 + y)~l = £ (- l )V, by (2) it follows that
t£N0

[z,g] = 1 + (1 + y)-lh-lxh(l + y) -x = 1 + h-l{x,h) modRad(B)2.

From this, an easy induction shows that for every n g N

(3)

By the nilpotency of N, there exists a positive integer m such that

By (3), this implies that x(ad/i)m e Rad(B)2. Since the elements of

commute mutually, by (1) it follows that x e J. Hence

JVC l+(Rad(B)DJ) ,

as claimed above. We conclude that for every a, a' 6 N there exists an element
s € Rad(-B) (~l J such that aa! = a'o(l + s), hence (a, a') = a'as € Rad(B) n J. In
particular, (B, H) C (B, B) C J. It follows that for every b € B, h e H there exists a
positive integer n such that b(a.dh)n is contained in Rad(B)2. This is the case k — 1 of
the following general assertion: For all A; e N, h € H there exists a positive integer n
such that Rad(B)(ad/i)n C Rad(B)*+1. For a proof by induction on k, assume that for
some positive integer k there exists already a positive integer m such that Rad(B)(ad/i)m

C Rad(B)*+1. Let b € Rad(J5), V € Rad(B)fc. Then

2m2m /nrn\
(bb')(adh)2m = J2 (™)b(*ih.)ib'{adh)2m-i € (Rad(B))*+2.

t=0 ^ '

As Rad(B)fc+1 is the linear span of finitely many of the elements bbf', there exists a positive
integer I such that Rad(B)fc+1(ad/i)' C Rad(£)*+2. Now it suffices to put n := m +1 to
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complete the inductive step. By the nilpotency of Rad(B) , it follows that B is contained
in the null Fitting component B0(ad h) for every h 6 H. This means that B C Bo (ad H).

Finally, as H is a torus it follows that B0{&dH) = CB(H) (see [9]), and the proof is
complete. D

As usual, for a group G we denote by jk{G) the A;-th term of the lower central series
of G. We now prove our main result of this section.

P R O O F O F T H E O R E M 1: First assume that T is a complement of Ra.d(A) in A.

Since A* = T*x ( l+Rad( j4 ) ) , for every A: ^ 2 we have -yk{CA.(T*)) C 7 * ( C i + R i W r * ) ) -
By (1) of Lemma 1, 1 + Rad(.A) is nilpotent, hence CA-(T*) is also nilpotent. Let
g € NA.(CA.{T*)) and p u t £ := (CA.(T*))F. By (3) of Lemma 1, (T*)F is a complement
of Rad(B) in B. We have T*9 C CA.(T*), so that (T*)3

F is a complement of Rad(B) in
B, too. By the Wedderburn-Malcev Theorem, T* and T*9 are conjugate under Rad(B).
But (T*)F C Z{B) now forces {T*)F = (T*)9

F, hence T*9 = T*. It follows that

hence g € CA.{T*). Therefore CA*{T*) is a Carter subgroup of A*.
Conversely, let C be a Carter subgroup of A*. Put B := {C)F. By Lemma 2, B is

Lie nilpotent. Theorem 3 implies that B = CB(TO) for a complement To of Rad(B) in
B. As B = (C)F C {B*)F, (3) of Lemma 1 implies that To = (IO:)F- Consequently,
B* = (CB(T0))* = CB'{T£) which, by the first part of the proof, is a Carter subgroup
of B*. Hence B* is nilpotent. Being a Carter subgroup, C is in particular a maxi-
mal nilpotent subgroup of B*. It follows that B* = C. By (4) of Lemma 1 we have
Rad(B + Rad(A)) = Rad(A). Therefore To is a complement of Rad(B + Rad(A)) in
B + Rad(A). By the first part of the proof, C(B+Rnd(A)y (TQ) is a Carter subgroup of the
group (B + Rad(A))* = T$ K (l + Rad(A)). As C ^ C{B+Rad{A)).(T^), it follows that
C = C(B+R^{A))'(TS)-

 T h i s yields

[CA.(TS),C] < CA.{TS) n (1

and therefore CA.{T£) C NA.(C) = C. Now, by (2) of Theorem 3, To is a torus of B.
Let T be a maximal torus of A which contains To. Then (2) of Theorem 3 implies that
T is a complement of Rad(A) in A. Again by the first part of the proof, CA*(T*) is a
Carter subgroup of A* and we have CA.(T*) ^ CA.{TZ) ^ C. Finally, as CA'(T*) is a
maximal nilpotent subgroup of C, it follows that C = CA-(T*), completing the proof. D

We have already remarked that the Carter subgroups of a solvable infinite group are
not necessarily conjugate. Nevertheless, like in Carter's theorem, for the group of units
of any solvable associative algebra we have:

COROLLARY 2 . Let A be a solvable associative algebra over a Geld F such that
A/ Rad(/1) is separable. Then A* contains exactly one conjugacy class of Carter sub-
groups.
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PROOF: Theorem 1 and the Wedderburn-Malcev Theorem imply the existence of
a Carter subgroup of A*. Let Ci and C2 be Carter subgroups of A*. Again by the quoted
theorems, there exist complements 7\ and T2 of Rad(.4) in A such that Ci = CA'(Tf),

and an element x € Rad{A) such that T2 = T}+x. Hence C2 = C\+x, as required. D

REMARK 1. Let A be an associative algebra over a field F. Suppose that
A = Fx © F2 © • • • © Fn, where each Ft is an extension field of F and Ft ^ F2. Then it is
easy to see that A is generated by A* as a vector space.

COROLLARY 3 . Let A be a solvable associative algebra over a fieid F, F ± F2,
such that Aj Rad(A) is separable. Then the Carter subgroups of A* are exactly the

groups of units of the Cartan subalgebras of Aue-

PROOF: Let T be a complement of Rad(.A) in A. By Remark 1 it follows that
T = (T*)F. Consequently, we have {CA(T))* = (CA{T*))* = CA*(T*) so that, by
Corollary 1 and Theorem 1, the claim follows at once. D

REMARK 2. In general, the previous result fails if F = F2. For example, consider the
associative algebra A consisting of all upper triangular 2 x 2 matrices over F2. Then the
set V of all diagonal matrices is a Cartan subalgebra of Aue but, clearly, V* = {1} is not
a Carter subgroup of A*.

4. CARTER SUBGROUPS OF SOLVABLE GROUP ALGEBRAS

Let G be a finite group and F a field. When are the Carter subgroups of G contained

in Carter subgroups of (FG)*? In this section, we give a positive answer to the question

when FG is solvable. Recall that the group algebra FG is solvable if and only if G is

Abelian or char F = p > 0 and the derived group of G is a p-group.

We preliminarily show the following finite analogue of Theorem 1:

LEMMA 3 . Let G be a finite group. Suppose that G has a normal Sylow subgroup

N such that G/N is Abelian. Then C C G is a Carter subgroup ofG if and only if there

exists a complement H of N in G such that C = CQ{H).

PROOF: Note that G is solvable of nilpotency length at most 2, therefore the
Carter subgroups of G coincide with the Sylow normalisers of G (see [8, 9.5.10]). Let H

be a complement of N in G. Then G = H K N and H is clearly an Abelian subgroup of
G. Let Pi,P2, • • • ,Pr be the distinct prime divisors of \H\ and for each i 6 r, denote by
Pi the unique Pi-Sylow subgroup of H. Then {Pi, . . . ,P r ,P r + i = N} is clearly a Sylow
basis for G. Let C be the normaliser of this Sylow basis. Then

r+l r

=f]
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Let i € r, and g € NG{Pi). Then [s,Pj] < Pi n N = {1}, hence g € GG(Pi). Since
H = P ^ . . . P r , it follows that

r

C = f)CG(Pi) = CG(H)

and the first part of the proof is complete.
Conversely, assume that C is a Carter subgroup of G. By the Schur-Zassenhaus

Theorem (see [8, 9.1.2]) there exists a complement H of N in G. Let C :- CG{H). By
the first part of the proof, C is a Carter subgroup of G. Consequently, Carter's theorem
implies that Cx = C for some x 6 G. It follows that G = (CG(H))X = CG(HX) which
implies the claim. D

PROOF OF THEOREM 2: The claim is trivial when G is Abelian. Assume G is
not Abelian and F of characteristic p > 0. Let C be a Carter subgroup of G. As FG
is solvable, the derived group G' is a p-group. Hence G has a normal Sylow p-subgroup
P and G/P is Abelian. By Lemma 3 there exists a complement H of P in G such that
G = CG{H). Let g £ H and put n := |ff|. Since #" — 1 = 0, it follows that the minimum
polynomial fg of g divides the polynomial xn — 1. As p does not divide n, this implies
that /9 has no multiple root in any extension field of F. Thus, H consists of semisimple
elements of FG which commute pairwise. By [9], it follows that T :— (H)F is a torus of
FG. Since 0 is the only element of FG which is both nilpotent and semisimple, we have
TnRad(FG) = {0}. By Wallace's theorem (see [7, 4.7]),

Rad(FG) = ^(x - 1)FG.
x€P

In particular, P is contained in 1 + Rad(FG). It follows that

FG= {H x P)F = / # ( l + Rad(FG))\ = T + Rad(FG).

Thus T is a complement of Rad(FG) in FG. Put G = C(FG).(T*). By Theorem 1, C is
a Carter subgroup of (FG)*. Now

G = CG(H) C {CFG(H))* C (CFG(T*))* = C{FGy(T*) = C

and the claim is proved. D
In [9] it is proved that the Cartan subalgebras of the Lie algebra associated with

a central division algebra are Abelian. As a contrast to the close relationship between
Carter subgroups and Cartan subalgebras exhibited in the foregoing sections for the
solvable case, we finally observe:

REMARK 3. Let D be a central division algebra of dimension 4 over a field F of char-
acteristic ^ 2. Then D* does not have an Abelian Carter subgroup.
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For a proof by contradiction, assume that there is an Abelian Carter subgroup C of
D*. Then C contains an element y 6 D*\F. The subalgebra F[y] of D generated by F

and y is a field of dimension 2 over F. We conclude that

C C CD.(y) = CD.(F[y}) = (F[y})* C ND.(C) = C.

Hence C = {F[y})* which yields ND. (F[y\) = (F[y])*. On the other hand, as the charac-
teristic of F is odd, F[y] is a Galois extension of F, hence there exists an automorphism
of order 2 of F[y] which fixes the elements of F. By the Noether-Skolem Theorem (see [7,
12.6]), this automorphism is induced by a conjugation by an appropriate element x 6 D*.

It follows that x € ND. (F[y])\(F[y])*, a contradiction. D
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