
JFP 21 (4 & 5): 497–562, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796811000165

497

Non-parametric parametricity

GEORG NEIS, DEREK DREYER and ANDREAS ROSSBERG

Max Planck Institute for Software Systems (MPI-SWS), Campus E1.4, 66123 Saarbrücken, Germany

(e-mail: {neis,dreyer,rossberg}@mpi-sws.org)

Abstract

Type abstraction and intensional type analysis are features seemingly at odds—type ab-

straction is intended to guarantee parametricity and representation independence, while type

analysis is inherently non-parametric. Recently, however, several researchers have proposed

and implemented “dynamic type generation” as a way to reconcile these features. The idea is

that, when one defines an abstract type, one should also be able to generate at runtime a fresh

type name, which may be used as a dynamic representative of the abstract type for purposes

of type analysis. The question remains: in a language with non-parametric polymorphism,

does dynamic type generation provide us with the same kinds of abstraction guarantees that

we get from parametric polymorphism?

Our goal is to provide a rigorous answer to this question. We define a step-indexed

Kripke logical relation for a language with both non-parametric polymorphism (in the

form of type-safe cast) and dynamic type generation. Our logical relation enables us to

establish parametricity and representation independence results, even in a non-parametric

setting, by attaching arbitrary relational interpretations to dynamically generated type names.

In addition, we explore how programs that are provably equivalent in a more traditional

parametric logical relation may be “wrapped” systematically to produce terms that are related

by our non-parametric relation, and vice versa. This leads us to develop a “polarized” variant

of our logical relation, which enables us to distinguish formally between positive and negative

notions of parametricity.

1 Introduction

When we say that a language supports parametric polymorphism, we mean that

“abstract” types in that language are really abstract—that is, no client of an

abstract type can guess or depend on its underlying implementation (Reynolds,

1983). Traditionally, the parametric nature of polymorphism is guaranteed statically

by the language’s type system, thus enabling the so-called type-erasure interpretation

of polymorphism by which type abstractions and instantiations are erased during

compilation.

However, some modern programming languages include a useful feature that

appears to be in direct conflict with parametric polymorphism, namely, the ability

to perform intensional type analysis (Harper & Morrisett, 1995). Probably the

simplest and most common instance of intensional type analysis is found in the

implementation of languages supporting a type Dynamic (Abadi et al., 1995). In

such languages, any value v may be cast to type Dynamic, but the cast from type

Dynamic to any type τ requires a runtime check to ensure that v’s actual type equals
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τ. Other languages, such as Acute (Sewell et al., 2007) and Alice ML (Rossberg et al.,

2004), which are designed to support dynamic loading of modules, require the ability

to check dynamically whether a module implements an expected interface, which, in

turn, involves runtime inspection of the module’s type components. There have also

been a number of more experimental proposals for languages that employ a typecase

construct to facilitate polytypic programming (e.g., Weirich, 2004; Vytiniotis et al.,

2005).

There is a fundamental tension between type analysis and type abstraction. If one

can inspect the identity of an unknown type at runtime, then the type is not really

abstract, so any invariants concerning values of that type may be broken (Weirich,

2004). Consequently, languages with a type Dynamic sometimes distinguish between

castable and non-castable types—with types that mention user-defined abstract types

belonging to the latter category—and prohibit values with non-castable types from

being cast to type Dynamic.

This is, however, an unnecessarily severe restriction, which effectively penalizes

programmers for using type abstraction. Given a user-defined abstract type t—

implemented internally, say, as int—it is perfectly reasonable to cast a value of

type t → t to Dynamic, so long as we can ensure that it will subsequently be cast

back only to t → t (not to, say, int → int or int → t), i.e., so long as the cast is

abstraction-safe. Moreover, such casts are useful when marshaling (or “pickling”)

a modular component whose interface refers to abstract types defined in other

components (Rossberg et al., 2004). That said, in order to ensure that casts are

abstraction-safe, it is necessary to have some way of distinguishing (dynamically,

when a cast occurs) between an abstract type and its underlying implementation.

Thus, several researchers have proposed that languages with type analysis facilities

should also support dynamic type generation (Sewell, 2001; Rossberg, 2003, 2008;

Vytiniotis et al., 2005). The idea is simple: when one defines an abstract type, one

should also be able to generate at runtime a “fresh” type name, which may be used as

a unique dynamic representative of the abstract type for purposes of type analysis.1

(We will see a concrete example of this in Section 2.) Intuitively, the freshness of type

name generation ensures that user-defined abstract types are viewed dynamically in

the same way that they are viewed statically—i.e., as distinct from all other types.

The question remains: how do we know that dynamic type generation works? In

a language with intensional type analysis—i.e., non-parametric polymorphism—can

the systematic use of dynamic type generation provably ensure abstraction safety

and provide us with the same kinds of abstraction guarantees that we get from

traditional parametric polymorphism?

Our goal is to provide a rigorous answer to this question. We study an extension of

System F, supporting (1) a type-safe cast mechanism, which is essentially a variant

of Girard’s J operator (Girard, 1972), and (2) a facility for dynamic generation

of fresh type names. For brevity, we will call this language G. As a practical

1 In languages with simple module mechanisms, such as Haskell, it is possible to generate unique type
names statically. However, this is not sufficient in the presence of functors, local modules, or first-class
modules.
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language mechanism, the cast operator is somewhat crude in comparison to the more

expressive typecase-style constructs proposed in the literature, but it is nonetheless

useful. For instance, the implementation of dynamic modules in Alice ML (Rossberg

et al., 2004) relies merely on a cast-like operator, not a typecase. Moreover, the cast

operator renders polymorphism non-parametric, and it is one of the simplest, most

canonical operators that does so, making it an ideal object for formal study. Our

main technical result is that, in our language G, the parametricity of polymorphism

that is lost due to the presence of cast may be provably regained via judicious

use of dynamic type generation. More precisely, we show that all terms that are

related by a parametric logical relation for G can be rendered observationally

equivalent by applying a type-directed “wrapping” function that we can construct

systematically.

The rest of the paper is structured as follows. In Section 2, we present our language

under consideration, G, and also give an example to illustrate how dynamic type

generation is useful.

In Section 3, we explain informally the approach that we have developed for rea-

soning about G. Our approach employs a step-indexed Kripke logical relation (Appel

& McAllester, 2001; Ahmed et al., 2009), with an unusual form of possible world that

is a close relative of Sumii & Pierce’s (2003). This section is intended to be broadly

accessible to readers who are generally familiar with the basic idea of relational

parametricity but not with the details of (advanced) logical relations techniques.

In Section 4, we formalize our logical relation for G and show how it may be

used to reason about parametricity and representation independence. A particularly

appealing feature of our formalization is that the non-parametricity of G is

encapsulated in the notion of what it means for two types to be logically related

to each other when viewed as data (rather than as classifiers). The definition of

this type-level logical relation is a one-liner, which can easily be replaced with an

alternative “parametric” version.

In Sections 5–7, we explore how terms related by the parametric version of our

logical relation may be “wrapped” systematically to produce terms related by the

non-parametric version (and vice versa), thus clarifying how dynamic type generation

facilitates parametric reasoning. This leads us, in Section 8, to develop a “polarized”

variant of our logical relation, which enables us to distinguish formally between

positive and negative notions of parametricity. Essentially, positively parametric

terms expect to be treated parametrically (by their contexts), whereas negatively

parametric terms actually behave parametrically themselves.

In Section 9, we extend G with iso-recursive types to form Gμ and adapt

the previous development accordingly. Then, in Section 10, we discuss how the

abovementioned “wrapping” function can be seen as an embedding of System F (+

recursive types) into Gμ, which we conjecture to be fully abstract.

In Section 11, we observe that our logical relations model is incomplete with

respect to contextual equivalence in G, but also that there are good reasons for this.

Most importantly, our model is intended to generalize to the setting of a language

with typecase. Thus, while there exist programs that are equivalent in the presence

of a cast operator but not in the presence of the more powerful typecase, our
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model does not support proofs of such equivalences. (In essence, we conjecture that

our model is in fact a “better fit” for typecase than for cast; we have chosen to

study cast, as explained above, because it is simpler yet still interesting.)

Finally, in Section 12, we discuss related work, including recent work on the

relevant concepts of dynamic sealing (Sumii & Pierce, 2007a) and multi-language

interoperation (Matthews & Ahmed, 2008), and in Section 13, we conclude and

suggest directions for future work.

2 The language G

Figure 1 defines our non-parametric language G. For the most part, G is a

standard call-by-value λ-calculus, consisting of the usual types and terms from

System F (Girard, 1972), including pairs and existential types. (We could instead

use a Church encoding of existentials via universals, but building existentials in as

primitive gives us more leeway later, cf. Section 5.) We also assume an unspecified

set of base types b, along with suitable constants of—and primitive operations

over—those types (indicated by . . . in the syntax).

Two additional, non-standard constructs isolate the essential aspects of the class

of languages we are interested in:

• cast τ1 τ2 v1 v2 converts v1 from type τ1 to τ2. It checks that those two types are

the same at the time of evaluation. If so, the operator succeeds and returns

v1. Otherwise, it fails and defaults to v2, which acts as an else clause of the

target type τ2.

• new α≈τ in e generates a fresh abstract type name α. Values of type α can be

formed using its representation type τ. Both types are deemed isomorphic, but

not equivalent. That is, they are considered equal as classifiers, but not as data.

In particular, cast α τ v1 v2 will not succeed in casting v1 from α to τ—it will

instead return the default value v2.

Our cast operator is essentially the same as Harper & Mitchell’s TypeCond

operator (Harper & Mitchell, 1999), which was itself a variant of the non-parametric

J operator that Girard studied in his thesis (Girard, 1972). Our new construct is

similar to previously proposed constructs for dynamic type generation (Rossberg,

2003; Vytiniotis et al., 2005; Rossberg, 2008). However, we do not require explicit

term-level type coercions to witness the isomorphism between an abstract type name

α and its representation τ. Instead, our type system is simple enough that we can

perform this conversion implicitly without losing significant type information.2

For convenience, we will occasionally use expressions of the form let x=e1 in e2,

which abbreviate the term (λx:τ1.e2) e1 (with τ1 being an appropriate type for e1).

We omit the type annotation for functions and existential packages where clear

from context. Moreover, we take the liberty to generalize binary tuples to n-ary ones

where necessary and to use pattern matching notation to decompose tuples in the

obvious manner.

2 It is not obvious whether this would still be possible if the language were enriched with features such
as singleton kinds (Rossberg, 2008) or type-level computations (Weirich et al., 2011).

https://doi.org/10.1017/S0956796811000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000165


Non-parametric parametricity 501

Types τ ::= α | b | τ× τ | τ→ τ | ∀α.τ | ∃α.τ
Values v ::= x | . . . | 〈v, v〉 | λx:τ.e | λα.e | pack 〈τ, v〉 as τ

Terms e ::= v | . . . | 〈e, e〉 | e.1 | e.2 | e e | e τ | pack 〈τ, e〉 as τ |
unpack 〈α, x〉=e in e | cast τ τ | new α≈τ in e

Stores σ ::= ε | σ, α≈τ
Config’s ζ ::= σ; e

Evaluation Ctxt’s E ::= . . . | 〈E, e〉 | 〈v, E〉 | E.1 | E.2 | E e | v E | E τ |
pack 〈τ, E〉 as τ | unpack 〈α, x〉=E in e

Type Environments Δ ::= ε | Δ, α | Δ, α≈τ
Value Environments Γ ::= ε | Γ, x:τ

Δ; Γ 	 e : τ

· · ·

(Ecast)
Δ 	 τ1 Δ 	 τ2

Δ; Γ 	 cast τ1 τ2 : τ1 → τ2 → τ2

(Enew)
Δ 	 τ Δ, α≈τ; Γ 	 e : τ′ Δ 	 τ′

Δ; Γ 	 new α≈τ in e : τ′

(Econv)
Δ; Γ 	 e : τ′ Δ 	 τ ≈ τ′

Δ; Γ 	 e : τ

Δ 	 τ

(Tname)
α≈τ ∈ Δ

Δ 	 α
· · ·

Δ 	 τ ≈ τ

(Cname)
α≈τ ∈ Δ

Δ 	 α ≈ τ
· · ·

(Store)
Δ = σ 	 Δ

	 σ

	 ζ : τ

(conf)
	 σ σ; ε 	 e : τ ε 	 τ

	 σ; e : τ

· · ·
σ;E[〈v1, v2〉.i] ↪→ σ;E[vi] (Rproj)

σ;E[(λx:τ.e) v] ↪→ σ;E[e[v/x]] (Rapp)

σ;E[(λα.e) τ] ↪→ σ;E[e[τ/α]] (Rinst)

σ;E[unpack 〈α, x〉=(pack 〈τ, v〉) in e] ↪→ σ;E[e[τ/α][v/x]] (Runpack)

(α /∈ dom(σ)) σ;E[new α≈τ in e] ↪→ σ, α≈τ;E[e] (Rnew)

(τ1 = τ2) σ;E[cast τ1 τ2] ↪→ σ;E[λx1:τ1.λx2:τ2.x1] (Rcast1)

(τ1 �= τ2) σ;E[cast τ1 τ2] ↪→ σ;E[λx1:τ1.λx2:τ2.x2] (Rcast2)

Fig. 1. Syntax and semantics of G (excerpt).
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2.1 Typing rules

The typing rules for the System F fragment of G are completely standard and thus

omitted from Figure 1. We focus on the non-standard rules related to cast and new.

Full formal details of the type system are given in Appendix A.

Typing of casts is straightforward (Rule Ecast): cast τ1 τ2 is simply treated as a

function of type τ1 → τ2 → τ2. Its first argument is the value to be converted, and

its second argument is the default value returned in the case of failure. The rule

merely requires that the two types be well formed.

For an expression new α≈τ in e, which binds α in e, Rule Enew checks that the

body e is well typed under the assumption that α is implemented by the representation

type τ. For that purpose, we enrich type environments Δ with entries of the form α≈τ
that keep track of the representation types tied to abstract type names. (Note that τ

may not mention α.) We call such environment entries type isomorphism assumptions.

Syntactically, type “names” are just type variables in the calculus (and like other

type variables, they are α-convertible). As a matter of terminology, however, we refer

as type names only to those type variables α that are bound with the syntax “α≈τ”
(that is, either by new, in a store σ, or with a respective entry in a type environment

Δ).

When viewed as data (i.e., when inspected by the cast operator), types are

considered equivalent iff they are syntactically equal (modulo α-conversion). In

contrast, when viewed as classifiers for terms, knowledge about the representation of

type names may be taken into account. Rule Econv says that if a term e has a type

τ′, it may be assigned any other type that is isomorphic to τ′. Type isomorphism, in

turn, is defined by the judgment Δ 	 τ1 ≈ τ2. We only show the rule Cname, which

discharges an isomorphism assumption α≈τ from the environment; the other rules

implement the congruence closure of this axiom. The important point here is that

equivalent types are isomorphic, but isomorphic types are not necessarily equivalent.

Finally, Rule Enew also requires that the type τ′ of the body e does not contain α

(i.e., τ′ must be well formed in Δ alone). A type of this form can always be derived

by applying Econv to convert τ′ to τ′[τ/α].

Note that the typing rules ensure that type environments are ordered and acyclic.

Consequently, any type Δ 	 τ can be normalized to a type τ′ that does not contain

any type names and is isomorphic to τ, i.e., Δ′ 	 τ′ and Δ 	 τ ≈ τ′, where Δ′ is

Δ without all the isomorphism assumptions. This normalization is done using the

substitution Δ∗ that is obtained from Δ in the following way:

ε∗
def
= ∅

(Δ, α)∗
def
= Δ∗

(Δ, α≈τ)∗ def
= Δ∗, α �→Δ∗(τ)

Given this normalization, it easy to see that type checking is decidable.

2.2 Dynamic semantics

The operational semantics has to deal with the generation of fresh type names.

To that end, we introduce a type store σ to record generated type names. Hence,
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reduction is defined on configurations (σ; e) instead of plain terms. Figure 1 shows

the main reduction rules.

The reduction rules for the F fragment are as usual and do not actually touch

the store. However, types occurring in F constructs can contain type names bound

in the store.

Reducing the expression new α≈τ in e creates a new entry for α in the type store.

We rely on the usual hygiene convention for bound variables to ensure that α is fresh

with respect to the current store (which can always be achieved by α-renaming).3

Note that this rule is the single source of non-determinism in our operational

semantics.

The two remaining rules are for casts. A cast takes two types and checks whether

or not they are equivalent (i.e., syntactically equal). In either case, the expression

reduces to a function that will return the appropriate one of the additional value

arguments, i.e., the value to be converted in case of success, and the default value

otherwise. In the former case, type preservation is ensured because source and target

types are known to be equivalent.

Type preservation can be expressed using the typing rule conf for configurations.

We formulate this rule by treating the type store as a type environment, which is

possible because type stores are a syntactic subclass of type environments. (In a

similar manner, we can write 	 σ for well-formedness of store σ, by viewing it as

a type environment.) It is worth noting that the representation types in the store

are never actually inspected by the dynamic semantics. In particular, they are only

needed for specifying well-formedness of configurations and proving type soundness.

2.3 Motivating example

Consider the following attempt to write a simple functional “binary semaphore”

ADT (Pitts, 2005) in G. Following Mitchell & Plotkin (1988), we use an existential

type, as we would in System F:

τsem := ∃α.α× (α→ α)× (α→ bool)

esem := pack 〈int, 〈1, λx: int .(1− x), λx: int .(x �= 0)〉〉 as τsem

A semaphore is essentially a flag that can be in two states: either locked or unlocked.

The state can be toggled using the first function of the ADT, and it can be polled

using the second. Our little module uses an integer value for representing the state,

taking 1 for locked and 0 for unlocked. It is an invariant of the implementation

that the integer never takes any other value—otherwise, the toggle function would

no longer operate correctly.

In System F, the implementation invariant would be protected by the fact that

existential types are parametric: there is no way to inspect the witness of α after

opening the package, and hence, no client could produce values of type α other than

3 A well-known alternative approach would omit the type store in favor of using scope extrusion rules
for new binders, as in Rossberg (2003).
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those returned by the module (nor could they apply integer operations to values of

type α).

Not so in G. The following program uses cast to forge a value s of the abstract

semaphore type α:

eclient := unpack 〈α, 〈s0, toggle, poll〉〉 = esem in

let s = cast int α 666 s0 in

〈poll s, poll (toggle s)〉

Because reduction of unpack simply substitutes the representation type int for α,

the consecutive cast succeeds, and the whole expression evaluates to 〈true, true〉—
although the second component should have toggled s and thus be different from

the first.

The way to prevent this in G is to create a fresh type name α′ as witness of the

abstract type:

esem1 := new α′ ≈ int in

pack 〈α′, 〈1, λx: int .(1− x), λx: int .(x �= 0)〉〉 as τsem

After replacing the initial semaphore implementation with this one, eclient will

evaluate to 〈true, false〉 as desired—the cast expression will no longer succeed,

because α will be substituted by the dynamic type name α′, and α′ �= int. (Moreover,

since α′ is only visible statically in the scope of the new expression, the client has

no access to α′ and thus cannot use type conversion to convert terms from int to α′

either.)

Now, while it is clear that new ensures proper type abstraction in the client

program eclient, we want to prove that it does so for any client program. A standard

way of doing so is by showing a more general result, namely, representation

independence (Reynolds, 1983): we show that the module esem1 is contextually

equivalent to another module of the same type that implements the abstract type in

a different way. Contextual equivalence means that no G program can observe any

difference between the two modules. By choosing that other module to be a suitable

reference implementation of the ADT in question, we can conclude that the “real”

one behaves properly under all circumstances.

The obvious candidate for a reference implementation of the semaphore ADT is

the following:

esem2 := new α′ ≈ bool in

pack 〈α′, 〈true, λx: bool .¬x, λx: bool .x〉〉 as τsem

Here, the semaphore state is represented directly by a Boolean flag and does not

rely on any additional invariant. If we can show that esem1 is contextually equivalent

to esem2, then we can conclude that esem1’s type representation is truly being held

abstract.

2.4 Contextual equivalence

In order to be able to reason about representation independence, we need to make

precise the notion of contextual equivalence.
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A context C is an expression with a single hole [ ], defined in the usual manner

(see Section A.4). Typing of contexts is defined by a judgment form 	 C : (Δ; Γ; τ)�
(Δ′; Γ′; τ′), where the triple (Δ; Γ; τ) indicates the type of the hole. The judgment

implies that for any expression e with Δ; Γ 	 e : τ we have Δ′; Γ′ 	 C[e] : τ′. The

rules are straightforward, the key rule being the one for holes:

Δ ⊆ Δ′ Γ ⊆ Γ′

	 [ ] : (Δ; Γ; τ)� (Δ′; Γ′; τ)

We can now define contextual approximation and contextual equivalence as

follows (with σ; e↓ asserting that σ; e terminates):

Definition 1 (Contextual Approximation and Equivalence)

Let Δ; Γ 	 e1 : τ and Δ; Γ 	 e2 : τ.

Δ; Γ 	 e1 � e2 : τ
def⇔ ∀C, τ′, σ. 	 σ ∧ 	 C : (Δ; Γ; τ)� (σ; ε; τ′)

∧ σ;C[e1]↓ ⇒ σ;C[e2]↓
Δ; Γ 	 e1 ≡ e2 : τ

def⇔ Δ; Γ 	 e1 � e2 : τ ∧ Δ; Γ 	 e2 � e1 : τ

That is, contextual approximation Δ; Γ 	 e1 � e2 : τ means that for any well-

typed program context C with a hole of appropriate type, the termination of C[e1]

implies the termination of C[e2]. Contextual equivalence Δ; Γ 	 e1 ≡ e2 : τ is just

approximation in both directions.

Considering that G does not explicitly contain any recursive or looping constructs,

the reader may wonder why termination is used as the notion of “distinguishing

observation” in our definition of contextual equivalence. The reason is that the cast

operator, together with impredicative polymorphism, makes it possible to write well-

typed non-terminating programs (Harper & Mitchell, 1999). (This was Girard’s rea-

son for studying the J operator in the first place (Girard, 1972).) Moreover, using cast,

one can encode arbitrary recursive function definitions (see Appendix A.5 for details).

Other forms of observation may then be encoded in terms of (non-)termination.

3 A logical relation for G: Main ideas

Following Reynolds (1983) and Mitchell (1986), our general approach to reasoning

about parametricity and representation independence is to define a logical relation.

Essentially, logical relations give us a tractable way of proving that two terms are

contextually equivalent, which, in turn, gives us a way of proving that abstract

types are really abstract. Of course, since polymorphism in G is non-parametric, the

definition of our logical relation in the cases of universal and existential types is

somewhat unusual. To place our approach in context, we first review the traditional

approach to defining logical relations for languages with parametric polymorphism,

such as System F.

3.1 Logical relations for parametric polymorphism

Although the technical meaning of “logical relation” is rather woolly, the basic

idea is to define an equivalence (or approximation) relation on programs in-

ductively, following the structure of their types. To take the canonical example
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of arrow types, we would say that two functions are logically related at the

type τ1 → τ2 if, when passed arguments that are logically related at τ1, either

they both diverge or they both converge to values that are logically related at

τ2. The fundamental theorem of logical relations states that the logical relation

is a congruence with respect to the constructs of the language. Together with

what Pitts (2005) calls adequacy—i.e., the fact (built into the definition of the

logical relation) that logically related terms have equivalent termination behavior—

the fundamental theorem implies that logically related terms are contextually

equivalent, since contextual equivalence is defined precisely to be the largest adequate

congruence.

Traditionally, the parametric nature of polymorphism is made clear by the

definition of the logical relation for universal and existential types. Intuitively,

two type abstractions, λα.e1 and λα.e2, are logically related at type ∀α.τ if they

map related type arguments to related results. But what does it mean for two type

arguments to be related? Moreover, once we settle on two related type arguments

τ′1 and τ′2, at what type do we relate the results e1[τ
′
1/α] and e2[τ

′
2/α]?

One approach would be to restrict “related type arguments” to be the same type

τ′. Thus, λα.e1 and λα.e2 would be logically related at ∀α.τ iff, for any (closed) type

τ′, it is the case that e1[τ
′/α] and e2[τ

′/α] are logically related at the type τ[τ′/α].

A key problem with this definition, however, is that, due to the quantification over

any argument type τ′, the type τ[τ′/α] may in fact be larger than the type ∀α.τ, and

thus, the definition of the logical relation is no longer inductive in the structure of

the type. Another problem is that this definition does not tell us anything about the

parametric nature of polymorphism.

Reynolds’ alternative approach is a generalization of Girard’s “candidates”

method for proving strong normalization for System F (Girard, 1972). The idea

is simple: instead of defining two type arguments to be related only if they are

the same, allow any two different type arguments to be related by an (almost)

arbitrary relational interpretation (subject to certain admissibility constraints). That

is, we parameterize the logical relation at type τ by an interpretation function ρ,

which maps each free type variable of τ to a pair of types τ′1, τ
′
2 together with some

(admissible) relation between values of those types. Then, we say that λα.e1 and λα.e2

are logically related at type ∀α.τ under interpretation ρ iff, for any closed types τ′1
and τ′2 and any relation R between values of those types, it is the case that e1[τ

′
1/α]

and e2[τ
′
2/α] are logically related at type τ under interpretation ρ, α �→ (τ′1, τ

′
2, R).

The miracle of Reynolds/Girard’s method is that it simultaneously (1) renders

the logical relation inductively well defined in the structure of the type, and (2)

demonstrates the parametricity of polymorphism: logically related type abstractions

must behave the same even when passed completely different type arguments, so

their behavior may not analyze the type argument and behave in different ways

for different arguments. Dually, we can show that two ADTs pack 〈τ1, v1〉 as ∃α.τ
and pack 〈τ2, v2〉 as ∃α.τ are logically related (and thus, contextually equivalent)

by exhibiting some relational interpretation R for the abstract type α, even if the

underlying type representations τ1 and τ2 are different. This is the essence of what

is meant by “representation independence.”
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Unfortunately, in the setting of G, Reynolds/Girard’s method is not directly

applicable precisely because polymorphism in G is not parametric! This essentially

forces us back to the first approach suggested above, namely, to only consider type

arguments to be logically related if they are equal. Moreover, it makes sense: the

cast operator views types as data, so types may only be logically related if they are

indistinguishable as data.

The natural questions, then, are: (1) what metric do we use to define the logical

relation inductively, if not the structure of the type, and (2) how do we establish

that dynamic type generation regains a form of parametricity? We address these

questions in the next two sections, respectively.

3.2 Step-indexed logical relations for non-parametricity

First, in order to provide a metric for inductively defining the logical relation, we

employ step-indexing. Step-indexed logical relations were proposed originally by

Appel and McAllester (2001) as a way of giving a simple operational-semantics-

based model for general recursive types in the context of foundational proof-carrying

code. In subsequent work by Ahmed and others (Ahmed, 2006; Ahmed et al., 2009),

the method has been adapted to support relational reasoning in a variety of settings,

including untyped and imperative languages.

The key idea of step-indexed logical relations is to index the definition of the logical

relation not only by the type of the programs being related, but also by a natural

number n representing (intuitively) “the number of steps left in the computation.”

That is, if two terms e1 and e2 are logically related at type τ for n steps, then if

we place them in any program context C and run the resulting programs for n

steps of computation, we should not be able to produce observably different results

(e.g., C[e1] evaluating to 5 and C[e2] evaluating to 7). To show that e1 and e2 are

contextually equivalent, then, it suffices to show that they are logically related for n

steps, for any n.

To see how step-indexing helps us, consider how we might define a step-indexed

logical relation for G in the case of universal types: two type abstractions λα.e1 and

λα.e2 are logically related at ∀α.τ for n steps iff, for any type argument τ′, it is the

case that e1[τ
′/α] and e2[τ

′/α] are logically related at τ[τ′/α] for n − 1 steps. This

reasoning is sound because the only way a program context can distinguish between

λα.e1 and λα.e2 in n steps is by first applying them to a type argument τ′—which

incurs a step of computation for the β-reduction (λα.ei) τ
′ ↪→ ei[τ

′/α]—and then

distinguishing between e1[τ
′/α] and e2[τ

′/α] within the next n − 1 steps. Moreover,

although the type τ[τ′/α] may be larger than ∀α.τ, the step index n− 1 is smaller, so

the logical relation is inductively well defined.

3.3 Kripke logical relations for dynamic parametricity

Second, in order to establish the parametricity properties of dynamic type generation,

we employ Kripke logical relations, i.e., logical relations that are indexed by possible

worlds. (In fact, step-indexed logical relations may already be understood as a

special case of Kripke logical relations, in which the step index serves as the notion
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of possible world, and where n is a future world of m iff n � m.) Kripke logical

relations are appropriate when reasoning about properties that are true only under

certain conditions, such as equivalence of modules with local mutable state. For

instance, an imperative ADT might only behave according to its specification if its

local data structures obey certain invariants. Possible worlds allow one to codify

such local invariants on the machine store (Pitts & Stark, 1993).

In our setting, the local invariant we want to establish is what a dynamically

generated type name means. That is, we will use possible worlds to assign relational

interpretations to dynamically generated type names. For example, consider the

programs esem1 and esem2 from Section 2. We want to show they are logically related

at ∃α. α× (α→ α)× (α→ bool) in an empty initial world w0 (i.e., under empty type

stores). The proof proceeds roughly as follows. First, we evaluate the two programs.

This will have the effect of generating a fresh type name α′, with α′ ≈ int extending

the type store of the first program and α′ ≈ bool extending the type store of the

second program. At this point, we correspondingly extend the initial world w0 with a

mapping from α′ to the relation R = {(1, true), (0, false)}, thus forming a new world

w that specifies the semantic meaning of α′.

We now must show that the values

pack 〈α′, 〈1, λx: int .(1− x), λx: int .(x �= 0)〉〉 as τsem

and

pack 〈α′, 〈true, λx: bool .¬x, λx: bool .x〉〉 as τsem

are logically related in the world w. Since G’s logical relation for existential types is

non-parametric, the two packages must have the same type representation, but of

course the whole point of using new was to ensure that they do (namely, it is α′).

The remainder of the proof is showing that the value components of the packages

are related at the type α′ × (α′ → α′) × (α′ → bool) under the interpretation ρ =

α′ �→ (int, bool, R) derived from the world w. This last part is completely analogous

to what one would show in a standard representation independence proof.

In short, the possible worlds in our Kripke logical relations bring back the ability

to assign arbitrary relational interpretations R to abstract types, an ability that was

seemingly lost when we moved to a non-parametric logical relation. The only catch

is that we can only assign arbitrary interpretations to dynamic type names, not to

static, universally/existentially quantified type variables.

There is one minor technical matter that we glossed over in the above proof

sketch but is worth mentioning. Due to non-determinism of type name allocation,

the evaluation of esem1 and esem2 may result in α′ being replaced by α′1 in the former

and α′2 in the latter (for some fresh α′1 �= α′2). Moreover, we are also interested in

proving equivalence of programs that do not necessarily allocate exactly the same

number of type names in the same order.

Consequently, we also include in our possible worlds a partial bijection η between

the type names of the first program and the type names of the second program, which

specifies how each dynamically generated abstract type is concretely represented in

the stores of the two programs. We require them to be in one-to-one correspondence
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Rval def
= {(k, w, v1, v2) | (k, w, v1, v2) ∈ R}

Atomn[τ1, τ2]
def
= {(k, w, e1, e2) | k < n ∧ w ∈ Worldk ∧ 	 w.σ1; e1 : τ1 ∧ 	 w.σ2; e2 : τ2}

Reln[τ1, τ2]
def
= {R ⊆ Atomval

n [τ1, τ2] |
∀(k, w, v1, v2) ∈ R. ∀(k′, w′) � (k, w). (k′, w′, v1, v2) ∈ R}

SomeReln
def
= {r = (τ1, τ2, R) | fv(τ1, τ2) = ∅ ∧ R ∈ Reln[τ1, τ2]}

Interpn

def
= {ρ ∈ TVar

fin→ SomeReln}
Conc

def
= {η ∈ TVar

fin→ TVar×TVar |
∀α, α′ ∈ dom(η). α �= α′ ⇒ η1(α) �= η1(α′) ∧ η2(α) �= η2(α′)}

Worldn
def
= {w = (σ1, σ2, η, ρ) |

	 σ1 ∧ 	 σ2 ∧ η ∈ Conc∧ ρ ∈ Interpn ∧ dom(η) = dom(ρ) ∧
ρ1 = σ∗1 ◦ η1 ∧ ρ2 = σ∗2 ◦ η2}

�(σ1, σ2, η, ρ)�n
def
= (σ1, σ2, η, �ρ�n)

�ρ�n
def
= {α �→ �r�n | ρ(α) = r}

�(τ1, τ2, R)�n
def
= (τ1, τ2, �R�n)

�R�n
def
= {(k, w, e1, e2) ∈ R | k < n}

(k′, w′) � (k, w)
def⇔ k′ � k ∧ w′ ∈ Worldk′ ∧w′.η � w.η ∧ w′.ρ � �w.ρ�k′ ∧ ∀i ∈ {1, 2}.

w′.σi ⊇ w.σi ∧ rng(w′.ηi)− rng(w.ηi) ⊆ dom(w′.σi)− dom(w.σi)

η′ � η
def⇔ ∀α ∈ dom(η). η′(α) = η(α)

ρ′ � ρ
def⇔ ∀α ∈ dom(ρ). ρ′(α) = ρ(α)

(k′, w′) � (k, w)
def⇔ k′ < k ∧ (k′, w′) � (k, w)

�R
def
= {(k, w, e1, e2) | ∀(k′, w′) � (k, w). (k′, w′, e1, e2) ∈ R}

Fig. 2. Worlds and auxiliary definitions.

because the cast construct permits the program context to observe equality on type

names, as follows:

equal? : ∀α.∀β. bool
def
=

Λα.Λβ. cast ((α→ α) → bool) ((β → β) → bool)

(λx:(α→ α). true)(λx:(β → β). false)(λx:β.x)

We then consider types to be logically related if they are the same up to this bijection.

For instance, in our running example, when extending w0 to w, we would not only

extend its relational interpretation with α′ �→ (int, bool, R) but also extend its η with

α′ �→ (α′1, α
′
2). Thus, the type representations of the two existential packages, α′1 and

α′2, though syntactically distinct, would still be logically related under w.

4 A logical relation for G: Formal details

We now formalize our logical relation for G. For technical reasons related to

step-indexing, we do not define it directly in terms of equivalent termination
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behavior. Instead, we define it in terms of approximated termination behavior

such that if e1 and e2 are logically related, then e1 contextually approximates e2

(i.e., C[e2] terminates whenever C[e1] does). Logical equivalence then is just logical

approximation in both directions.

Figures 2 and 3 display our step-indexed Kripke logical relation for G in full gory

detail. It is easiest to understand this definition by making two passes over it. First,

as the step indices have a way of infecting the whole definition in a superficially

complex—but really very straightforward—way, we will first walk through the whole

definition ignoring all occurrences of n’s and k’s (as well as auxiliary functions like

the �·�n operator). Second, we will pinpoint the few places where step indices

actually play an important role in ensuring that the logical relation is inductively

well founded.

4.1 Highlights of the logical relation

The first section of Figure 2 defines the kinds of semantic objects that are used in the

construction of the logical relation. Relations R are sets of atoms, which are pairs

of terms, e1 and e2, indexed by a possible world w. The definition of Atom[τ1, τ2]

requires that e1 and e2 have the types τ1 and τ2 under the type stores w.σ1 and w.σ2,

respectively. (We use the dot notation w.σi to denote the ith type store component

of w, and analogous notation for projecting out the other components of worlds.)

Rel[τ1, τ2] defines the set of admissible relations, which are permitted to be used

as the semantic interpretations of abstract types. For our purposes, admissibility

is simply monotonicity—i.e., closure under world extension. That is, if a relation in

Rel relates two values v1 and v2 under a world w, then the relation must relate

those values in any future world of w. (We discuss the definition of world extension

below.) Monotonicity is needed in order to ensure that we can extend worlds with

interpretations of new dynamic type names, without interfering somehow with the

interpretations of the old ones.

Worlds w are 4-tuples (σ1, σ2, η, ρ), which describe a set of assumptions under

which pairs of terms are related. Here, σ1 and σ2 are the type stores under which the

terms are typechecked and evaluated. The finite mappings η and ρ share a common

domain, which can be understood as the set of abstract type names that have been

generated dynamically. These “semantic” type names do not exist in either store

σ1 or σ2. (In fact, technically speaking, we consider dom(η) = dom(ρ) to be bound

variables of the world w.) Rather, they provide a way of referring to an abstract type

that is represented by some type name α1 in σ1 and some type name α2 in σ2. Thus,

for each name α ∈ dom(η) = dom(ρ), the concretization η maps the “semantic”

name α to a pair of “concrete” names from the stores σ1 and σ2, respectively. (See

the end of Section 3.3 for an example of such an η.) As the definition of Conc makes

clear, distinct semantic type names must have distinct concretizations; consequently,

η represents a partial bijection between σ1 and σ2.

The last component of the world w is ρ, which assigns relational interpretations

to the aforementioned semantic type names. Formally, ρ maps each α to a triple

r = (τ1, τ2, R), where R is a monotone relation between values of types τ1 and τ2.
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Vn[[α]]ρ
def
= �ρ(α).R�n

Vn[[b]]ρ
def
= {(k, w, v, v) ∈ Atomn[b, b]}

Vn[[τ× τ′]]ρ
def
= {(k, w, 〈v1, v

′
1〉, 〈v2, v

′
2〉) ∈ Atomn[ρ

1(τ× τ′), ρ2(τ× τ′)] |
(k, w, v1, v2) ∈ Vn[[τ]]ρ ∧ (k, w, v′1, v

′
2) ∈ Vn[[τ

′]]ρ}
Vn[[τ

′ → τ]]ρ
def
= {(k, w, λx:τ1.e1, λx:τ2.e2) ∈ Atomn[ρ

1(τ′ → τ), ρ2(τ′ → τ)] |
∀(k′, w′, v1, v2) ∈ Vn[[τ

′]]ρ. (k′, w′) � (k, w) ⇒
(k′, w′, e1[v1/x], e2[v2/x]) ∈ En[[τ]]ρ}

Vn[[∀α.τ]]ρ
def
= {(k, w, λα.e1, λα.e2) ∈ Atomn[ρ

1(∀α.τ), ρ2(∀α.τ)] |
∀(k′, w′) � (k, w). ∀(τ1, τ2, r) ∈ Tk′ [[Ω]]w′.

(k′, w′, e1[τ1/α], e2[τ2/α]) ∈ �En[[τ]]ρ, α �→ r}
Vn[[∃α.τ]]ρ

def
= {(k, w, pack 〈τ1, v1〉, pack 〈τ2, v2〉) ∈ Atomn[ρ

1(∃α.τ), ρ2(∃α.τ)] |
∃r. (τ1, τ2, r) ∈ Tk[[Ω]]w ∧ (k, w, v1, v2) ∈ �Vn[[τ]]ρ, α �→ r}

En[[τ]]ρ
def
= {(k, w, e1, e2) ∈ Atomn[ρ

1(τ), ρ2(τ)] |
∀j < k. ∀σ1, v1. (w.σ1; e1 ↪→j σ1; v1) ⇒ ∃w′, v2. (k − j, w′) � (k, w) ∧
w′.σ1 = σ1 ∧ (w.σ2; e2 ↪→∗ w′.σ2; v2) ∧ (k − j, w′, v1, v2) ∈ Vn[[τ]]ρ}

Tn[[Ω]]w
def
= {(w.η1(τ), w.η2(τ), (w.ρ1(τ), w.ρ2(τ), Vn[[τ]]w.ρ)) | fv(τ) ⊆ dom(w.ρ)}

Gn[[ε]]ρ
def
= {(k, w, ∅, ∅) | k < n ∧ w ∈ Worldk}

Gn[[Γ, x:τ]]ρ
def
= {(k, w, (γ1, x �→ v1), (γ2, x �→ v2)) |

(k, w, γ1, γ2) ∈ Gn[[Γ]]ρ ∧ (k, w, v1, v2) ∈ Vn[[τ]]ρ}
Dn[[ε]]w

def
= {(∅, ∅, ∅)}

Dn[[Δ, α]]w
def
= {((δ1, α �→ τ1), (δ2, α �→ τ2), (ρ, α �→ r)) |

(δ1, δ2, ρ) ∈ Dn[[Δ]]w ∧ (τ1, τ2, r) ∈ Tn[[Ω]]w}
Dn[[Δ, α≈τ]]w

def
= {((δ1, α �→ β1), (δ2, α �→ β2), (ρ, α �→ r)) |

(δ1, δ2, ρ) ∈ Dn[[Δ]]w ∧
∃α′. w.ρ(α′) = r ∧ w.η(α′) = (β1, β2) ∧
w.σ1(β1) = δ1(τ) ∧ w.σ2(β2) = δ2(τ) ∧ r.R = Vn[[τ]]ρ}

Δ; Γ 	 e1 � e2 : τ
def⇔ Δ; Γ 	 e1 : τ ∧ Δ; Γ 	 e2 : τ ∧
∀n � 0. ∀w0 ∈ Worldn. ∀(δ1, δ2, ρ) ∈ Dn[[Δ]]w0. ∀(k, w, γ1, γ2) ∈ Gn[[Γ]]ρ.

(k, w) � (n, w0) ⇒ (k, w, δ1γ1(e1), δ2γ2(e2)) ∈ En[[τ]]ρ

Fig. 3. Logical relation for G.

(Again, see the end of Section 3.3 for an example of such a ρ.) The final condition in

the definition of World stipulates that the closed syntactic types in the range of ρ and

the concrete type names in the range of η are isomorphic. As a matter of notation,

we will write ηi and ρi to denote the type substitutions {α �→ αi | η(α) = (α1, α2)} and

{α �→ τi | ρ(α) = (τ1, τ2, R)}, respectively.

The second section of Figure 2 displays the definition of world extension. In

order for w′ to extend w (written w′ � w), it must be the case that (1) w′ specifies

semantic interpretations for a superset of the type names that w interprets, (2) for

the names that w interprets, w′ must interpret them in the same way, and (3) any

new semantic type names that w′ interprets may only correspond to new concrete
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type names that did not exist in the stores of w. Condition (3) here corresponds

to the common practice in Kripke logical relations proofs, whereby one extends a

given “input” world to a future “output” world only when one wants to establish

some invariants about freshly allocated entities (in the case of G, fresh type names).

Although this condition is not strictly necessary for establishing soundness of the

logical relation, it has not in our experience made it more difficult to prove anything.

Moreover, we have found it to be useful when proving certain examples (e.g., the

“order independence” example in Section 4.4) because it cuts down on the set of

worlds one must consider when one universally quantifies over a future world.

Figure 3 defines the logical relation itself. V [[τ]]ρ is the logical relation for values,

E[[τ]]ρ is the one for terms, and T [[Ω]]w is the one for types as data, as described in

Section 3 (here, Ω represents the kind of types).

V [[τ]]ρ relates values at the type τ, where the free type variables of τ are given

relational interpretations by ρ. Ignoring the step indices, V [[τ]]ρ is mostly very

standard. For instance, at certain points (namely, in the → and ∀ cases), when we

quantify over logically related (value or type) arguments, we must allow them to

come from an arbitrary future world w′ in order to ensure monotonicity. This kind

of quantification over future worlds is commonplace in Kripke logical relations.

The only really interesting bit in the definition of V [[τ]]ρ is the use of T [[Ω]]w to

characterize when the two type arguments (respectively, components) of a universal

(respectively, existential) are logically related. As explained in Section 3.3, we consider

two types to be logically related in world w iff they are the same up to the partial

bijection w.η. Formally, we define T [[Ω]]w as a relation on triples (τ1, τ2, r), where

τ1 and τ2 are the two logically related types and r is a relation telling us how to

relate values of those types. To be logically related means that τ1 and τ2 are the

concretizations (according to w.η) of some “semantic” type τ′. Correspondingly, r is

the logical relation V [[τ′]]w.ρ at that semantic type. Thus, when we write E[[τ]]ρ, α �→ r

in the definition of V [[∀α.τ]]ρ, this is roughly equivalent to writing E[[τ[τ′/α]]]ρ (which

our discussion in Section 3.2 might have led the reader to expect to see here instead).

The reason for our present formulation is that E[[τ[τ′/α]]]ρ is not quite right: the

free variables of τ are interpreted by ρ, but the free variables of τ′ are dynamic type

names whose interpretations are given by w.ρ. It is possible to merge ρ and w.ρ into

a unified interpretation ρ′, but we feel our present approach is cleaner.

Another point of note: since r is uniquely determined from τ1 and τ2, it is not

really necessary to include it in the T [[Ω]]w relation. However, as we shall see in

Section 6, formulating the logical relation in this way has the benefit of isolating all

of the non-parametricity of our logical relation in the one-line definition of T [[Ω]]w,

which may then easily be replaced with a more traditional parametric one.

The term relation E[[τ]]ρ is very similar to that in previous step-indexed Kripke

logical relations (Ahmed et al., 2009). Briefly, it says that two terms are related in

an initial world w if whenever the first evaluates to a value under w.σ1, the second

evaluates to a value under w.σ2, and the resulting stores and values are related in

some future world w′.

The remainder of the definitions in Figure 3 serves to formalize a logical relation

for open terms. G[[Γ]]ρ is the logical relation on value substitutions γ, which asserts
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that related γ’s must map variables in dom(Γ) to related values. D[[Δ]]w is the

logical relation on type substitutions. It asserts that related δ’s must map variables

in dom(Δ) to types that are related in w. For type variables α bound as α ≈ τ, the

δ’s must map α to a type name whose semantic interpretation in w is precisely the

logical relation at τ. Analogously to T [[Ω]]w, the relation D[[Δ]]w also includes a

relational interpretation ρ, which may be uniquely determined from the δ’s.

Finally, the open logical relation Δ; Γ 	 e1 � e2 : τ is defined in a fairly standard

way. It says that for any starting world w0, and any type substitutions δ1 and δ2

related in that world, if we are given related value substitutions γ1 and γ2 in any

future world w, then δ1γ1e1 and δ2γ2e2 are related in w as well.

4.2 Why and where the steps matter

As we explained in Section 3.2, step indices play a critical role in making the logical

relation well founded. Essentially, whenever we run into an apparent circularity, we

“go down a step” by defining an n-level property in terms of an (n−1)-level one. Of

course, this trick only works if, at all such “stepping points,” the only way that an

adversarial program context could possibly tell whether the n-level property holds or

not is by taking one step of computation and then checking whether the underlying

(n−1)-level property holds. Fortunately, this is the case.

Since worlds contain relations, and relations contain sets of tuples that include

worlds, a näıve construction of these objects would have an inconsistent cardinality.

We thus stratify both worlds and relations by a step index: n-level worlds w ∈
Worldn contain n-level interpretations ρ ∈ Interpn, which map type variables to

n-level relations; n-level relations R ∈ Reln[τ1, τ2] only contain atoms indexed by a

step level k < n and a world w ∈ Worldk . Although our possible worlds have a

different structure than in previous work, the technique of mutual world and relation

stratification is similar to that used in Ahmed’s thesis (2004), as well as recent work

by Ahmed et al. (2009).

Intuitively, the reason this works in our setting is as follows. Viewed as a judgment,

our logical relation asserts that two terms e1 and e2 are logically related for k steps

in a world w at a type τ under an interpretation ρ (whose domain contains the

free type variables of τ). Clearly, in order to handle the case where τ is just a type

variable α, the relations r in the range of ρ must include atoms at step index k (i.e.,

the r’s must be in SomeRelk+1).

But what about the relations in the range of w.ρ? Those relations only come

into play in the universal and existential cases of the logical relation for values.

Consider the existential case (the universal one is analogous). There, w.ρ pops up

in the definition of the relation r that comes from Tk[[Ω]]w. However, that r is only

needed in defining the relatedness of the values v1 and v2 at step level k−1 (note

that the definition of �R in the second section of Figure 2). Consequently, we only

need r to include atoms at step k−1 and lower (i.e., r must be in SomeRelk), so the

world w from which r is derived need only be in Worldk .

As this discussion suggests, it is crucial that we “go down a step” in the universal

and existential cases of the logical relation. For the other cases, it is not necessary
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to go down a step, although we have the option of doing so. For example, we could

define k-level relatedness at pair type τ1 × τ2 in terms of (k−1)-level relatedness at

τ1 and τ2. But since the type gets smaller, there is no need to. For clarity, we have

only gone down a step in the logical relation at the points where it is absolutely

necessary, and we have used the � notation to underscore those points.

4.3 Interesting properties of the logical relation

The main result concerning our logical relation is, of course, that it provides a sound

technique for proving contextual equivalence of G programs. We now present the

technical development necessary to establish this result. For convenience, we often

omit the step annotation on the restriction operator when it is obvious from context,

e.g., we will write (k−j−1, �w�) instead of (k−j−1, �w�k−j−1). Furthermore, at many

places, we are required to establish the well-typedness conditions imposed by the

definition of Atom[τ1, τ2], but since this is completely straightforward and usually

tedious, we will omit this part of the proofs. If the reader is interested in seeing

how the syntactic typing conditions are maintained, we would refer them to the first

author’s master’s thesis, which shows the full gory details in two representative cases

(namely, the proofs of Lemma 10.21 and Theorem 10.41).

4.3.1 Basic lemmas

We start with a few very basic lemmas that are needed ubiquitously in subsequent

proofs (to the extent that we will usually not even apply them explicitly).

Lemma 1 (Transitivity of World Extension)

1. If (k′′, w′′) � (k′, w′) and (k′, w′) � (k, w), then (k′′, w′′) � (k, w).

2. If (k′′, w′′) � (k′, w′) and (k′, w′) � (k, w), then (k′′, w′′) � (k, w).

Lemma 2 (Restriction)

1. If k′ � k, then Vk′ [[τ]]ρ = �Vk[[τ]]ρ�k′ .
2. If k′ � k, then Ek′ [[τ]]ρ = �Ek[[τ]]ρ�k′ .

Irrelevance (Lemma 3) states that the logical relation only depends on ρ’s

interpretation of those variables that actually occur in τ.

Lemma 3 (Irrelevance)

If �ρ′�n � �ρ�n and ftv(τ) ⊆ dom(ρ), then

1. Vn[[τ]]ρ
′ = Vn[[τ]]ρ,

2. En[[τ]]ρ
′ = En[[τ]]ρ, and

3. Gn[[τ]]ρ
′ = Gn[[τ]]ρ.

The next lemma is a combination of the previous two, but for the type and type

substitution relations.

Lemma 4

1. If (τ1, τ2, r) ∈ Tn[[Ω]]w0 and (k, w) � (n, w0), then (τ1, τ2, �r�k) ∈ Tk[[Ω]]w.

2. If (δ1, δ2, ρ) ∈ Dn[[Δ]]w0 and (k, w) � (n, w0), then (δ1, δ2, �ρ�k) ∈ Dk[[Δ]]w.
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Finally, Inclusion tells us that in order to show two values related in the term

relation, it suffices to show them related in the value relation.

Lemma 5 (Inclusion)

Vn[[τ]]ρ ⊆ En[[τ]]ρ

Proof

Follows easily from the definition of En[[τ]]ρ, by choosing the final world w′ to be

the same as the initial world w. �

4.3.2 Validity

The first important property to show is that, under the assumption that ρ is

a valid relational interpretation of the free variables of τ (i.e., ρ ∈ Interp and

ftv(τ) ⊆ dom(ρ)), the logical relation for values Vn[[τ]]ρ is itself a valid relation (i.e.,

an element of Rel).

For the sake of convenience, whenever we write Vn[[τ]]ρ, En[[τ]]ρ, Gn[[Γ]]ρ, Dn[[Δ]]w,

and Tn[[Ω]]w from now on, we assume ρ ∈ Interp, w ∈ World, and ftv(τ) ⊆ dom(ρ).

As a first step, we note that every element of the value and term relations is a

proper atom.

Lemma 6 (Atomicity)

1. Vn[[τ]]ρ ⊆ Atomval
n [ρ1(τ), ρ2(τ)]

2. En[[τ]]ρ ⊆ Atomn[ρ
1(τ), ρ2(τ)]

The key property of Rel is that its elements must be closed under world extension.

Proving this for the value relation is very easy because the property has mostly been

built into its definition.

Lemma 7 (Closure Under World Extension)

1. If (k, w, v1, v2) ∈ Vn[[τ]]ρ and (k′, w′) � (k, w), then (k′, w′, v1, v2) ∈ Vn[[τ]]ρ.

2. If (k, w, γ1, γ2) ∈ Gn[[Γ]]ρ and (k′, w′) � (k, w), then (k′, w′, γ1, γ2) ∈ Gn[[Γ]]ρ.

Lemma 8 (LR-Validity)

Vn[[τ]]ρ ∈ Reln[ρ
1(τ), ρ2(τ)]

Proof

Follows from Atomicity and Closure Under World Extension. �

4.3.3 Compatibility

The basic building blocks for proving soundness of our logical relation are what

Pitts calls compatibility lemmas (Pitts, 2005), which state that the logical relation is

closed under the constructs of the language.

We first have three properties about syntactic type substitutions, which will be

needed for proving well-formedness of different syntactic elements. Although (as

mentioned earlier) we will be omitting proofs of syntactic-typing side conditions in

the present paper, we include these lemmas here as they help to clarify the subtle

relationship between the various substitutions inhabiting Dn[[Δ]]w and Gn[[Γ]]ρ.
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Lemma 9

If (δ1, δ2, ρ) ∈ Dn[[Δ]]w, then ρi = w.σ∗i ◦ δi and w.σi 	 δi : Δ and ε 	 ρi : Δ.

Lemma 10

If (k, w, γ1, γ2) ∈ Gn[[Γ]]ρ, then w.σi; ε 	 γi : ρi(Γ).

The following is a standard type substitution lemma for logical relations. It is

mainly needed in showing the compatibility lemmas for quantified types.

Lemma 11 (LR-Substitution)

1. Vn[[τ]]ρ, α �→ (ρ1(τ′), ρ2(τ′), Vn[[τ
′]]ρ) = Vn[[τ[τ

′/α]]]ρ.

2. En[[τ]]ρ, α �→ (ρ1(τ′), ρ2(τ′), Vn[[τ
′]]ρ) = En[[τ[τ

′/α]]]ρ.

The following two lemmas are needed for dealing with the particularities of the

non-parametric logical relation. We know by the definition of T and D that for

any (δ1, δ2, ρ) ∈ Dn[[Δ]]w0 and any α bound in Δ there is some τα such that δ1(α)

and δ2(α) are the concretizations of τα with respect to w0, i.e., δ1(α) = w0.η
1(τ) and

δ2(α) = w0.η
2(τ). We define an operation, au, that yields the substitution δ mapping

each α to its corresponding τα (see Lemma 12):

Definition 2 (Anti-Unifier)

Assume that (δ1, δ2, ρ) ∈ Dn[[Δ]]w. The anti-unifying substitution of δ1 and δ2 with

respect to w.η, written au(δ1, δ2, w.η), is defined as follows.

au(ε, ε, η)
def
= ε

au((δ1, α �→ τ1), (δ2, α �→ τ2), η)
def
= au(δ1, δ2, η), α �→ τwhere τ = η−1(τ1) = η−2(τ2)

Here, η−i is short for (ηi)−1, the inverse of ηi. The latter exists because the definition

of Conc ensures that ηi is injective. Furthermore, since η is a partial bijection on the

generated type names, η−1(τ1) and η−2(τ2) are guaranteed to be equal.

Lemma 12

1. If δ = au(δ1, δ2, η), then δ1 = η1 ◦ δ and δ2 = η2 ◦ δ.

2. If (δ1, δ2, ρ) ∈ Dn[[Δ]]w0 and δ = au(δ1, δ2, w0.η) and (k, w) � (n, w0), then

δ = au(δ1, δ2, w.η).

Proof

1. Follows easily from the definition.

2. First, note that (δ1, δ2, �ρ�k) ∈ Dk[[Δ]]w by Lemma 4. Furthermore, since w.η

is an extension of w0.η, the former agrees with the latter on dom(w0.η). As

we know ftv(δi(α)) ⊆ rng(w0.η) for any α, it is clear that au(δ1, δ2, w0.η) =

au(δ1, δ2, w.η). �

The motivation for defining au is the following property, which is crucial for

proving compatibility of � for the rules Einst, Epack, and Ecast, in which its non-

parametricity becomes manifest. The property essentially combines LR-Substitution

(Lemma 11) with the observation that, when (δ1, δ2, ρ) ∈ Dn[[Δ]]w0, it means that

ρ is actually highly constrained. Specifically, �ρ(α).r�n must be the logical relation

Vn[[δ(α)]]w0.ρ, where δ is the anti-unifier of δ1 and δ2.
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Lemma 13

If (δ1, δ2, ρ) ∈ Dn[[Δ]]w0 and δ = au(δ1, δ2, w0.η) and Δ 	 τ, then:

1. Vn[[τ]]ρ = Vn[[δ(τ)]]w0.ρ

2. En[[τ]]ρ = En[[δ(τ)]]w0.ρ

Proof

By primary induction on n and secondary induction on the derivation of Δ 	 τ, we

show the interesting cases in Appendix B. �

Many of the compatibility proofs are straightforward—they do not deal with

worlds in any interesting way, and the non-parametricity does not show up because it

is hidden in T [[Ω]]. Those proofs are thus essentially analogous to their counterparts

in a parametric System F-like setting (Ahmed, 2006) and we only show one example

(Eunpack) here. The only proofs that actually involve interesting reasoning about

worlds are for Einst and Epack. We show the latter; the former is similar (and dual).

Lemma 14 (Compatibility: Epack)

If Δ; Γ 	 e1 � e2 : τ[τ′/α] and Δ 	 τ′, then Δ; Γ 	 pack 〈τ′, e1〉 � pack 〈τ′, e2〉 : ∃α.τ.

Proof

• Suppose w0 ∈ Worldn, (δ1, δ2, ρ) ∈ Dn[[Δ]]w0, (k, w, γ1, γ2) ∈ Gn[[Γ]]ρ, and

(k, w) � (n, w0).

• To show: (k, w, δ1γ1(pack 〈τ′, e1〉), δ2γ2(pack 〈τ′, e2〉)) ∈ En[[∃α.τ]]ρ
• Assume that w.σ1; δ1γ1(pack 〈τ′, e1〉) ↪→j σ1; pack 〈δ1(τ

′), v1〉 where j < k.

• Instantiating the premise yields (k, w, δ1γ1(e1), δ2γ2(e2)) ∈ En[[τ[τ
′/α]]]ρ.

• Consequently, there exists (k − j, w′) � (k, w) such that

w.σ2; δ2γ2(pack 〈τ′, e2〉) ↪→∗ w′.σ2; pack 〈δ2(τ
′), v2〉

with w′.σ1 = σ1 and (k − j, w′, v1, v2) ∈ Vn[[τ[τ
′/α]]]ρ.

• It remains to show (k − j, w′, pack 〈δ1(τ
′), v1〉, pack 〈δ2(τ

′), v2〉) ∈ Vn[[∃α.τ]]ρ.

• Let r := (w′.σ∗1(δ1(τ
′)), w′.σ∗2(δ2(τ

′)), Vk−j[[τ
′]]ρ).

• We now have to show that this witness relation actually has the shape required

by the definition of T [[Ω]], i.e., that (δ1(τ
′), δ2(τ

′), r) ∈ Tk−j[[Ω]]w′:

— Let δ := au(δ1, δ2, w0.η).

— It suffices to show (δ1(τ
′), δ2(τ

′), r) = (w′.η1δ(τ′), w′.η2δ(τ′),

(w′.ρ1δ(τ′), w′.ρ2δ(τ′), Vk−j[[δ(τ′)]]w′.ρ)).

— By Lemma 4, (δ1, δ2, �ρ�) ∈ Dk−j[[Δ]]w′.

— First, δi(τ
′) = w′.ηiδ(τ′) by Lemma 12.

— Second, w′.σ∗i (δi(τ
′)) = w′.σ∗i (w

′.ηiδ(τ′)) = w′.ρiδ(τ′) because w′ ∈ World.

— Finally, Vk−j[[τ
′]]ρ = Vk−j[[δ(τ′)]]w′.ρ by Lemma 13.

• It thus suffices to show that (k′′, w′′, v1, v2) ∈ Vn[[τ]]ρ, α �→ r for any (k′′, w′′) �

(k−j, w′), which follows by Closure Under World Extension and LR-Substitution

from (k − j, w′, v1, v2) ∈ Vn[[τ[τ
′/α]]]ρ. �

Lemma 15 (Compatibility: Eunpack)

If Δ; Γ 	 e1 � e2 : ∃α.τ′ and Δ, α; Γ, x:τ′ 	 e3 � e4 : τ with Δ 	 τ,

then Δ; Γ 	 unpack〈α, x〉=e1 in e3 � unpack〈α, x〉=e2 in e4 : τ.
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Proof

• Suppose w0 ∈ Worldn, (δ1, δ2, ρ) ∈ Dn[[Δ]]w0, (k, w, γ1, γ2) ∈ Gn[[Γ]]ρ, and

(k, w) � (n, w0).

• Show: (k, w, δ1γ1(unpack 〈α, x〉=e1 in e3), δ2γ2(unpack 〈α, x〉=e2 in e4)) in

En[[τ]]ρ

• Assume that w.σ1; δ1γ1(unpack 〈α, x〉=e1 in e3) terminates:

w.σ1; δ1γ1(unpack 〈α, x〉=e1 in e3)

↪→j1 σ′1; unpack 〈α, x〉=(pack 〈τ1, v1〉) in δ1γ1(e3)

↪→1 σ′1; δ1γ1(e3)[τ1/α][v1/x]

↪→j2 σ1; v3

and that j1 + 1 + j2 =: j < k.

• Instantiating the first premise yields the existence of (k − j1, w
′) � (k, w) such

that

w.σ2; δ2γ2(unpack 〈α, x〉=e2 in e4)

↪→∗ w′.σ2; unpack 〈α, x〉=(pack 〈τ2, v2〉) in δ2γ2(e4)

with w′.σ1 = σ′1 and (k − j1, w
′, pack 〈τ1, v1〉, pack 〈τ2, v2〉) ∈ Vn[[∃α.τ′]]ρ.

• Hence, there is r such that (τ1, τ2, r) ∈ Tk−j1 [[Ω]]w′ and (k− j1−1, �w′�, v1, v2) ∈
Vn[[τ

′]]ρ, α �→ r.

• By Lemma 4, (δ1, δ2, �ρ�k−j1 ) ∈ Dk−j1 [[Δ]]w′.

• Let (δ′1, δ
′
2, ρ

′) := ((δ1, α �→ τ1), ((δ2, α �→ τ2), (�ρ�k−j1 , α �→ r))), hence (δ′1, δ
′
2, ρ

′) ∈
Dk−j1 [[Δ, α]]w

′.

• By Closure Under World Extension, we know (k− j1−1, �w′�, γ1, γ2) ∈ Gn[[Γ]]ρ

and thus (k − j1 − 1, �w′�, γ1, γ2) ∈ Gk−j1 [[Γ]]ρ′.

• Let γ′i := γi, x �→ vi, so we get (k − j1 − 1, �w′�, γ′1, γ′2) ∈ Gk−j1 [[Γ, x:τ′′]]ρ′.

• Instantiating the second premise with w′ ∈ Worldk−j1 , (δ
′
1, δ

′
2, ρ

′) ∈ Dk−j1 [[Δ, α]]w
′

and (k − j1 − 1, �w′�, γ′1, γ′2) ∈ Gk−j1 [[Γ, x:τ′′]]ρ′ now yields

(k − j1 − 1, �w′�, δ′1γ′1(e3), δ
′
2γ
′
2(e4)) ∈ Ek−j1 [[τ]]ρ

′.

• Note that

δ′i γ
′
i(ei+2)

= δi(γi(ei+2)[vi/x])[τi/α])

= δiγi(ei+2)[vi/x][τi/α]) since 	 w′.σi; vi : (ρ, α �→Vk−j1 [[τ
′′]]w′.ρ)i(τ′)

= δiγi(ei+2)[τi/α][vi/x] ditto

• Therefore, σ′1; δ1γ1(e3)[τ1/α][v1/x] ↪→j2 σ1; v3 implies the existence of (k −
j, w′′) � (k − j1 − 1, �w′�) such that

w′.σ2; δ2γ2(e4)[τ2/α][v2/x] ↪→∗ w′′σ2; v4

with w′′.σ1 = σ1 and (k − j, w′′, v3, v4) ∈ Vk−j1 [[τ]]ρ
′.

• Since Δ 	 τ, the latter implies (k − j, w′′, v3, v4) ∈ Vn[[τ]]ρ. �

In the proof of compatibility for cast, we first have to argue that the argument

types on the left-hand side, δ1(τ1) and δ1(τ2), are equal if and only if the argument

types on the right-hand side, δ2(τ1) and δ2(τ2), are so that we have the same reduction

on both sides. This is easy to see with the help of Lemma 12, which tells us that

δi = w0.η
i ◦ δ (where δ is the anti-unifying substitution of δ1 and δ2)—meaning that
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δ1 and δ2 map to types that are syntactically identical up to some bijection on type

names. Recall that we consider dom(w0.η) to contain bound variables and thus can

assume it to be disjoint from rng(w0.η
i) without loss of generality. We then have

to distinguish two cases. If the type arguments are not equal (the cast fails), there

is not much to do, as expected. If the cast succeeds, however, we basically need to

show that the argument types are also semantically equal, i.e., Vn[[τ1]]ρ = Vn[[τ2]]ρ.

Since δ(τ1) = δ(τ2), this follows from Lemma 13.

Lemma 16 (Compatibility: Ecast)

If Δ 	 Γ and Δ 	 τ1 and Δ 	 τ2, then Δ; Γ 	 cast τ1 τ2 � cast τ1 τ2 : τ1 → τ2 → τ2.

Proof

• Suppose w0 ∈ Worldn, (δ1, δ2, ρ) ∈ Dn[[Δ]]w0, (k, w, γ1, γ2) ∈ Gn[[Γ]]ρ, and

(k, w) � (n, w0).

• To show: (k, w, cast δ1(τ1) δ1(τ2), cast δ2(τ1) δ2(τ2)) ∈ En[[τ1 → τ2 → τ2]]ρ.

• Let δ := au(δ1, δ2, w0.η).

• Then δ(τ1) = w0.η
−iδi(τ1) and w0.η

−iδi(τ2) = δ(τ2) by Lemma 12.

• Consequently,

δ1(τ1) = δ1(τ2)

⇐⇒ w0.η
−1δ1(τ1) = w0.η

−1δ1(τ2)

⇐⇒ δ(τ1) = δ(τ2)

⇐⇒ w0.η
−1δ2(τ1) = w0.η

−1δ2(τ2)

⇐⇒ δ2(τ1) = δ2(τ2)

• Case δi(τ1) = δi(τ2):

— Then, we have the following reductions:

w.σi; cast δi(τ1) δi(τ2) ↪→1 w.σi; λx1.λx2.x1

— Hence, it suffices to show

(k − 1, �w�, λx1.λx2.x1, λx1.λx2.x1) ∈ Vn[[τ1 → τ2 → τ2]]ρ.

— So suppose (k′, w′) � (k − 1, �w�) and (k′, w′, v1, v2) ∈ Vn[[τ1]]ρ.

— To show: (k′, w′, λx2.v1, λx2.v2) ∈ Vn[[τ2 → τ2]]ρ.

— So suppose (k′′, w′′) � (k′, w′) and (k′′, w′′, v′1, v
′
2) ∈ Vn[[τ2]]ρ.

— To show: (k′′, w′′, v1, v2) ∈ Vn[[τ2]]ρ

— By Closure Under World Extension, (k′′, w′′, v1, v2) ∈ Vn[[τ1]]ρ.

— The claim then follows by δ(τ1) = δ(τ2) and Lemma 13.

• Case δi(τ1) �= δi(τ2):

— Then, we have the following reductions:

w.σi; cast δi(τ1) δi(τ2) ↪→1 w.σi; λx1.λx2.x2

— Hence, it suffices to show

(k − 1, �w�, λx1.λx2.x2, λx1.λx2.x2) ∈ Vn[[τ1 → τ2 → τ2]]ρ.

— So suppose (k′, w′) � (k − 1, �w�) and (k′, w′, v1, v2) ∈ Vn[[τ1]]ρ.

— To show: (k′, w′, λx2.x2, λx2.x2) ∈ Vn[[τ2 → τ2]]ρ.

— So suppose (k′′, w′′) � (k′, w′) and (k′′, w′′, v′1, v
′
2) ∈ Vn[[τ2]]ρ.

— To show: (k′′, w′′, v′1, v
′
2) ∈ Vn[[τ2]]ρ, which is immediate. �
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Since new is the only construct that modifies the type store, its compatibility proof

is also the only one where we actually have to extend the η and ρ components of

the initial world w with bindings for some fresh dynamically generated type name

(here, α). The η is extended with α �→ (α1, α2), where α1 and α2 are the concrete fresh

names that are chosen when evaluating the left and right new expressions. The ρ is

extended so that the relational interpretation of α is simply the logical relation at

type τ′. The proof of this lemma is highly reminiscent of the proof of compatibility

for reference allocation in a language with mutable references (Ahmed et al., 2009).

Lemma 17 (Compatibility: Enew)

If Δ, α≈τ′; Γ 	 e1 � e2 : τ and Δ 	 τ and Δ 	 Γ,

then Δ; Γ 	 new α≈τ′ in e1 � new α≈τ′ in e2 : τ.

Proof

• Suppose w0 ∈ Worldn, (δ1, δ2, ρ) ∈ Dn[[Δ]]w0, (k, w, γ1, γ2) ∈ Gn[[Γ]]ρ, and

(k, w) � (n, w0).

• To show: (k, w, δ1γ1(new α≈τ′ in e1), δ2γ2(new α≈τ′ in e2)) ∈ En[[τ]]ρ.

• Assume that w.σ1; δ1γ1(new α≈τ′ in e1) terminates:

w.σ1; δ1γ1(new α≈τ′ in e1)

↪→1 w.σ1, α1≈δ1(τ
′); δ1γ1(e1)[α1/α]

↪→j ′ σ1; v1

and 1 + j ′ =: j < k.

• Note that

w.σ2; δ2γ2(new α≈τ′ in e2) ↪→1 w.σ2, α2≈δ2(τ
′); δ2γ2(e2)[α2/α].

• Let wα := ((w.σ1, α1≈δ1(τ
′)), (w.σ2, α2≈δ2(τ

′)), (w.η, α �→ (α1, α2)), (w.ρ, α �→ r)) for

r := (ρ1(τ′), ρ2(τ′), Vk[[τ
′]]�ρ�), so (k, wα) � (k, w) and (δ1, δ2, �ρ�) ∈ Dk[[Δ]]wα.

• Let (δ′1, δ
′
2, ρ

′) := ((δ1, α �→ α1), (δ2, α �→ α2), (�ρ�, α �→ r)).

• Note that wα.σi(αi) = δi(τ
′), αi = wα.η

i(α), and wα.ρ(α).R = Vk[[τ
′]]�ρ�.

• Therefore, (δ′1, δ
′
2, ρ

′) ∈ Dk[[Δ, α≈τ′]]wα.

• By Closure Under World Extension, we know (k − 1, �wα�, γ1, γ2) ∈ Gn[[Γ]]ρ

and therefore (k − 1, �wα�, γ1, γ2) ∈ Gk[[Γ]]ρ′.

• Now instantiate the premise with wα ∈ Worldk , (δ′1, δ
′
2, ρ

′) ∈ Dk[[Δ, α≈τ′]]wα,

(k − 1, �wα�, γ1, γ2) ∈ Gk[[Γ]]ρ′, and (k − 1, �wα�) � (k, wα) to get

(k − 1, �wα�, δ′1γ1(e1), δ
′
2γ2(e2)) ∈ Ek[[τ]]ρ

′.

• Note that δ′i γi(ei) = δiγi(ei)[αi/α].

• Consequently, there exists (k − j, w′) � (k − 1, wα) such that

w.σ2, α2≈δ2(τ
′); δ2γ2(e2)[α2/α] ↪→∗ w′.σ2; v2

with w′.σ1 = σ1 and (k − j, w′, v1, v2) ∈ Vk[[τ]]ρ
′.

• Because of Δ 	 τ, the latter implies (k − j, w′, v1, v2) ∈ Vn[[τ]]ρ. �

Compatibility for Econv follows from the fact that isomorphic types are seman-

tically equal, which we prove separately below. The interesting case is when τ1 is a

variable α bound in Δ as α ≈ τ2, and the result in this case follows easily from the

definition of D[[Δ, α≈τ]]w.
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Lemma 18 (Type Isomorphism)

If Δ 	 τ1 ≈ τ2 and (δ1, δ2, ρ) ∈ Dn[[Δ]]w, then

1. Vn[[τ1]]ρ = Vn[[τ2]]ρ and

2. En[[τ1]]ρ = En[[τ2]]ρ.

Lemma 19 (Compatibility: Econv)

If Δ; Γ 	 e1 � e2 : τ′ and Δ 	 τ ≈ τ′, then Δ; Γ 	 e1 � e2 : τ.

Proof

Follows from Type Isomorphism. �

4.3.4 Soundness

Theorem 20 (Fundamental Property of �)

If Δ; Γ 	 e : τ, then Δ; Γ 	 e � e : τ.

Proof

By induction on the typing derivation, in each case using the appropriate compati-

bility lemma. �

The full compatibility and the Fundamental Property of � are at the heart of

the soundness proof. Based on that and the following small lemma we can finally

establish that � is a precongruence with respect to the constructs of the language

and then prove the actual soundness theorem.

Lemma 21 (LR-Weakening)

If Δ; Γ 	 e1 � e2 : τ, Δ′ ⊇ Δ, Γ′ ⊇ Γ, and Δ′ 	 Γ, then Δ′; Γ′ 	 e1 � e2 : τ.

Lemma 22 (Precongruence of �)

If Δ; Γ 	 e1 � e2 : τ and 	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ′), then Δ′; Γ′ 	 C[e1] � C[e2] : τ′.

Proof

By induction on the derivation of the context typing, in each case using the

appropriate compatibility lemma. For a context containing another term, we also

need the Fundamental Property; for C = [ ], we need LR-Weakening. �

Theorem 23 (Soundness of � with respect to �)

If Δ; Γ 	 e1 � e2 : τ, then Δ; Γ 	 e1 � e2 : τ.

Proof

• Suppose 	 σ and 	 C : (Δ; Γ; τ) � (σ; ∅; τ′) and σ;C[e1] ↓, i.e., σ;C[e1] ↪→j

σ1; v1.

• To show: σ;C[e2]↓
• By Precongruence, we have σ; ε 	 C[e1] � C[e2] : τ′.

• To instantiate this, we first need to create an initial world representing σ. Say,

σ = α1≈τ1, . . . , αn≈τn.
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• Let

σ0 := ε

σi+1 := σi, αi+1≈τi+1

δ0 := ∅
δi+1 := δi, αi+1 �→ αi+1

ρ0 := ∅
ρi+1 := ρi, αi+1 �→Vj+2[[τi+1]]ρi
w := (σ, σ, {αi �→ (αi, αi) | 1 � i � n}, ρn)

• Note that ρi ∈ Interpj+2 and w ∈ Worldj+2.

• Furthermore, given 0 � i < n, it is easy to see that (δi, δi, ρi) ∈ Dj+2[[σi]]w

implies (δi+1, δi+1, ρi+1) ∈ Dj+2[[σi+1]]w.

• Together with (δ0, δ0, ρ0) ∈ Dj+2[[ε]]w this means (δn, δn, ρn) ∈ Dj+2[[σ]]w.

• Instantiate σ; ε 	 C[e1] � C[e2] : τ′ with w ∈ Worldj+2, (δn, δn, ρn) ∈ Dj+2[[σ]]w

and (j + 1, �w�, ∅, ∅) ∈ Gj+2[[ε]]ρn to get (j + 1, �w�, δn(C[e1]), δn(C[e2])) ∈
Ej+2[[τ

′]]ρn.

• Note that δn(C[ei]) = C[ei].

• Because of the assumption σ;C[e1] ↪→j σ1; v1, we therefore get σ;C[e2]↓. �

4.4 Examples

Semaphore. We now return to our semaphore example from Section 2 and show

how to prove representation independence for the two different implementations

esem1 and esem2. Recall that the former uses int, the latter bool. To show that they

are contextually equivalent, it suffices by Soundness to show that each logically

approximates the other. We prove only one direction, namely, 	 esem1 � esem2 : τsem;

the other is proven analogously.

Expanding the definitions, we need to show (k, w, esem1, esem2) ∈ En[[τsem]]. Note

how each term generates a fresh type name αi in one step, resulting in a package

value. Hence, all we need to do is come up with a world w′ satisfying

• (k − 1, w′) � (k, w),

• w′.σ1 = w.σ1, α1≈int and w′.σ2 = w.σ2, α2≈bool,

• (k − 1, w′, pack〈α1, v1〉, pack〈α2, v2〉) ∈ Vn[[τsem]].

Here, vi is the term component of esemi’s implementation. We construct w′ by

extending w with mappings that establish the relation between the new type names:

R := {(k′′, w′′, vint, vbool) ∈ Atomval
k−1[int, bool] |

(vint, vbool) = (1, true) ∨ (vint, vbool) = (0, false)}
r := (int, bool, R)

w′ := ((w.σ1, α1≈int), (w.σ2, α2≈bool), (w.η, α �→ (α1, α2)), (�w.ρ�k−1, α �→ r))

The first two conditions above are satisfied by construction. To show that the

packages are related, we need to show the existence of an r′ with (α1, α2, r
′) ∈

Tk−1[[Ω]]w′ such that (k − 2, �w′�, v1, v2) ∈ Vn[[τ
′
sem]](α �→ r′), where τ′sem = α × (α →

α)× (α → bool). Since αi = w′.ηi(α), r′ must be (int, bool, Vk−1[[α]]w
′.ρ) by definition

of T [[Ω]]. Of course, we defined w′ the way we did so that this r′ is exactly r.
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The proof of (k − 2, �w′�, v1, v2) ∈ Vn[[τ
′
sem]](α �→ r) decomposes into three parts,

following the structure of τ′sem:

1. (k − 2, �w′�, 1, true) ∈ Vn[[α]](α �→ r)

This holds because Vn[[α]](α �→ r) = R.

2. (k − 2, �w′�, λx.(1− x), λx.¬x) ∈ Vn[[α→ α]](α �→ r)

• Suppose we are given related arguments in a future world: (k′′, w′′, v′1, v
′
2) ∈

Vn[[α]](α �→ r) = R.

• Hence, either (v′1, v
′
2) = (1, true) or (v′1, v

′
2) = (0, false).

• Consequently, 1− v′1 and ¬v′2 will evaluate in one step, without effects, to

values again related by R.

• In other words, (k′′, w′′, 1− v′1,¬v′2) ∈ En[[α]](α �→ r).

3. (k − 2, �w′�, λx.(x �= 0), λx.x) ∈ Vn[[α→ bool]](α �→ r)

Like in the previous part, the arguments v′1 and v′2 will be related by R in some

future (k′′, w′′). Therefore, v′1 �= 0 will reduce in one step without effects to v′2,

which already is a value. Because of the definition of the logical relation at

type bool, this implies (k′′, w′′, v′1 �= 0, v′2) ∈ En[[bool]](α �→ r).

Partly benign effects (repeatability). When side effects are introduced into a pure

language, they often falsify various equational laws concerning repeatability and

order independence of computations. In this section, we offer some evidence that

the effect of dynamic type generation is partly benign in that it does not invalidate

some of these equational laws.

Consider the following functions (where τ is arbitrary but closed):

v1 := λx:(unit → τ). let x′ = x () in x ()

v2 := λx:(unit → τ). x ()

The only difference between v1 and v2 is whether the argument x is applied once or

twice. Intuitively, either x () diverges, in which case both programs diverge, or else

the first application of x terminates, in which case so should the second. A detailed

formal proof of v1 and v2’s equivalence is given in Appendix B.

Partly benign effects (order independence). Now consider the following functions:

v′1 := λx:(unit → τ).λy:(unit → τ′). let y′ = y () in 〈x (), y′〉
v′2 := λx:(unit → τ).λy:(unit → τ′). 〈x (), y ()〉

The only difference between v′1 and v′2 is the order in which they call their argument

callbacks x and y. Those calls may both result in the generation of fresh type names,

but the order in which the names are generated should not matter. Again, a formal

proof of equivalence can be found in Appendix B.

However, as we shall see in the example of e′1 and e′2 in the next section, our G

language does not enjoy referential transparency. This is to be expected, of course,

since new is an effectful operation and (in-)equality of type names is observable in

the language.
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5 Wrapping

We have seen that parametricity can be re-established in G by introducing name

generation in the right place. But what is the “right place” in general? That is, given

an arbritrary expression e with polymorphic type τe, how can we systematically

transform it into an expression e′ of the same type τe that is parametric?

One obvious—but unfortunately bogus—idea is the following: transform e such

that every existential introduction and every universal elimination creates a fresh

name for the respective witness or instance type. Formally, apply the following

rewrite rules to e:

pack 〈τ, e〉 as τ′ � new α≈τ in pack 〈α, e〉 as τ′

e τ � new α≈τ in e α

Obviously, this would make every quantified type abstract so that any cast that tries

to inspect it would fail.

Or would it? Perhaps surprisingly, the answer is no. To see why, consider the

following expressions of type (∃α.τ′)× (∃α.τ′):

e1 := let x = pack 〈τ, v〉 in 〈x, x〉
e2 := 〈pack 〈τ, v〉, pack 〈τ, v〉〉

They are clearly equivalent in a parametric language (and in fact, they are even

equivalent in G). Yet rewriting yields:

e′1 := let x = (new α≈τ in pack 〈α, v〉) in 〈x, x〉
e′2 := 〈new α≈τ in pack 〈α, v〉, new α≈τ in pack 〈α, v〉〉

The resulting expressions are not equivalent anymore, because they perform different

effects. Here is one distinguishing context:

let p = [ ] in unpack 〈α1, x1〉 = p.1 in

unpack 〈α2, x2〉 = p.2 in equal? α1 α2

Although the representation type τ is not disclosed as such, sharing between the two

abstract types in e′1 is. In a parametric language, that would not be possible.

In order to introduce effects uniformly, and to hide internal sharing, the trans-

formation we are looking for needs to be defined on the structure of types, not

terms. Roughly, for each quantifier occurring in τe, we need to generate one fresh

type name. That is, instead of transforming e itself, we simply wrap it with some

expression that introduces the necessary names at the boundary, by induction on

the type τe.

In fact, we can refine the problem further. When looking at a G expression e,

what do we actually mean by “making it parametric”? We can mean two different

things: either ensuring that e behaves parametrically, or dually, that any context

treats e parametrically. In the former case, we are protecting the context against e,

in the latter we protect e against malicious contexts. The latter is what is sometimes

referred to as abstraction safety.

Figure 4 defines a pair of wrapping operators that correspond to these two dual

requirements: Wr+ protects an expression e : τe from being used in a non-parametric
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Wr±α
def
= λx:α.x

Wr±b
def
= λx:b.x

Wr±τ1×τ2
def
= λx:(τ1 × τ2).〈Wr±τ1 (x.1),Wr±τ2 (x.2)〉

Wr±τ1→τ2

def
= λx:(τ1 → τ2).λx1:τ1.Wr±τ2 (x (Wr∓τ1 x1))

Wr±∀α.τ
def
= λx:(∀α.τ).Λα. new∓ α in Wr±τ (x α)

Wr±∃α.τ
def
= λx:(∃α.τ). unpack 〈α, x′〉=x in

new± α in pack 〈α,Wr±τ x′〉 as ∃α.τ
new+ α in e

def
= new α′≈α in e[α′/α]

new− α in e
def
= e

Fig. 4. Wrapping for G.

way, by inserting fresh names for each existential quantifier. Dually, Wr− forces e to

behave parametrically by creating a fresh name for each polymorphic instantiation.

The definitions extend to other types in the usual functorial manner. Both definitions

are interdependent because roles switch for function arguments. These operators are

similar to the type-directed translation that Sumii & Pierce (2007a) suggest for

establishing type abstraction in an untyped language (they propose the descriptive

terms “firewall” for Wr+, and “sandbox” for Wr−). However, their use of dynamic

sealing instead of type generation results in the insertion of runtime coercions to

seal/unseal each individual value of abstract type, while our wrapping leaves such

values alone.

Lemma 24

If Δ 	 τ, then Δ; ε 	 Wr±τ : τ→ τ.

Given these operators, we can go back to our semaphore example: esem1 can now

be obtained as Wr+
τsem

esem (modulo some harmless η-expansions). This generalizes

to other ADTs: wrapping their implementations positively will guarantee abstraction

by “making them parametric.” We prove that in the next section.

Positive wrapping at existential type is reminiscent of module sealing (or opaque

signature ascription) in ML-style module languages. If we view e as a module and

its type τe as a signature, then Wr+
τe
e corresponds to the sealing operation e :> τe.

While module sealing typically only performs static abstraction, wrapping provides

the dynamic equivalent (Rossberg, 2008). In fact, positive wrapping is precisely

how sealing is implemented in Alice ML (Rossberg et al., 2004), where the module

language is non-parametric otherwise.

The correspondence to module sealing motivates our treatment of existential

types. Notice that Wr+ causes a fresh type name to be created only once for each

existentially quantified type—that is, corresponding to each existential introduction.

Another option would be to generate type names with each existential elimination.

In fact, such a semantics would arise naturally were we to use a Church encoding

of existentials in conjunction with our wrapping for universals. However, in such a

semantics, unpacking an existential value twice would have the effect of producing

two distinct abstract types. While this corresponds intuitively to the “generativity” of
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Tπ
n [[Ω]]w

def
= {(τ1, τ2, (w.σ

∗
1(τ1), w.σ

∗
2(τ2), R)) |

ftv(τi) ⊆ dom(w.σi) ∧ R ∈ Reln[w.σ
∗
1(τ1), w.σ

∗
2(τ2)]}

(everything else as in Figure 3)

Fig. 5. Parametric logical relation.

unpack in System F, it is undesirable in the context of dynamic, first-class modules.

In particular, in order for an abstract type t defined by some dynamic module M

to have some permanent identity (so that it can be referenced by other dynamic

modules), it is important that each unpacking of M yields a handle to the same name

for t (see Rossberg’s thesis (2007) for illustrative examples). Moreover, as we show in

the next section, our definition of wrapping is sufficient to ensure abstraction safety.

6 Parametric reasoning

The logical relation developed in Section 4 enables us to do non-parametric reasoning

about equivalence of G programs. It also enables us to do parametric reasoning,

but only indirectly: we have to explicitly deal with the effects of new and to define

worlds containing relations between type names. It would be preferable if we were

able to do parametric reasoning directly. For example, given two terms e1 and e2

that do not use casts, and assuming that the context does not do so either, we should

be able to reason about equivalence of e1 and e2 in a manner similar to what we do

when reasoning about System F.

6.1 A parametric logical relation

Thanks to the modular formulation of our logical relation in Figure 3, it is easy to

modify it so that it becomes parametric. All we need to do is swap out the definition

of T [[Ω]]w, which relates types as data. Figure 5 gives an alternative definition that

allows choosing an arbitrary relation between arbitrary types. Everything else stays

exactly the same. We decorate the set of parametric logical relations thus obtained

with π (i.e., Vπ , Eπ , etc.) to distinguish them from the original ones. Likewise, we

write �π for the notion of parametric logical approximation defined as in Figure 3

but in terms of the parametric relations. For clarity, we will refer to the original

definition as the non-parametric logical relation.

This modification gives us a seemingly parametric definition of logical approxima-

tion for G terms. But what does that actually mean? What is the relation between

parametric and non-parametric logical approximation and, ultimately, contextual ap-

proximation? Since the language is not parametric, clearly, parametrically equivalent

terms generally are not contextually equivalent.

The answer is given by the wrapping functions we defined in the previous

section. The following theorem connects the two notions of logical relation and

approximation that we have introduced:

Theorem 25 (Wrapping for �π)

1. If 	 e1 �π e2 : τ, then 	 Wr+
τ e1 �Wr+

τ e2 : τ.
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2. If 	 e1 � e2 : τ, then 	 Wr−τ e1 �π Wr−τ e2 : τ.

This theorem justifies the definition of the parametric logical relation. At the same

time, it can be read as a correctness result for the wrapping operators: it says that

if we can relate two terms using parametric reasoning, then the positive wrapping

of the first term contextually approximates the positive wrapping of the second.

Dually, once any properly related terms are wrapped negatively, they can safely be

passed to any term that depends on its context behaving parametrically.

Rather than giving the proof of Theorem 25 now, we will wait until Section 8.1

to derive it as a corollary of a more general result (see Corollary 32).

The alert reader may wonder why this Wrapping Theorem only talks about closed

terms. First of all, simply allowing open terms would not be correct. For instance, it

is easy to see that we have

ε; x:(∀α.bool) 	 x bool �π x unit : bool

because the instantiations of x will be parametric by definition. For �, they may, of

course, be non-parametric (consider equal? unit being plugged in for x), hence

ε; x:(∀α.bool) 	 x bool � x unit : bool

does not hold. However, since Wr+
bool is just the identity function, this is essentially

what the naive extension of the Wrapping theorem to open terms would tell us.

The solution to this (we conjecture) is to wrap all free value variables at the

inverse polarity so that the theorem would look as follows:

1. If Δ; Γ 	 e1 �π e2 : τ, then Δ; Γ 	 Wr+
τ γ−Γ (e1) �Wr+

τ γ−Γ (e2) : τ.

2. If Δ; Γ 	 e1 � e2 : τ, then Δ; Γ 	 Wr−τ γ+
Γ (e1) �π Wr−τ γ+

Γ (e2) : τ.

Here, the substitution γ±Γ replaces each free variable x:τ by its wrapping Wr±τ x and

could be defined as follows:

γ±ε
def
= ∅ γ±Γ,x:τ

def
= γ±Γ , x �→ (Wr±τ x)

Proving this theorem correct, however, is another matter. One problem is that if

we attempt to prove the above statement, after unfolding the definition of logical

approximation in part (1), we are given some (δ1, δ2, ρ) ∈ D[[Δ]]. To instantiate the

assumption appropriately, (δ1, δ2, ρ) needs to be in Dπ[[Δ]]. In part (2), the situation

is the other way around. However, D[[Δ]] and Dπ[[Δ]] are only equal if Δ does

not contain components of the form α≈τ′. Another problem is that wrapped value

substitutions—which arise in the proof—are no longer value substitutions. All in all,

we believe these problems can be solved, but we leave the solution to future work.

Finally, what can we say about the content of the parametric relation? Obviously,

it cannot contain arbitrary non-parametric G terms—e.g., Λα1.Λα2. cast α1 α2 is not

even related to itself in Eπ . Apart from cast, however, the parametric relation is

compatible with all constructs. The corresponding compatibility proofs for the non-

parametric relation carry over. The only difference is that compatibility for Epack

and Einst become easier to show. In the proof of the former, for instance, it is

immediate that the witness relation has the required form because Tπ[[Ω]] does not

actually impose any restrictions.
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Consequently, we obtain the following restricted form of the Fundamental Prop-

erty:

Theorem 26 (Fundamental Property for �π)

If Δ; Γ 	 e : τ and e is cast-free, then Δ; Γ 	 e �π e : τ.

In particular, this implies that any well-typed System F term is parametrically related

to itself. The relation will also contain terms with cast, but only if the use of cast

does not violate parametricity. (We discuss this further in Section 7.)

Along the same lines, we can show that our parametric logical relation is sound

with respect to contextual approximation, if the definition of the latter is limited to

quantifying only over cast-free contexts:

Theorem 27 (Soundness of �π)

If Δ; Γ 	 e1 �π e2 : τ, then for any cast-free C : (Δ; Γ; τ)� (σ; ε; τ′) with 	 σ:

σ;C[e1]↓ ⇒ σ;C[e2]↓

Proof

Analogous to the soundness proof for �. The difference is that �π is a precongruence

only with respect to cast-free contexts. �

6.2 Examples

Semaphore. Consider our running example of the semaphore module again. Using

the parametric relation, we can prove that the two implementations are related

without actually reasoning about type generation. That latter aspect of the proof is

covered once and for all by the Wrapping Theorem.

Recall the two implementations, here given in unwrapped form:

τsem := ∃α.α× (α→ α)× (α→ bool)

e′sem1 := pack 〈int, 〈1, λx: int .(1− x), λx: int .(x �= 0)〉〉 as τsem

e′sem2 := pack 〈bool, 〈true, λx: bool .¬x, λx: bool .x〉〉 as τsem

We can prove 	 e′sem1 �
π e′sem2 : τsem using conventional parametric reasoning about

polymorphic terms, i.e., we immediately get to pick the relational interpretation of

the abstract type and do not have to operate on worlds at all:

Proof

• Suppose w0 ∈ Worldn and (k, w) � (n, w0).

• To show: (k, w, e′sem1, e
′
sem2) ∈ Vπ

n [[∃α.τ]].
• Let R := {(k′, w′, va, vb) ∈ Atomk−1 | (va, vb) = (true, 1) ∨ (va, vb) = (false, 0)}

and r := (int, bool, R), such that (int, bool, r) ∈ Tπ[[Ω]]w.

• It thus suffices to show (k′, w′, v1, v2) ∈ Vπ
n [[α × (α → α) × (α → bool)]](α �→ r)

for any (k′, w′) � (k, w), where v1 and v2 are the term components of e′sem1 and

e′sem2, respectively.

• This decomposes into the same three parts as in Section 4.4. �
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Now define esem1 = Wr+
τsem

e′sem1 and esem2 = Wr+
τsem

e′sem2, which are semantically

equivalent (by some simple applications of β- and η-equivalence) to the original

definitions in Section 2.3. The Wrapping Theorem then tells us that 	 esem1 � esem2 :

τsem.

A free theorem. We can use the parametric relation for proving free theorems

(Wadler, 1989) in G. For example, for any 	 g : ∀α.α→ α in G, it holds that Wr− g

either diverges for all possible arguments τ and 	 v : τ, or it returns v in all cases.

Informally, we first apply the Fundamental Property for � to relate g to itself in

E, then transfer this to Eπ for Wr− g using the Wrapping Theorem. From there, the

proof proceeds in the usual way.

Formally, we have to strengthen the claim slightly: Suppose σ0 	 v : ∀α.α → α.

We want to show that either

1. for all σ ⊇ σ0, τ, v
′ with σ 	 v′ : τ, σ; Wr−∀α.α→α v τ v′ ↑ , or

2. for all σ ⊇ σ0, τ, v
′ with σ 	 v′ : τ, there is σ′ such that σ; Wr−∀α.α→α v τ v′ ↪→∗

σ′; v′.

Assume that part (1) does not hold (otherwise, we are done). In this case, we know

that there is at least one appropriate σ1, τ1, v1 such that σ1; Wr− v τ1 v1 evaluates

in j := j1 + 1 + j2 + 1 + j3 steps to some σ′′′1 ; v′1:

σ1; Wr− v τ1 v1

↪→j1 σ′1; (Λα.e1) τ1 v1

↪→1 σ′1; e1[τ1/α] v1

↪→j2 σ′′1 ; (λx:τ′1.e
′
1) v1

↪→1 σ′′1 ; e
′
1[v1/x]

↪→j3 σ′′′1 ; v′1

We now show that this implies that any σ2; Wr− v τ2 v2 will indeed evaluate to σ′2; v2

(for some σ′2):

• By the Fundamental Property, σ0; ε 	 v � v : ∀α.α→ α.

• Construct w0 ∈ Worldj+2 and (δ1, δ2, ρ) ∈ Dj+2[[σ0]]w0 in the same manner as

in the proof of Soundness (Theorem 23) except that w0.σ1 = σ1 and w0.σ2 = σ2.

• Instantiating σ0; ε 	 v � v : ∀α.α→ α then yields

(j + 1, �w0�, v, v) ∈ Vn[[∀α.α→ α]]ρ

• By Wrapping, (j + 1, �w0�,Wr− v,Wr− v) ∈ Eπ
n [[∀α.α→ α]]ρ.

• Consequently, there exists (j + 1− j1, w
′) � (j + 1, �w0�) such that

σ2; Wr− v τ2 v2 ↪→∗ w′.σ2; (Λα.e2) τ2 v2

with w′.σ1 = σ′1 and (j + 1− j1, w
′,Λα.e1,Λα.e2) ∈ Vπ

n [[∀α.α→ α]]ρ.

• Let R := {(̂k, ŵ, v̂1, v̂2) ∈ Atomj+1−j1 | v̂1 = v1∧ v̂2 = v2} and r := (σ∗1(τ1), σ
∗
2(τ2),

R), so (τ1, τ2, r) ∈ Tπ
j+1−j1 [[Ω]]w′.

• Instantiate (j + 1− j1, w
′,Λα.e1,Λα.e2) ∈ Vπ

n [[∀α.α→ α]]ρ to get

(j + 1− j1 − 1, �w′�, e1[τ1/α], e2[τ2/α]) ∈ Eπ
n [[α→ α]]ρ, α �→ r.
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• Consequently, there exists (j + 1− j1 − 1− j2, w
′′) � (j + 1− j1 − 1, �w′�) such

that

w′.σ2; e2[τ2/α] v2 ↪→∗ w′′.σ2; (λx.e′2) v2

with w′′.σ1 = σ′′1 and (j + 1− j1 − 1− j2, w
′′, λx.e′1, λx.e

′
2) ∈ Vπ

n [[α→ α]]ρ, α �→ r.

• Since (j + 1− j1 − 1− j2 − 1, �w′′�, v1, v2) ∈ R = Vπ
n [[α]]ρ, α �→ r, we get (j + 1−

j1 − 1− j2 − 1, �w′′�, e′1[v1/x], e′2[v2/x]) ∈ Eπ
n [[α]]ρ, α �→ r.

• Consequently, there exists (1, w′′′) � (j + 1− j1 − 1− j2 − 1, �w′′�) such that

w′′.σ2; e
′
2[v2/x] ↪→∗ w′′′.σ2; v

′
2

with w′′′.σ1 = σ′′′1 and (1, w′′′, v′1, v
′
2) ∈ Vπ

n [[α]]ρ, α �→ r = R.

• Hence, v′1 = v1 and v′2 = v2 by construction of R.

7 Syntactic versus semantic parametricity

The primary motivation for our parametric relation in the previous section was to

enable more direct parametric reasoning about the result of (positively) wrapping

System F terms. However, it is also possible to use our parametric relation to reason

about terms that are syntactically, or intensionally, non-parametric (i.e., that use

cast’s), so long as they are semantically, or extensionally, parametric (i.e., the use of

cast is not externally observable).

For example, consider the following two polymorphic functions of type ∀α.τα
(here, let b2i = λx:bool. if x then 1 else 0):

τα := ∃β. (α× α→ β)× (β → α)× (β → α)

g1 := λα. pack 〈α× α, 〈λp.p, λx.(x.1), λx.(x.2)〉〉 as τα
g2 := λα. cast τbool τα

(pack 〈int, 〈λp:(bool× bool). b2i (p.1) + 2×b2i (p.2),

λx:int. x mod 2 �= 0,

λx:int. x div 2 �= 0〉〉 as τbool)

(g1 α)

These two functions take a type argument α and return a simple generic ADT for

pairs over α. But g2 is more clever about it and specializes the representation for

α = bool. In that case, it packs both components into the two least significant bits

of a single integer. For all other types, g2 falls back to the generic implementation

from g1.

Using the parametric relation, we will be able to show that 	 Wr+ g1 �
Wr+ g2 : ∀α.τα. One might find this surprising, since g2 is syntactically non-

parametric, returning different implementations for different instantiations of its

type argument. However, since the two possible implementations g2 returns are

extensionally equivalent to each other, g2 is semantically indistinguishable from the

syntactically parametric g1.

Formally: Assume that τ1, τ2 are the types and Rα ∈ Rel[τ1, τ2] is the relation

the context picks, parametrically, for α. If τ2 �= bool, the rest of the proof is

straightforward. Otherwise, we do not know anything about τ1 and Rα, because
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τ1 and τ2 are related in Tπ . Nevertheless, we can construct a suitable relational

interpretation Rβ ∈ Rel[τ1 × τ1, int] for the type β:

Rβ := {(k, w, 〈v, v′〉, 0) | (k, w, v, false), (k, w, v′, false) ∈ Rα}
∪ {(k, w, 〈v, v′〉, 1) | (k, w, v, true), (k, w, v′, false) ∈ Rα}
∪ {(k, w, 〈v, v′〉, 2) | (k, w, v, false), (k, w, v′, true) ∈ Rα}
∪ {(k, w, 〈v, v′〉, 3) | (k, w, v, true), (k, w, v′, true) ∈ Rα}

As it turns out, we do not need to know much about the structure of Rα to define

Rβ . What we are relying on here is only the knowledge that all values in Rα are

well typed, which is built into our definition of Rel. From that we know that there

can never be any other value than true or false on the right side of the relation Rα.

Hence, we can still enumerate all possible cases to define Rβ , and do a respective

case distinction when proving equivalence of the projection operations.

Interestingly, it seems that our proof relies critically on the fact that our logical

relations are restricted to syntactically well-typed terms. Were we to lift this

restriction, we would be forced (it seems) to extend the definition of Rβ with a

“junk” case, but the calls to b2i in g2 would get stuck if applied to non-Boolean

values. We leave further investigation of this observation to future work.

8 Polarized logical relations

The parametric relation is useful for proving parametricity properties about (the

positive wrappings of) G terms. However, it is all-or-nothing: it can only be used to

prove parametricity for terms that expect to be treated parametrically and also behave

parametrically, cf. the two dual aspects of parametricity described in Section 5. We

might also be interested in proving representation independence for terms that

do not behave parametrically themselves (in either the syntactic or semantic sense

considered in the previous section). One situation where this might arise is if we want

to show representation independence for generic ADTs that (like the one in Section 7)

return different results for different instantiations of their type arguments, but where

(unlike the one in Section 7) the difference is not only syntactic but also semantic.

Here is a somewhat contrived example to illustrate the point. Consider the

following two polymorphic functions of type ∀α.τα:

τα := ∃β. (α→ β)× (β → α)

f1 := λα. cast τint τα (pack 〈int, 〈λx:int.x+1, λx:int.x〉〉 as τint)

(pack 〈α, 〈λx:α.x, λx:α.x〉〉 as τα)

f2 := λα. cast τint τα (pack 〈int, 〈λx:int.x, λx:int.x+1〉〉 as τint)

(pack 〈α, 〈λx:α.x, λx:α.x〉〉 as τα)

These functions take a type argument α and return a simple ADT β. Values of type

α can be injected into β, and projected out again. However, both functions specialize

the behavior of this ADT for type int—for integers, injecting n and projecting again

will give back not n, but rather n + 1. This is true for both functions, but they

implement it in a different way.

We want to prove that both implementations are equivalent under wrapping using

a form of parametric reasoning. However, we cannot do that using the parametric
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V±
n [[α]]ρ

def
= �ρ(α).R�n

V±
n [[b]]ρ

def
= {(k, w, v, v) ∈ Atomn[b, b]}

V±
n [[τ× τ′]]ρ

def
= {(k, w, 〈v1, v

′
1〉, 〈v2, v

′
2〉) ∈ Atomn[ρ

1(τ× τ′), ρ2(τ× τ′)] |
(k, w, v1, v2) ∈ V±

n [[τ]]ρ ∧ (k, w, v′1, v
′
2) ∈ V±

n [[τ′]]ρ}
V±
n [[τ′ → τ]]ρ

def
= {(k, w, λx:τ1.e1, λx:τ2.e2) ∈ Atomn[ρ

1(τ′ → τ), ρ2(τ′ → τ)] |
∀(k′, w′, v1, v2) ∈ V∓

n [[τ′]]ρ. (k′, w′) � (k, w) ⇒
(k′, w′, e1[v1/x], e2[v2/x]) ∈ E±

n [[τ]]ρ}
V±
n [[∀α.τ]]ρ def

= {(k, w, λα.e1, λα.e2) ∈ Atomn[ρ
1(∀α.τ), ρ2(∀α.τ)] |

∀(k′, w′) � (k, w). ∀(τ1, τ2, r) ∈ T∓
k′ [[Ω]]w′.

(k′, w′, e1[τ1/α], e2[τ2/α]) ∈ �E±
n [[τ]]ρ, α �→ r}

V±
n [[∃α.τ]]ρ def

= {(k, w, pack 〈τ1, v1〉, pack 〈τ2, v2〉) ∈ Atomn[ρ
1(∃α.τ), ρ2(∃α.τ)] |

∃r. (τ1, τ2, r) ∈ T±
k [[Ω]]w ∧ (k, w, v1, v2) ∈ �V±

n [[τ]]ρ, α �→ r}
E±
n [[τ]]ρ

def
= {(k, w, e1, e2) ∈ Atomn[ρ

1(τ), ρ2(τ)] |
∀j < k. ∀σ1, v1. (w.σ1; e1 ↪→j σ1; v1) ⇒ ∃w′, v2. (k − j, w′) � (k, w) ∧
w′.σ1 = σ1 ∧ (w.σ2; e2 ↪→∗ w′.σ2; v2) ∧ (k − j, w′, v1, v2) ∈ V±

n [[τ]]ρ}

T+
n [[Ω]]w

def
= Tπ

n [[Ω]]w

T−
n [[Ω]]w

def
= Tn[[Ω]]w

Fig. 6. Polarized logical relations.

relation from Section 6—since the functions do not behave parametrically (i.e., the

package each function returns when instantiated with int is semantically different

from the one that it returns for any other type instantiation), they will not be related

in Eπ .

To support that kind of reasoning, we need a more refined treatment of para-

metricity in the logical relation. The idea is to separate the two aforementioned

aspects of parametricity. Consequently, we are going to have a pair of separate

relations, E+ and E−. The former enforces parametric usage, the latter parametric

behavior.

Figure 6 gives the definition of these relations. We call them polarized because

they are mutually dependent and the polarity (+ or −) switches for contravariant

positions, i.e., for function arguments and for universal quantifiers. Intuitively, in

these places, term and context switch roles.

Except for the consistent addition of polarities, the definition of the polarized

relations again only represents a minor modification of the original one. We merely

refine the definition of the type relation T [[Ω]]w to distinguish polarity: in the

positive case, it behaves parametrically (i.e., allowing an arbitrary relation) and in

the negative case non-parametrically (i.e., demanding r be the logical relation at

some type). Thus, existential types are parametric in E+ but non-parametric in E−,

and vice versa for universals.

In fact, all four relations can easily be formulated in a single unified definition

indexed by ι ::= ε | π |+ | − (with ε representing the original non-parametric

relation). We refer the interested reader to the first author’s master’s thesis for

details (Neis, 2009).
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E+

Eπ E

E−

eF ∈

eG∈

 eG

Wr− Wr+

Wr+ Wr−

Fig. 7. Relating the relations.

8.1 Key properties

The way in which polarities switch in the polarized relations mirrors what is going

on in the definition of wrapping. That of course is no accident, and we can show

the following theorem that relates the polarized relations with the non-parametric

and parametric ones through uses of wrapping:

Theorem 28 (Wrapping for �±)

1. If 	 e1 �+ e2 : τ, then 	 Wr+
τ e1 �Wr+

τ e2 : τ.

2. If 	 e1 � e2 : τ, then 	 Wr−τ e1 �− Wr−τ e2 : τ.

3. If 	 e1 �+ e2 : τ, then 	 Wr−τ e1 �π Wr−τ e2 : τ.

4. If 	 e1 �π e2 : τ, then 	 Wr+
τ e1 �− Wr+

τ e2 : τ.

Intuitively, the first property says that whenever two terms are related for parametric

uses, their positive wrappings will actually be related unconditionally, even in a

“hostile” non-parametric context—i.e., positive wrapping enforces parametric use.

By the second property, when two terms are related unconditionally, their negative

wrappings are related even in contexts that expect them to behave parametrically—

i.e., negative wrapping enforces parametric behavior. Dually, the latter two properties

characterize the effect of applying positive and negative wrappings to positively

related terms in the reverse order. This is probably best understood graphically: the

labeled, outer arrows in Figure 7 summarize the situation by showing how the two

polarities of wrapping can take terms from one relation to another (we explain the

rest of the diagram in the remainder of this section).

To show this theorem, we prove the following more general lemma. Each subitem

here actually states two properties, which are obtained by first consistently ignoring

the left superscript of the Xι1 ,ι2 notation in the whole statement and then the right

one. For instance, Lemma 29 part (1a) states that the positive wrapping transports
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values from Vπ to E− and, independently, from V+ to Eε (that is, to E). Similarly,

each proof actually represents two proofs simultaneously.

Lemma 29

Suppose w0 ∈ Worldn, (δ1, δ2, ρ) ∈ Dπ
n [[Δ]]w0, (k, w) � (n, w0), and Δ 	 τ.

1. (a) If (k, w, v1, v2) ∈ Vπ,+
n [[τ]]ρ, then (k, w, δ1(Wr+

τ ) v1, δ2(Wr+
τ ) v2) ∈ E−,ε

n [[τ]]ρ.

(b) If (k, w, e1, e2) ∈ Eπ,+
n [[τ]]ρ, then (k, w, δ1(Wr+

τ ) e1, δ2(Wr+
τ ) e2) ∈ E−,ε

n [[τ]]ρ.

2. (a) If (k, w, v1, v2) ∈ V+,ε
n [[τ]]ρ, then (k, w, δ1(Wr−τ ) v1, δ2(Wr−τ ) v2) ∈ Eπ,−

n [[τ]]ρ.

(b) If (k, w, e1, e2) ∈ E+,ε
n [[τ]]ρ, then (k, w, δ1(Wr−τ ) e1, δ2(Wr−τ ) e2) ∈ Eπ,−

n [[τ]]ρ.

The most interesting cases of the proof (given below) are existential types in the

first part and universal types in the second part because that is where the wrapping

actually has to generate a fresh type. Technically, what happens in both cases is

that we have some triple (τ1, τ2, r) ∈ Tπ,+[[Ω]]w′, but would like it—or something

equivalent—to be in T−,ε[[Ω]]w′′, i.e., T [[Ω]]w′′, where w′′ must be some extension of

w′ that incorporates the new names α1 and α2. What we do is choose w′′ such that

it extends w′ by a new semantic name α that is connected to the concrete names

α1 and α2 as well as their representation types and is interpreted by the relation r.

Then, we can use (α1, α2, (w
′′.ρ1(α), w′′.ρ2(α), V [[α]]w′′.ρ)), which has the form required

by T [[Ω]]w′′ and, since w′′.ρ maps α to r, carries the same relation as (τ1, τ2, r).

Proof

By primary induction on n and secondary induction on the derivation of Δ 	 τ, note

that δi only affects the type annotations (of function arguments and package types)

inside the wrapping function. We show a few representative cases:

1. (a) • Case τ = τ′ → τ′′: vi = λx.ei

— To show: (k, w, δ1(λx.λx
′.Wr+

τ′′ (x (Wr−τ′ x
′))) v1,

δ2(λx.λx
′.Wr+

τ′′ (x (Wr−τ′ x
′))) v2) ∈ E−,ε

n [[τ′ → τ′′]]ρ

— Since

w.σi; δi(λx.λx
′.Wr+

τ′′ (x (Wr−τ′ x
′))) vi

↪→1 w.σi; λx
′.δi(Wr+

τ′′ ) (vi (δi(Wr−τ′ ) x
′))

it suffices to show (k − 1, �w�, λx′.δ1(Wr+
τ′′) (v1 (δ1(Wr−τ′ ) x

′)),

λx′.δ2(Wr+
τ′′ ) (v2 (δ2(Wr−τ′ ) x

′))) ∈ V−,ε
n [[τ′ → τ′′]]ρ.

— Suppose (k′, w′, v3, v4) ∈ V+,ε
n [[τ′]]ρ where (k′, w′) � (k − 1, �w�).

— To show: (k′, w′, δ1(Wr+
τ′′ ) (v1 (δ1(Wr−τ′ ) v3)),

δ2(Wr+
τ′′ ) (v2 (δ2(Wr−τ′ ) v4)))) ∈ E−,ε

n [[τ′′]]ρ

— So suppose w′.σ1; δ1(Wr+
τ′′) (v1 (δ1(Wr−τ′ ) v3)) terminates:

w′.σ1; δ1(Wr+
τ′′) (v1 (δ1(Wr−τ′ ) v3))

↪→j1 σ′′1 ; δ1(Wr+
τ′′) (v1 v

′
3)

↪→1 σ′′1 ; δ1(Wr+
τ′′) e1[v

′
3/x]

↪→j2 σ1; v
′
1

and j1 + 1 + j2 =: j < k′.

— By induction, (k′, w′, δ1(Wr−τ′ ) v3, δ2(Wr−τ′ ) v4) ∈ Eπ,−
n [[τ′]]ρ.
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— This implies the existence of (k′ − j1, w
′′) � (k′, w′) such that

w′.σ2; δ2(Wr+
τ′′) (v2 (δ2(Wr−τ′ ) v4)) ↪→∗ w′′.σ2; δ2(Wr+

τ′′ ) (v2 v
′
4)

with w′′.σ1 = σ′′1 and (k′ − j1, w
′′, v′3, v

′
4) ∈ Vπ,−

n [[τ′]]ρ.

— So by assumption and Closure Under World Extension,

(k′ − j1 − 1, �w′′�, e1[v
′
3/x], e2[v

′
4/x]) ∈ Eπ,+

n [[τ′′]]ρ.

— By induction,

(k′ − j1 − 1, �w′′�, δ1(Wr+
τ′′) e1[v

′
3/x], δ2(Wr+

τ′′ ) e2[v
′
4/x]) ∈ E−,ε

n [[τ′′]]ρ.

— Hence, there exists (k′ − j, w′′′) � (k′ − j1 − 1, �w′′�) such that

w′′.σ2; δ1(Wr+
τ′′) e2[v

′
4/x] ↪→∗ w′′′.σ2; v

′
2

with w′′′.σ1 = σ1 and (k′ − j, w′′′, v′1, v
′
2) ∈ V−,ε

n [[τ′′]]ρ.

• Case τ = ∃α.τ′: vi = pack 〈τi, v′i〉
— To show:

(k, w, δ1(λx. unpack 〈α, x′〉=x in new α≈α in pack 〈α,Wr+
τ′ x

′〉) v1,

δ2(λx. unpack 〈α, x′〉=x in new α≈α in pack 〈α,Wr+
τ′ x

′〉) v2)

∈ E−,ε
n [[∃α.τ′]]ρ

— So suppose the first configuration terminates:

w.σ1; δ1(λx. unpack〈α, x′〉=x in new α≈α in pack 〈α,Wr+
τ′ x

′〉)v1

↪→1 w.σ1; unpack 〈α, x′〉=v1 in new α≈α in pack 〈α, δ1(Wr+
τ′ ) x

′〉
↪→1 w.σ1; new α≈τ1 in pack 〈α, δ1(Wr+

τ′ ) v
′
1〉

↪→1 w.σ1, α1≈τ1; pack 〈α1, δ
′
1(Wr+

τ′ ) v
′
1〉

↪→j ′ σ1; pack 〈α1, v
′′
1 〉

where 3 + j ′ =: j < k and δ′1 := δ1, α �→ α1

— Note that

w.σ2; δ2(λx. unpack〈α, x′〉=x in new α≈α in pack 〈α,Wr+
τ′ x

′〉)v2

↪→1 w.σ2; unpack 〈α, x′〉=v2 in new α≈α in pack 〈α, δ2(Wr+
τ′ ) x

′〉
↪→1 w.σ2; new α≈τ2 in pack 〈α, δ2(Wr+

τ′ ) v
′
2〉

↪→1 w.σ2, α2≈τ2; pack 〈α2, δ
′
2(Wr+

τ′ ) v
′
2〉

where δ′2 := δ2, α �→ α2

— By assumption, we know (k′, w′, v′1, v
′
2) ∈ Vπ,+

n [[τ′]]ρ, α �→ r for some

r with (τ1, τ2, r) ∈ T
π,+
k [[Ω]]w and any (k′, w′) � (k, w).

— Let wα := ((w.σ1, α1≈τ1), (w.σ2, α2≈τ2),

(w.η, α �→ (α1, α2)), �w.ρ, α �→ r�k−2), so (k − 2, wα) � (k, w).

— Hence, (k − 2, wα, v
′
1, v

′
2) ∈ Vπ,+

n [[τ′]]ρ, α �→ r.

— By Closure Under World Extension,

(k − 3, �wα�, v′1, v′2) ∈ Vπ,+
n [[τ′]]ρ, α �→ r and thus (k − 3, �wα�, v′1, v′2) ∈

Vπ,+
n [[τ′]]ρ′ for ρ′ := �ρ�k−2, α �→ r′.

— Let r′ := (wα.ρ
1(α), wα.ρ

2(α), Vk−2[[α]]wα) = �r�k−2,

so (α1, α2, r
′) ∈ T

−,ε
k−2[[Ω]]wα ⊆ Tπ

k−2[[Ω]]wα.

https://doi.org/10.1017/S0956796811000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000165


536 G. Neis et al.

— Furthermore (δ1, δ2, �ρ�k−2) ∈ Dπ
k−2[[Δ]]wα by Lemma 4, so

(δ′1, δ
′
2, ρ

′) ∈ Dπ
k−2[[Δ, α]]wα.

— Hence, induction yields

(k − 3, �wα�, δ′1(Wr+
τ′ ) v

′
1, δ

′
2(Wr+

τ′ ) v
′
2) ∈ E−,ε

n [[τ′]]ρ′.

— Because wα.σ1 = w.σ1, α1≈τ1, this implies the existence of (k−j, w′) �
(k − 3, �wα�) such that

w.σ2, α2≈τ2; pack 〈α2, δ
′
2(Wr+

τ′ ) v
′
2〉 ↪→∗ w′.σ2; pack 〈α2, v

′′
2 〉

with w′.σ1 = σ1 and (k − j, w′, v′′1 , v
′′
2 ) ∈ V−,ε

n [[τ′]]ρ′.

— By Closure Under World Extension,

(k′′, w′′, v′′1 , v
′′
2 ) ∈ V−,ε

n [[τ′]]ρ, α �→ �r′�k−j for any (k′′, w′′) � (k − j, w′).

— Since (α1, α2, �r′�k−j) ∈ T
−,ε
k−j[[Ω]]w′ by Lemma 4,

(k−j, w′, pack 〈α1, v
′′
1 〉 as δ1(τ), pack 〈α2, v

′′
2 〉 as δ2(τ)) ∈ V−,ε

n [[∃α.τ′]]ρ.

(b) • Suppose w.σ1; δ1(Wr+
τ ) e1 terminates:

w.σ1; δ1(Wr+
τ ) e1

↪→j1 σ′1; δ1(Wr+
τ ) v1

↪→j2 σ1; v
′
1

and j1 + j2 =: j < k steps

• So by assumption there exists (k − j1, w
′) � (k, w) such that

w.σ2; δ2(Wr+
τ ) e2 ↪→∗ w′.σ2; δ2(Wr+

τ ) v2

with w′.σ1 = σ′1 and (k − j1, w
′, v1, v2) ∈ Vπ,+

n [[τ]]ρ.

• By part (a), (k − j1, w
′, δ1(Wr+

τ ) v1, δ2(Wr+
τ ) v2) ∈ E−,ε

n [[τ]]ρ.

• Consequently, there exists (k − j, w′′) � (k − j1, w
′) such that

w′.σ2; δ2(Wr+
τ ) v2 ↪→∗ w′′.σ2; v

′
2

with w′′.σ1 = σ1 and (k − j, w′′, v′1, v
′
2) ∈ V−,ε

n [[τ]]ρ.

2. (a) • Case τ = ∃α.τ′: vi = pack 〈τi, v′i〉
— To show: (k, w, δ1(λx. unpack 〈α, x′〉=x in pack 〈α,Wr−τ′ x

′〉) v1,

δ2(λx. unpack 〈α, x′〉=x in pack 〈α,Wr−τ′ x
′〉) v2) ∈ Eπ,−

n [[∃α.τ′]]ρ
— So suppose w.σ1; δ1(λx. unpack 〈α, x′〉=x in pack 〈α,Wr−τ′ x

′〉) v1

terminates:

w.σ1; δ1(λx. unpack 〈α, x′〉=x in pack 〈α,Wr−τ′ x
′〉) v1

↪→1 w.σ1; unpack 〈α, x′〉=v1 in pack 〈α, δ1(Wr−τ′ ) x
′〉

↪→1 w.σ1; pack 〈τ1, δ
′
1(Wr−τ′ ) v

′
1〉

↪→j ′ σ1; pack 〈τ1, v
′′
1 〉

where 2 + j ′ =: j < k and δ′1 := δ1, α �→ τ1

— Note that

w.σ2; δ2(λx. unpack 〈α, x′〉=x in pack 〈α,Wr−τ′ x
′〉) v2

↪→1 w.σ2; unpack 〈α, x′〉=v2 in pack 〈α, δ2(Wr−τ′ ) x
′〉

↪→1 w.σ2; pack 〈τ2, δ
′
2(Wr−τ′ ) v

′
2〉

where δ′2 := δ2, α �→ τ2
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— By assumption, we know (k − 2, �w�, v′1, v′2) ∈ V+,ε
n [[τ′]]ρ, α �→ r for

some r with (τ1, τ2, r) ∈ T
+,ε
k [[Ω]]w ⊆ Tπ

k [[Ω]]w.

— Furthermore (δ1, δ2, �ρ�) ∈ Dπ
k [[Δ]]w by Lemma 4, and therefore, we

get (δ′1, δ
′
2, (�ρ�, α �→ r)) ∈ Dπ

k [[Δ, α]]w.

— Hence, induction yields

(k − 2, �w�, δ′1(Wr−τ′ ) v
′
1, δ

′
2(Wr−τ′ ) v

′
2) ∈ Eπ,−

n [[τ′]]�ρ�k, α �→ r.

— Consequently, there exists (k − j, w′) � (k − 2, �w�) such that

w.σ2; pack 〈τ2, δ
′
2(Wr−τ′ ) v

′
2〉 ↪→∗ w′.σ2; pack 〈τ2, v

′′
2 〉

with w′.σ1 = σ1 and (k − 1− j, w′, v′′1 , v
′′
2 ) ∈ Vπ,−

n [[τ′]]�ρ�k, α �→ r.

— For any (k′′, w′′) � (k−j, w′), we get (k′′, w′′, v′′1 , v
′′
2 ) ∈ Vπ,−

n [[τ′]]ρ, α �→ �r�
by Closure Under World Extension.

— Since (τ1, τ2, �r�) ∈ T
π,−
k−j [[Ω]]w′ Lemma 4, this implies

(k − j, w′, pack 〈τ1, v
′′
1 〉, pack 〈τ2, v

′′
2 〉) ∈ Vπ,−

n [[∃α.τ′]]ρ.

(b) Symmetric to (1b). �

Corollary 30 (aka Theorem 28)

1. If 	 e1 �π,+ e2 : τ, then 	 Wr+ e1 �−,ε Wr+ e2 : τ.

2. If 	 e1 �+,ε e2 : τ, then 	 Wr− e1 �π,− Wr− e2 : τ.

Moreover, we can show that the inverse directions of these implications require

no wrapping at all:

Theorem 31 (Inclusion for �±)

1. If 	 e1 � e2 : τ or 	 e1 �π e2 : τ, then 	 e1 �+ e2 : τ.

2. If 	 e1 �− e2 : τ, then 	 e1 � e2 : τ and 	 e1 �π e2 : τ.

This theorem can equivalently be stated as E− ⊆ E ⊆ E+ and E− ⊆ Eπ ⊆ E+. In

Figure 7, it is depicted by the unlabeled arrows between different relations, which

represent inclusion.

Corollary 32 (aka Theorem 25)

1. If 	 e1 �π e2 : τ, then 	 Wr+ e1 �Wr+ e2 : τ.

2. If 	 e1 � e2 : τ, then 	 Wr− e1 �π Wr− e2 : τ.

Proof

Follows immediately from Theorems 28 and 31. �

Similarly, the following follows from Theorem 31 together with the Fundamental

Property of �:

Corollary 33 (Fundamental Property of �+)

If 	 e : τ and w ∈ Worldk , then (k, w, e, e) ∈ E+
k+1[[τ]].

Interestingly, compatibility does not hold for �± (consider the polarities in the rule

for application), which has the consequence that we cannot show Corollary 33

directly. For a similar reason, we cannot show any such property for E− at

all.
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The ∈-operators in Figure 7 sum up the fundamental properties for the respective

relations, i.e., which class of terms (G terms or F terms) are included in which

relation.

LR-Substitution does not hold for the polarized relations. Consider the case

where τ = α → α. Then, for instance, V+
n [[τ]]ρ, α �→ (ρ1(τ′), ρ2(τ′), V+

n [[τ′]]ρ) tells us

something about how its elements behave when applied to arguments out of V+
n [[τ′]]ρ.

V+
n [[τ[τ′/α]]]ρ, on the other hand, only tells us something about how its elements

behave when applied to arguments out of V−
n [[τ′]]ρ.

8.2 Example

Getting back to our motivating example from the beginning of the section, it is

essentially straightforward to prove that 	 f1 �+ f2 : ∀α.τα. The proof proceeds

as usual, except that we have to make a case distinction when we want to show

that the function bodies are related in E+. At that point, we are given a triple

(τ1, τ2, r) ∈ T−[[Ω]]w.

If τ1 = int, then we know from the definition of T− that τ2 = int, too. We hence

know that both sides will evaluate to the specialized version of the ADT. Since we

are in E+, we get to pick some (τ′1, τ
′
2, r

′) ∈ T+[[Ω]]w as the interpretation of β,

where the choice of r′ is up to us. The natural choice is to use τ′1 = τ′2 = int with

the relation r′ = (int, int, {(k, w, n + 1, n) | n ∈ �}). The rest of the proof is then

straightforward.

If τ1 �= int, we similarly know that τ2 �= int from the definition of T−. Hence,

both sides use the default implementations, which are trivially related in E+, thanks

to Corollary 33.

Finally, applying the Wrapping Theorem, we can conclude that 	 Wr+ f1 �
Wr+ f2 : ∀α.τα, and hence by Soundness, 	 Wr+ f1 �Wr+ f2 : ∀α.τα.

Note how we relied on the knowledge that τ1 and τ2 can only be int at the

same time. This holds for types related in T− but not in T+ or Tπ . If we had

tried to do this proof in Eπ , the types τ1 and τ2 would have been related by Tπ

only, which would give us too little information to proceed with the necessary case

distinction.

9 Recursive types

In this section, we consider an interesting and non-trivial extension of G with a

ubiquitous feature—namely, (iso-)recursive types. We call the extended language Gμ

(see Figure 8). The definition of contextual equivalence does not change (except

there are more contexts), but of course we must extend our logical relation, our

definition of wrapping, and our meta-theory, to handle recursive types.

9.1 Extending the logical relations

The step-indexing that we used in defining our logical relations makes it very easy

to adapt them to Gμ. There are two natural ways in which we could define the value
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Types τ ::= . . . | μα.τ
Values v ::= . . . | roll v as τ

Terms e ::= . . . | roll e as τ | unroll e

Evaluation Ctxt’s E ::= . . . | roll E as τ | unroll E

Δ; Γ 	 e : τ

· · ·

(Eroll)
Δ; Γ 	 e : τ[μα.τ/α]

Δ; Γ 	 roll e as μα.τ : μα.τ
(Eunroll)

Δ; Γ 	 e : μα.τ

Δ; Γ 	 unroll e : τ[μα.τ/α]

· · ·
σ;E[unroll (roll v as τ)] ↪→ σ;E[v]

Fig. 8. Syntax and semantics of Gμ (excerpt).

relation at a recursive type:

1. V ι
n[[μα.τ]]ρ

def
= {(k, w, roll v1, roll v2) ∈ Atomn[. . .] |

(k, w, v1, v2) ∈ �V ι
k[[τ]]ρ, α �→V ι

k[[μα.τ]]ρ}
2. V ι

n[[μα.τ]]ρ
def
= {(k, w, roll v1, roll v2) ∈ Atomn[. . .] |

(k, w, v1, v2) ∈ �V ι
k[[τ[μα.τ/α]]]ρ}

For ι ∈ {ε, π}—i.e., for the non-parametric and parametric forms of the logical

relation—the above two formulations are equivalent due to LR-Substitution. Un-

fortunately, though we do not have such a property for the polarized relation. In

fact, for ι ∈ {+,−}, the first definition wrongly records a fixed polarity for α. It is

thus crucial that we choose the second one; only then do all key properties continue

to hold in Gμ. Adapting the proofs of soundness, the fundamental property, and

related lemmas from Section 4, to Gμ is straightforward.

9.2 Extending the wrapping

How can we upgrade the wrapping to account for recursive types? Given an

argument of type μα.τ, the basic idea is to first unfold it to type τ[μα.τ/α], then wrap

it at that type, and finally fold the result back to type μα.τ. Of course, since τ[μα.τ/α]

may be larger than μα.τ, a direct implementation of this idea will not result in a

well-founded definition.

The solution is to use a fixed point (definable in terms of recursive types, of

course), which gives us a handle on the wrapping function we are in the middle

of defining. Figure 9 shows the new definition. We first index the wrapping by an

environment ϕ that maps each recursive type variable α to the appropriate wrapping

and the corresponding syntactic type (we write ϕval(α) for the former and ϕtyp(α) for

the latter). Roughly, the wrapping at type μα.τ under environment ϕ is a recursive

function F , defined in terms of the wrapping at τ under environment ϕ, α �→ (μα.τ, F).
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Fϕ
μα.τ

def
= fix f(x′).〈λx:(μα.τ). roll Wr+

τ (ϕ, α �→ (μα.τ, f)) (unroll x) as μα.τ,

λx:(μα.τ). roll Wr−τ (ϕ, α �→ (μα.τ, f)) (unroll x) as μα.τ〉
: unit → ((μα.τ) → (μα.τ))× ((μα.τ) → (μα.τ))

Wr+
α ϕ

def
= λx:ϕtyp(α).(ϕval(α) ()).1 x (if α ∈ dom(ϕ))

Wr−α ϕ
def
= λx:ϕtyp(α).(ϕval(α) ()).2 x (if α ∈ dom(ϕ))

Wr±α ϕ
def
= λx:α.x (if α /∈ dom(ϕ))

Wr±b ϕ
def
= λx:b.x

Wr±τ1×τ2 ϕ
def
= λx:(τ1 × τ2).〈Wr±τ1 ϕ (x.1)),Wr±τ2 ϕ (x.2)〉

Wr±τ1→τ2
ϕ

def
= λx:(τ1 → τ2).λx

′:τ1.Wr±τ2 ϕ (x (Wr∓τ1 ϕx′))

Wr±∀α.τ ϕ
def
= λx:(∀α.τ).Λα. new∓ α in Wr±τ ϕ (x α)

Wr±∃α.τ ϕ
def
= λx:(∃α.τ). unpack 〈α, x′〉=x in new± α in pack 〈α,Wr±τ ϕ x′〉 as ∃α.τ

Wr+
μα.τ ϕ

def
= λx:(μα.τ).(Fϕ

μα.τ ()).1 x

Wr−μα.τ ϕ
def
= λx:(μα.τ).(Fϕ

μα.τ ()).2 x

Wr±τ
def
= Wr±τ ∅

Fig. 9. Wrapping for Gμ.

Since the bound variable of a recursive type may occur in positions of different

polarity, we actually need two mutually recursive functions and then select the right

one depending on the polarity. The cognoscenti will recognize this as a polarized

variant of the so-called syntactic projection function associated with a recursive

type (Birkedal & Harper, 1999).

Note that the definition of Fϕ
μα.τ takes a unit argument merely for simplicity so

that we may encode two mutually recursive functions in terms of a single fix (whose

encoding appears in Section A.5). Note also that the environment only plays a role

for recursive types and that for any τ that does not involve recursive types, Wr±τ ∅
is the same as our old wrapping Wr±τ from Section 5. Taking Wr±τ to be shorthand

for Wr±τ ∅, we can show that our old Wrapping Theorems for G (Theorems 25 and

28) continue to hold for Gμ.

First of all, Lemma 24 still holds, but we can generalize it as follows:

Lemma 34

If Δ, dom(ϕ) 	 τ and for all α ∈ dom(ϕ) both Δ 	 ϕtyp(α) and

Δ; ε 	 ϕval(α) : unit → (ϕtyp(α) → ϕtyp(α))× (ϕtyp(α) → ϕtyp(α)),

then Δ; ε 	 Wr±τ ϕ : ϕtyp(τ) → ϕtyp(τ).

The next is a substitution lemma for the wrapping. Taking τ′ to be τ (which is

how it will be used), it says that wrapping at the unfolding of a recursive type

μα.τ (i.e., at τ[μα.τ/α]), relative to some environment ϕ, is syntactically the same as

“moving the unfolding into the environment” and then wrapping at τ. This lemma

is important for the recursive type case in the Wrapping Theorem.
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Lemma 35 (WR-Substitution)

If ϕ′ = ϕ, α �→ (μα.τ, Fϕ
μα.τ), then Wr±τ′ ϕ

′ = Wr±
τ′[μα.τ/α] ϕ.

Proof

By induction on τ′. �

The proof of the Wrapping Theorem for Gμ is obtained from the one for G by

simply extending the case analysis. Note that the wrapping theorem is stated for an

empty environment ϕ (recall that Wr±τ is just short for Wr±τ ∅). This may seem not

general enough at first, because in the case where τ = μα.τ′, we need an induction

hypothesis that talks about wrapping relative to the non-empty environment ϕ :=

(α �→ (τ, F∅τ )). This is exactly where Lemma 35 comes in: it tells us that the terms

involving Wr±τ′ ϕ that we are interested in are the same as the terms involving

Wr±
τ′[τ/α] ∅ that we know are related by the induction hypothesis.

Proof

1. (a) Case τ = μα.τ′: vi = roll v′i

• To show: (k, w, δ1(λx.(F
∅
τ ()).1 x) v1, δ2(λx.(F

∅
τ ()).1 x) v2) ∈ E−,ε

n [[μα.τ′]]ρ

• So suppose w.σ1; δ1(λx.(F
∅
τ ()).1 x) v1 terminates

w.σ1; δ1(λx.(F
∅
τ ()).1 x) v1

↪→1 w.σ1; (δ1(F
∅
τ ) ()).1 v1

↪→jc w.σ1; roll δ1(Wr+
τ′ (α �→ (τ, F∅τ ))) (unroll v1)

↪→1 w.σ1; roll δ1(Wr+
τ′ (α �→ (τ, F∅τ ))) v

′
1

↪→j ′ σ1; roll v′′1

and 1 + jc + 1 + j ′ =: j < k.

• Note that

w.σ2; δ2(λx.(F
∅
τ ()).1 x) v2

↪→1 w.σ2; (δ2(F
∅
τ ) ()).1 v2

↪→jc w.σ2; roll δ2(Wr+
τ′ (α �→ (τ, F∅τ ))) (unroll v2)

↪→1 w.σ2; roll δ2(Wr+
τ′ (α �→ (τ, F∅τ ))) v

′
2

• By assumption, we know (k − j, �w�, v′1, v′2) ∈ V
π,+
k [[τ′[τ/α]]]ρ.

• By induction,

(k − j, �w�, δ1(Wr+
τ′[τ/α]) v

′
1, δ2(Wr+

τ′[τ/α]) v
′
2) ∈ E

−,ε
k [[τ′[τ/α]]]ρ.

• By Lemma 35, Wr+
τ′[τ/α] = Wr+

τ′ (α �→ (τ, F∅τ )).

• Consequently, there exists (k − j, w′) � (k − jc − 1, �w�) such that

w.σ2; roll δ2(Wr+
τ′ (α �→ (τ, F∅τ ))) v

′
2 ↪→∗ w′.σ2; roll v′′2

with w′.σ1 = σ1 and (k − j, w′, v′′1 , v
′′
2 ) ∈ V

−,ε
k [[τ′[τ/α]]]ρ.

• By Closure Under World Extension, the latter implies

(k − j, w′, roll v′′1 , roll v′′2 ) ∈ V−,ε
n [[τ]]ρ.

(b) As before.

2. (a) Case τ = μα.τ′: symmetric to respective case of part (1)

(b) As before. �
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10 Towards full abstraction

The definition of the parametric relation Eπ (including the extension for recursive

types) is largely very similar to that of a typical step-indexed logical relation EFμ for

Fμ, i.e., System F extended with pairs, existentials and iso-recursive types (Ahmed,

2006). The main difference is the presence of worlds, but they are not actually used

in a particularly interesting way in Eπ . Therefore, one might expect that any two Fμ

terms related by the hypothetical EFμ would also be related by Eπ and vice versa.

However, this is not obvious: Gμ is more expressive than Fμ, in the sense that

terms in the parametric relation can contain non-trivial uses of casts (e.g., the generic

ADT for pairs from Section 7), and there is no evident way to back-translate these

terms into Fμ (as would be needed for function arguments) that invalidates a proof

approach like the one taken by Ahmed & Blume (2008).

Ultimately, the property we would like to be able to show is that the embedding

of Fμ into Gμ by positive wrapping is fully abstract:

	 e1 ≡Fμ e2 : τ⇔ 	 Wr+
τ e1 ≡ Wr+

τ e2 : τ

(The semantics of Fμ can be obtained from Gμ by restricting Δ to simple variable

components, ignoring all the rules related to cast and new as well as the conversion

rule Econv, and dropping the type store from the reduction relation. Contextual

approximation then is defined as for Gμ except that it does not mention a type store

and the universally quantified contexts must have type (Δ; Γ; τ) � (ε; ε; τ′).) This

equivalence is even stronger than the one about logical relatedness in EFμ and Eπ

because � is only sound with respect to contextual approximation, not complete.

Since Fμ is a fragment of Gμ, and Fμ contexts cannot observe any difference

between an Fμ term and its wrapping, the direction from right to left, called

equivalence reflection, is not terribly hard to show.

Theorem 36 (Equivalence Reflection)

If Δ; Γ 	Fμ e1 : τ and Δ; Γ 	Fμ e2 : τ and Δ; Γ 	 Wr+
τ e1 ≡ Wr+

τ e2 : τ, then

Δ;Γ 	 e1 ≡Fμ e2 : τ.

We present its proof in the remainder of this section.

Unfortunately, it is not known to us whether the other direction, equivalence

preservation, holds as well. We conjecture that it does, but are not aware of any

suitable technique to prove it.

Note that while equivalence reflection also holds for F and G—i.e., in the absence

of recursive types—equivalence preservation does not, because non-termination is

encodable in G but not in F. Here is a trivial example exploiting this:

e1 := λf:(unit → unit).f ()

e2 := λf:(unit → unit).()

Clearly, e1 and e2 are contextually equivalent in F. Wrapping basically leaves them

unmodified, because their type is simple. However, e1 and e2 are not contextually

equivalent in G, since a G context can apply them to a diverging function.
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Gϕ
μα.τ

def
= fix f(x′).〈λx:(μα.τ). roll Sp+

τ (ϕ, α �→ (μα.τ, f)) (unroll x) as μα.τ,

λx:(μα.τ). roll Sp−τ (ϕ, α �→ (μα.τ, f)) (unroll x) as μα.τ〉
: unit → ((μα.τ) → (μα.τ))× ((μα.τ) → (μα.τ))

Sp+
α ϕ

def
= λx:ϕtyp(α).(ϕval(α) ()).1 x (if α ∈ dom(ϕ))

Sp−α ϕ
def
= λx:ϕtyp(α).(ϕval(α) ()).2 x (if α ∈ dom(ϕ))

Sp±α ϕ
def
= λx:α.x (if α /∈ dom(ϕ))

Sp±b ϕ
def
= λx:b.x

Sp±τ1×τ2 ϕ
def
= λx:(τ1 × τ2).〈Sp±τ1 ϕ (x.1)), Sp±τ2 ϕ (x.2)〉

Sp±τ1→τ2
ϕ

def
= λx:(τ1 → τ2).λx

′:τ1. Sp±τ2 ϕ (x (Sp∓τ1 ϕx′))

Sp±∀α.τ ϕ
def
= λx:(∀α.τ).Λα. Sp±τ ϕ (x α)

Sp±∃α.τ ϕ
def
= λx:(∃α.τ). unpack 〈α, x′〉=x in pack 〈α, Sp±τ ϕ x′〉 as ∃α.τ

Sp+
μα.τ ϕ

def
= λx:(μα.τ).(Gϕ

μα.τ ()).1 x

Sp−μα.τ ϕ
def
= λx:(μα.τ).(Gϕ

μα.τ ()).2 x

Sp±τ
def
= Sp±τ ∅

Fig. 10. Simple wrapping for Gμ (new-erasure of the proper wrapping).

10.1 Equivalence reflection

Assuming Δ; Γ 	Fμ e1 : τ and Δ; Γ 	Fμ e2 : τ, we want to show:

Δ; Γ 	 Wr+
τ e1 ≡Gμ Wr+

τ e2 : τ⇒ Δ; Γ 	 e1 ≡Fμ e2 : τ

We will show the contrapositive. Since Fμ is a fragment of Gμ, it suffices to show that

any context C that can distinguish e1 and e2 in Fμ will also distinguish their positive

wrappings in Gμ. We do this in two steps. First, we prove that C will distinguish their

simple wrappings (Lemma 40). The simple wrapping, Sp±τ , whose definition is given

in Figure 10, is the new-erasure of the proper wrapping, i.e., obtained by replacing

any new α≈τ′ in e′ in Wr±τ by e′[τ′/α]. In the terms of Birkedal & Harper (1999),

it is precisely the syntactic projection function associated with the type τ (hence Sp

for “Syntactic projection”). Subsequently, we prove that distinguishing the simple

wrappings implies distinguishing the proper wrappings (Lemma 46).

For the first part, we actually show something stronger, namely, the so-called

syntactic minimal invariance property (Birkedal & Harper, 1999), which says that

the Sp function at any type is contextually equivalent to the identity and thus that

any term e is contextually equivalent in Gμ to its simple wrapping. We do this

with the help of our non-parametric logical relation, which is sound with respect to

contextual approximation.

Lemma 37 (SP-Substitution)

If ϕ′ = ϕ, α �→ (μα.τ, Gϕ
μα.τ), then Sp±τ′ ϕ

′ = Sp±
τ′[μα.τ/α] ϕ.

Lemma 38

Suppose w0 ∈ Worldn, (δ1, δ2, ρ) ∈ Dn[[Δ]]w0 and (k, w) � (n, w0), where Δ 	 τ.
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1. If (k, w, v1, v2) ∈ Vn[[τ]]ρ,

then (k, w, v1, δ2(Sp±τ ) v2) ∈ En[[τ]]ρ and (k, w, δ1(Sp±τ ) v1, v2) ∈ En[[τ]]ρ.

2. If (k, w, e1, e2) ∈ En[[τ]]ρ,

then (k, w, e1, δ2(Sp±τ ) e2) ∈ En[[τ]]ρ and (k, w, δ1(Sp±τ ) e1, e2) ∈ En[[τ]]ρ.

Proof

By primary induction on n and secondary induction on the derivation of

Δ 	 τ. �

Lemma 39

If Δ; Γ 	 e : τ, then Δ; Γ 	 e ≡ Sp±τ e : τ.

Proof

We show Δ; Γ 	 e � Sp±τ e : τ. The proof of Δ; Γ 	 Sp±τ e � e : τ is symmetric. The

claim then follows by Soundness.

• Suppose w0 ∈ Worldn, (δ1, δ2, ρ) ∈ Dn[[Δ]]w0, (k, γ1, γ2) ∈ Gn[[Γ]]ρ, and (k, w) �

(n, w0).

• By the Fundamental Property, we know Δ; Γ 	 e � e : τ.

• Instantiating this yields (k, w, δ1γ1(e), δ2γ2(e)) ∈ En[[τ]]ρ.

• By Lemma 38, (k, w, δ1γ1(e), δ2(Sp±τ ) δ2γ2(e)) ∈ En[[τ]]ρ.

• Note that δ2(Sp±τ ) δ2γ2(e) = δ2γ2(Sp±τ e). �

Lemma 40

1. If Δ; Γ 	 e : τ, 	 C : (Δ; Γ; τ) � (ε; ε; τ′), and ε;C[e]↓, then ε;C[Sp±τ e]↓.
2. If Δ; Γ 	 e : τ, 	 C : (Δ; Γ; τ) � (ε; ε; τ′), and ε;C[e]↑, then ε;C[Sp±τ e]↑.

Proof

Follows from Lemma 39. �

The second part (Lemma 46) can be proven in a more direct way. Intuitively,

the property holds because the only difference between the reduction of C[Sp±τ e]

and the reduction of C[Wr±τ e] is that during the latter fresh type names are being

generated and substituted. Since we assume C to be cast-free, there is no way for

these type names to affect the reduction and thus the termination behavior. We will

only sketch the proof and not give formal details, as this would be a very tedious

job here and not reveal any insights.

The idea is to use a simulation that relates a term e1 to a term e2 iff e1 is the

new-erasure of e2, i.e., e1 is obtained from e2 by dropping all occurrences of new.

Thus, in particular, the simulation relates the simple wrapping of a term to its proper

wrapping.

The definition of Erase, the new-erasure, is trivial. Its only interesting case is

Erase(new α≈τ in e)
def
= Erase(e[τ/α]).

For all the other language constructs, the definition just recurses on the subterms. It

is easy to see that Erase satisfies standard congruence and substitution properties:

Lemma 41

If e1 = Erase(e2) and C is new-free, then C[e1] = Erase(C[e2]).
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Lemma 42

1. If e1 = Erase(e2) and e′1 = Erase(e′2), then e1[e
′
1/x] = Erase(e2[e

′
2/x]).

2. If e1 = Erase(e2), then e1[τ/α] = Erase(e2[τ/α]).

The simulation argument is the following (where ↪→+ denotes a reduction sequence

with at least one reduction):

Lemma 43

If e1 is cast-free and e1 = σ∗2(Erase(e2)) and σ1; e1 ↪→ σ1; e
′
1, then there are σ′2 and

e′2 with e′1 = σ′∗2 (Erase(e′2)) cast-free and σ2; e2 ↪→+ σ′2; e
′
2.

This already yields the second part of Lemma 46. For the first part, we need one

more lemma and an easy induction.

Lemma 44

If v = σ∗2(Erase(e)), then σ2; e↓.

Lemma 45

If e1 is cast-free and e1 = σ∗2(Erase(e2)) and σ1; e1 ↓, then σ2; e2 ↓.

Proof

By induction on the length of the reduction sequence, using Lemmas 44

and 43. �

Lemma 46

Suppose e and C are both cast- and new-free.

1. If Δ; Γ 	 e : τ, 	 C : (Δ; Γ; τ) � (ε; ε; τ′) and ε;C[Sp±τ e]↓, then ε;C[Wr±τ e]↓.
2. If Δ; Γ 	 e : τ, 	 C : (Δ; Γ; τ) � (ε; ε; τ′) and ε;C[Sp±τ e]↑, then ε;C[Wr±τ e]↑.

Proof

Since C[Sp±τ e] = Erase(C[Wr±τ e]), the first part follows from Lemma 45 and the

second from Lemma 43. �

Finally, we can prove the actual theorem:

Theorem 37 (Equivalence Reflection)

If Δ; Γ 	Fμ e1 : τ, Δ; Γ 	Fμ e2 : τ and Δ; Γ 	 Wr±τ e1 ≡ Wr±τ e2 : τ, then Δ; Γ 	 e1 ≡Fμ

e2 : τ.

Proof

Assume that Δ; Γ 	 e1 ≡Fμ e2 : τ does not hold, i.e., e1 and e2 are not contextually

equivalent in Fμ. Then, there is an Fμ-context C that can tell them apart: say, C[e1]↓
and C[e2] ↑. Note that C also is a valid G context. It is easy to see that C will

distinguish e1 and e2 in G, too: ε;C[e1]↓ and ε;C[e2]↑. Using Lemma 40 and then

Lemma 46, this implies that C also distinguishes their wrappings: ε;C[Wr±τ e1] ↓
and ε;C[Wr±τ e2] ↑. Consequently, Δ; Γ 	 Wr±τ e1 ≡ Wr±τ e2 : τ does not hold

either. �
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11 Incompleteness of the logical relation

While our logical relation for Gμ is sound with respect to contextual approximation,

it is not complete. There are at least two reasons why.

First of all, we have defined our logical relation in such a way as to model a fairly

general notion of non-parametricity, not tied specifically to the cast operator per

se. Consequently, we conjecture that our logical relation (modulo potential minor

tweaks) would generalize to soundly model a language with a typecase mechanism

instead of a cast operator. (As explained in the introduction, we have chosen to

study cast because it is simpler yet still interesting.) However, typecase is strictly

more powerful than cast, in the sense that typecase is capable of distinguishing

between more programs. In particular, with typecase one can pattern-match on an

abstract type α, which one can not always do with cast (see the example below).

Thus, there are programs that we cannot prove equivalent in our model—because

they are not contextually equivalent in the presence of typecase—but that (we

conjecture) are contextually equivalent in the presence of cast, and this clearly leads

our model to be incomplete with respect to Gμ.

Consider the following example:

τ := ∃β. (int× int → β)× (β → int)× (β → int)

e1 := new α≈int in pack 〈α× α, 〈λp.p, λx.(x.1), λx.(x.2)〉〉 as τ

e2 := new α≈(int× int) in pack 〈α, 〈λp.p, λx.(x.1), λx.(x.2)〉〉 as τ

We strongly conjecture that e1 and e2 are contextually equivalent in Gμ: Although

the type components of the existential packages returned by e1 and e2—namely,

α × α and α, respectively—are structurally different, there seems to be no way to

observe this using cast. Specifically, after unpacking the existential and binding a

name (say, β) for the existential type variable, there is no way for a client of e1 to

cast β to a pair type because, although β = α × α dynamically, the type name α is

not in the client’s static scope.

It is easy to see, however, that e1 and e2 are not equivalent according to our

logical relation: Suppose they are, i.e., 	 e1 � e2 : τ (and the other way around).

Instantiating this with a sufficiently large number k + 1 and the empty world

w yields (k, �w�, e1, e2) ∈ Ek+1[[τ]]. Now, since obviously ε; e1 ↪→1 α1≈int; v1[α1/α]

(where v1 is the body of e1), we know that there is w′ such that ε; e2 ↪→∗ w′.σ2; v2

and (k − 1, w′, v1, v
′
2) ∈ Vk+1[[τ]]. Clearly, v′2 must be v2[α2/α], where v2 is the body

of e2 and α2 is some type name. Recall that the (non-parametric) logical relation

at existential type requires the type components of the two package values to be

structurally equal. Clearly, this is not the case here, and so we have a contradiction.

Of course, if the language had a typecase operator, the situation would be

different because a client could easily distinguish e1 and e2 by pattern matching the

abstract type β against a pair type constructor—the pattern match would succeed

for e1 but fail for e2. Thus, by demanding that the type components of logically

related existential packages be structurally equal, our model appears to be a closer

fit for a language with typecase (in which an adversarial context can perform

complete structural decomposition of abstract type variables) than for one with cast

(in which an adversarial context can only test for equality against “known” types).
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This is fine from our perspective since our goal was never to tailor our model to the

peculiarities of the cast construct. Moreover, even if we were interested in doing so,

it is far from obvious to us how to go about it.

Our logical relation is also incomplete with respect to contextual approximation for

reasons that have nothing to do with the non-parametric features of the language. In

particular, while we have shown in this paper how our logical relation enables one to

use traditional parametric reasoning when reasoning about wrapped programs, there

are weird yet well-known examples—see, for instance, Pitts (2005)—of equivalences

between existential packages that are not provable by direct use of logical relations.

(Specifically, in these examples, there is no way to show the existential packages

logically related, because there is no way of choosing a relational interpretation

of the abstract type such that the ADT operations are logically related, yet the

existential packages are nevertheless contextually equivalent.) Our logical relation

cannot be used to directly prove those equivalences either.

A well-known technique for achieving completeness is to use biorthogonality,

otherwise known as !!-closure (Pitts & Stark, 1998; Pitts, 2005). We believe

it would not be difficult to incorporate biorthogonality into our present logical

relations in order to render them complete. However, the completeness guaranteed

by biorthogonality does not translate into a practical technique for establishing

weird equivalences like the ones mentioned above. Moreover, as Benton & Tabareau

(2009) have observed, biorthogonality also makes the logical relation (as a practical

proof technique) sensitive to order of evaluation so that it would no longer be

obvious how to use it to prove equivalences like our “order independence” result

from Section 4.4.

12 Related work

Type generation versus other forms of data abstraction. Traditionally, authors have

distinguished between two complementary forms of data abstraction, sometimes

dubbed the static and the dynamic approach (Matthews & Ahmed, 2008). The former

is tied to the type system and relies on parametricity (especially for existential types)

to hide an ADT’s representation from clients (Mitchell & Plotkin, 1988). The latter

approach is typically employed in untyped languages, which do not have the ability

to place static restrictions on clients. Consequently, data hiding has to be enforced

on the level of individual values. Toward that end, languages provide means for

generating unique names and using them as keys for dynamically sealing values. A

value sealed by a given key can only be inspected by principals that have access to

the key (Sumii & Pierce, 2007a).

Dynamic type generation as we employ it (Rossberg, 2003, 2008; Vytiniotis

et al., 2005) can be seen as a middle ground because it bears resemblance to

both approaches. As in the dynamic approach, we cannot rely on parametricity

and instead generate dynamic names to protect abstractions. However, these are

type-level names, not term-level names, and they only “seal” type information.

In particular, individual values of abstract type are still directly represented by

the underlying representation type so that crossing abstraction boundaries has no

runtime cost. In that sense, we are closer to the static approach.
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Another approach to reconciling type abstraction and type analysis has been

proposed by Washburn & Weirich (2005). They introduce a type system that tracks

information flow for terms and types-as-data. By distinguishing security levels, the

type system can statically prevent unauthorized inspection of types by clients.

Multi-language interoperation. The closest related work to ours is that of Matthews

& Ahmed (2008). They describe a pair of mutually recursive logical relations that

deal with the interoperation between a typed language (“ML”) and an untyped

language (“Scheme”). Unlike in G, parametric behavior is hard wired into their ML

side: polymorphic instantiation unconditionally performs a form of dynamic sealing

to protect against the non-parametric Scheme side. (In contrast, we treat new as

its own language construct, orthogonal to universal types.) Dynamic sealing can

then be defined in terms of the primitive coercion operators that bridge between

the ML and Scheme sides. These coercions are similar to our (meta-level) wrapping

operators, but ours perform type-level sealing, not term-level sealing.

The logical relations in Matthews & Ahmed’s formalism are somewhat reminiscent

of Eπ and E although theirs are distinct logical relations for two languages, while

ours are for a single language and differ only in the definition of T [[Ω]]w. In

order to prove the fundamental property for their relations, they prove a “bridge

lemma”—transferring relatedness in one language to the other via coercions—that

is analogous to our Wrapping Theorem for �π . However, they do not propose

anything like our polarized logical relations.

A key technical difference is that their formulation of the logical relations does

not use possible worlds to capture the type store (the latter is left implicit in their

operational semantics). Unfortunately, this resulted in a significant flaw in their

paper (A. Ahmed, 2009 personal communication). They have since reportedly fixed

the problem—independently of our work—using a technique similar to ours, but

they have yet to write up the details.

Proof methods. Logical relations in various forms are routinely used to reason about

program equivalence and type abstraction (Reynolds, 1983; Mitchell, 1986; Pitts,

2005; Ahmed, 2006). In particular, Ahmed, Dreyer & Rossberg recently applied step-

indexed logical relations with possible worlds to reason about type abstraction for a

language with higher order state (Ahmed et al., 2009). State in G is comparatively

benign, but still requires a circular definition of worlds that we stratify using steps.

Pitts & Stark (1993) used logical relations to reason about program equivalence

in the ν-calculus, a language with dynamic generation of term-level names in a

manner similar to G. Since these names are abstract values with only an equality

operator, it is sufficient in their case to index the logical relation by just the partial

bijection between names, which essentially is a simple form of possible world. (In

subsequent work, Pitts & Stark 1998 generalized their technique to handle mutable

references.) Type names can encode term-level names via the type ∃α.1 (Rossberg,

2003). Clearly, though this encoding is not fully abstract (in particular, ∃α.1 is also

inhabited by values not containing generated type names). Moreover, the presence

of non-termination in G marks a fundamental difference from the ν-calculus that

deeply affects the equational theory of the language.
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Sumii & Pierce (2003) employed logical relations in proving secrecy results for

a language with dynamic sealing, where generated names are used as keys. Their

logical relation uses a form of possible world very similar to ours, but tying relational

interpretations to term-level private keys instead of to type names. Their worlds come

into play in the interpretation of the type bits of encrypted data, whereas in our setup

the worlds are important in the interpretation of universal and existential types. In

another line of work, Sumii & Pierce (2007a; 2007b) have used bisimulations to

establish abstraction results for both untyped and polymorphic languages. However,

none of the languages they investigate mixes the two paradigms.

Grossman et al. (2000) have proposed the use of abstraction brackets for syntac-

tically tracing abstraction boundaries during program execution. However, this is a

comparatively weak method that does not seem to help in proving parametricity or

representation independence results.

13 Conclusion and future work

In traditional static languages, type abstraction is established by parametric poly-

morphism. This approach no longer works when dynamic typing features like casts,

typecase, or reflection are added to the mix. Dynamic type generation addresses

this problem.

In this paper, we have shown that dynamic type generation succeeds in recovering

type abstraction. More specifically: (1) we presented a step-indexed logical relation

for reasoning about program equivalence in a non-parametric language with cast

and type generation; (2) we showed that parametricity can be re-established

systematically using a simple type-directed wrapping, which then can be reasoned

about using a parametric variant of the logical relation; (3) we showed that

parametricity can be refined into parametric behavior and parametric usage and

gave a polarized logical relation that distinguishes these dual notions, thereby

handling more subtle examples. The concept of a polarized logical relation seems

novel, and it remains to be seen what else it might be useful for. Interestingly, all our

logical relations can be defined as a single family differing only in the interpretation

T of types-as-data.

An open question is whether the wrapping, when seen as an embedding of Fμ

into Gμ, is fully abstract. We conjecture that it is, but we were only able to show

equivalence reflection, not equivalence preservation. Proving full abstraction remains

an interesting challenge for future work.

On the practical side, we would like to scale our logical relation to handle more

realistic languages, such as ML. We do not expect any problems as long as we

deal only with pure language features. But unfortunately, wrapping cannot easily

be extended to an impure type of mutable references, at least not without making

the wrapping operator primitive in the language semantics. Nevertheless, we believe

that our approach still scales to a large class of impure languages, so long as

we instrument it with a distinction between module and core levels. Specifically,

note that wrapping only does something “interesting” for universal and existential

types and is the identity (modulo η-expansion) otherwise. Thus, for a language
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like Standard ML, which does not support first-class polymorphism—or extensions

like Alice ML, which supports modules as first-class values, but not existentials—

wrapping is never needed on the core level and could hence be confined to the

module level. In such a language, wrapping can be kept implicit, as part of the

implementation of opaque signature ascription—and in fact, that is exactly what

Alice ML does. For core-level types, such as ref types, it can just be the identity.

(Also included in “core-level” are recursive types, for which wrapping otherwise

entails expensive copying.) This is a real advantage of type generation over dynamic

sealing since, for the latter, the need to seal/unseal individual values of abstract type

precludes any attempt to confine wrapping to modules.
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Appendix A The languages G and Gμ

The differences between G and Gμ, i.e., everything related to recursive types, are

underlined.

https://doi.org/10.1017/S0956796811000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000165


552 G. Neis et al.

A.1 Syntax and semantics

Syntax

Types τ ::= α | b | τ× τ | τ→ τ | ∀α.τ | ∃α.τ | μα.τ
Values v ::= x | . . . | 〈v, v〉 | λx:τ.e | Λα.e | pack 〈τ, v〉 as τ | roll v as τ

Expressions e ::= v | . . . | 〈e, e〉 | e.1 | e.2 | e e | e τ | pack 〈τ, v〉 as τ |
unpack 〈α, x〉=e in e | roll e as τ | unroll e |
cast τ τ | new α≈τ in e

Stores σ ::= ε | σ, α≈τ

Evaluation Ctxt’s E ::= . . . | 〈E, e〉 | 〈v, E〉 | E.1 | E.2 | E e | v E | E τ |
pack 〈τ, E〉 as τ | unpack 〈α, x〉=E in e |
roll E as τ | unroll E

Type Environments Δ ::= ε | Δ, α | Δ, α≈τ
Value Environments Γ ::= ε | Γ, x:τ

Reduction σ; e ↪→ σ; e

· · ·
σ;E[〈v1, v2〉.i] ↪→ σ;E[vi] (Rproj)

σ;E[(λx:τ.e) v] ↪→ σ;E[e[v/x]] (Rapp)

σ;E[(λα.e) τ] ↪→ σ;E[e[τ/α]] (Rinst)

σ;E[unpack 〈α, x〉=(pack 〈τ, v〉) in e] ↪→ σ;E[e[τ/α][v/x]] (Runpack)

σ;E[unroll (roll v as τ)] ↪→ σ;E[v] (Runroll)

(α /∈ dom(σ)) σ;E[new α≈τ in e] ↪→ σ, α≈τ;E[e] (Rnew)

(τ1 = τ2) σ;E[cast τ1 τ2] ↪→ σ;E[λx1:τ1.λx2:τ2.x1] (Rcast1)

(τ1 �= τ2) σ;E[cast τ1 τ2] ↪→ σ;E[λx1:τ1.λx2:τ2.x2] (Rcast2)

Type environments 	 Δ

	 ε

	 Δ α /∈ dom(Δ)

	 Δ, α

Δ 	 τ α /∈ dom(Δ)

	 Δ, α≈τ

Value environments Δ 	 Γ

	 Δ

Δ 	 ε

Δ 	 Γ Δ 	 τ x /∈ dom(Γ)

Δ 	 Γ, x:τ
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Types Δ 	 τ

(Tvar)
	 Δ α ∈ Δ

Δ 	 α
(Tname)

	 Δ α≈τ ∈ Δ

Δ 	 α

(Tbase)
	 Δ

Δ 	 b
(Ttimes)

Δ 	 τ1 Δ 	 τ2

Δ 	 τ1 × τ2
(Tarr)

Δ 	 τ1 Δ 	 τ2

Δ 	 τ1 → τ2

(Tall)
Δ, α 	 τ

Δ 	 ∀α.τ (Texists)
Δ, α 	 τ

Δ 	 ∃α.τ (Trec)
Δ, α 	 τ

Δ 	 μα.τ

Type isomorphism Δ 	 τ ≈ τ

(Cvar)
	 Δ α ∈ Δ

Δ 	 α ≈ α
(Cname)

	 Δ α≈τ ∈ Δ

Δ 	 α ≈ τ
(Cbase)

	 Δ

Δ 	 b ≈ b

(Ctimes)
Δ 	 τ1 ≈ τ′1 Δ 	 τ2 ≈ τ′2

Δ 	 τ1 × τ2 ≈ τ′1 × τ′2
(Carr)

Δ 	 τ1 ≈ τ′1 Δ 	 τ2 ≈ τ′2
Δ 	 τ1 → τ2 ≈ τ′1 → τ′2

(Call)
Δ, α 	 τ ≈ τ′

Δ 	 ∀α.τ ≈ ∀α.τ′ (Cexists)
Δ, α 	 τ ≈ τ′

Δ 	 ∃α.τ ≈ ∃α.τ′

(Crec)
Δ, α 	 τ ≈ τ′

Δ 	 μα.τ ≈ μα.τ′

(Csym)
Δ 	 τ′ ≈ τ

Δ 	 τ ≈ τ′
(Ctrans)

Δ 	 τ ≈ τ′′ Δ 	 τ′′ ≈ τ′

Δ 	 τ ≈ τ′

Expressions Δ; Γ 	 e : τ

(Evar)
Δ 	 Γ x:τ ∈ Γ

Δ; Γ 	 x : τ
· · ·

(Epair)
Δ; Γ 	 e1 : τ1 Δ; Γ 	 e2 : τ2

Δ; Γ 	 〈e1, e2〉 : τ1 × τ2
(Eproj)

Δ; Γ 	 e : τ1 × τ2

Δ; Γ 	 e.i : τi

(Eabs)
Δ; Γ, x:τ1 	 e : τ2

Δ; Γ 	 λx:τ1.e : τ1 → τ2
(Eapp)

Δ; Γ 	 e1 : τ2 → τ Δ; Γ 	 e2 : τ2

Δ; Γ 	 e1 e2 : τ

(Egen)
Δ, α; Γ 	 e : τ

Δ; Γ 	 Λα.e : ∀α.τ (Einst)
Δ; Γ 	 e : ∀α.τ Δ 	 τ2

Δ; Γ 	 e τ2 : τ[τ2/α]

(Epack)
Δ; Γ 	 e : τ[τ1/α] Δ 	 τ1

Δ; Γ 	 pack 〈τ1, e〉 as ∃α.τ : ∃α.τ
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(Eunpack)
Δ; Γ 	 e1 : ∃α.τ1 Δ, α; Γ, x:τ1 	 e2 : τ Δ 	 τ

Δ; Γ 	 unpack 〈α, x〉=e1 in e2 : τ

(Eroll)
Δ; Γ 	 e : τ[μα.τ/α]

Δ; Γ 	 roll e as μα.τ : μα.τ
(Eunroll)

Δ; Γ 	 e : μα.τ

Δ; Γ 	 unroll e : τ[μα.τ/α]

(Ecast)
Δ 	 Γ Δ 	 τ1 Δ 	 τ2

Δ; Γ 	 cast τ1 τ2 : τ1 → τ2 → τ2

(Enew)
Δ, α≈τ′; Γ 	 e : τ Δ 	 τ Δ 	 Γ

Δ; Γ 	 new α≈τ′ in e : τ

(Econv)
Δ; Γ 	 e : τ′ Δ 	 τ ≈ τ′

Δ; Γ 	 e : τ

A.2 Structural properties

Type Substitutions δ ::= ∅ | δ, α �→ τ

Value Substitutions γ ::= ∅ | γ, x �→ v

Configurations 	 σ; e : τ

Δ = σ Δ; ε 	 e : τ ε 	 τ

	 σ; e : τ

Type substitutions Δ 	 δ : Δ

	 Δ′

Δ′ 	 ∅ : ε

Δ′ 	 δ : Δ Δ′ 	 τ

Δ′ 	 δ, α �→ τ : Δ, α

Δ′ 	 δ : Δ α′≈δ(τ) ∈ Δ′

Δ′ 	 δ, α �→ α′ : Δ, α≈τ

Type substitution isomorphism Δ 	 δ ≈ δ : Δ

	 Δ′

Δ′ 	 ∅ ≈ ∅ : ε

Δ′ 	 δ ≈ δ′ : Δ Δ′ 	 τ ≈ τ′

Δ′ 	 δ, α �→ τ ≈ δ′, α �→ τ′ : Δ, α

Δ′ 	 δ ≈ δ′ : Δ α1≈δ(τ) ∈ Δ′ α2≈δ′(τ) ∈ Δ′

Δ′ 	 δ, α �→ α1 ≈ δ′, α �→ α2 : Δ, α≈τ
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Value substitutions Δ; Γ 	 γ : Γ

Δ 	 Γ′

Δ; Γ′ 	 ∅ : ε

Δ; Γ′ 	 γ : Γ Δ; Γ′ 	 v : τ

Δ; Γ′ 	 γ, x �→ v : Γ, x:τ

Lemma 48 (Weakening)

1. If Δ 	 τ and Δ′ ⊇ Δ and 	 Δ′, then Δ′ 	 τ.

2. If Δ 	 τ ≈ τ′ and Δ′ ⊇ Δ and 	 Δ′, then Δ′ 	 τ ≈ τ′.

3. If Δ 	 Γ and Δ′ ⊇ Δ and 	 Δ′, then Δ′ 	 Γ.

4. If Δ; Γ 	 e : τ and Δ′ ⊇ Δ and 	 Δ′, then Δ′; Γ 	 e : τ.

5. If Δ; Γ 	 e : τ and Γ′ ⊇ Γ and Δ 	 Γ′, then Δ; Γ′ 	 e : τ.

6. If Δ; Γ 	 γ : Γ and Δ′ ⊇ Δ and 	 Δ′, then Δ′; Γ 	 γ : Γ.

Lemma 49 (Substitution)

1. If Δ 	 τ and Δ′ 	 δ : Δ, then Δ′ 	 δ(τ).

2. If Δ 	 τ ≈ τ′ and Δ′ 	 δ ≈ δ′ : Δ, then Δ′ 	 δ(τ) ≈ δ′(τ′).

3. If Δ 	 Γ and Δ′ 	 δ : Δ, then Δ′ 	 δ(Γ).

4. If Δ; Γ 	 e : τ and Δ′ 	 δ : Δ, then Δ′; δ(Γ) 	 δ(e) : δ(τ).

5. If Δ; Γ 	 e : τ and Δ; Γ′ 	 γ : Γ, then Δ; Γ′ 	 γ(e) : τ.

Lemma 50 (Validity)

1. If Δ 	 τ, then 	 Δ.

2. If Δ 	 τ ≈ τ′, then 	 Δ.

3. If Δ 	 Γ, then 	 Δ.

4. If Δ; Γ 	 e : τ, then 	 Δ and Δ 	 Γ and Δ 	 τ.

Lemma 51 (Variable Containment)

1. If Δ 	 τ and α ∈ ftv(τ), then α ∈ dom(Δ).

2. If Δ 	 τ ≈ τ′ and α ∈ ftv(τ) ∪ ftv(τ′), then α ∈ dom(Δ).

3. If Δ 	 Γ and α ∈ ftv(Γ), then α ∈ dom(Δ).

4. If Δ; Γ 	 e : τ and α ∈ ftv(Γ) ∪ ftv(e) ∪ ftv(τ), then α ∈ dom(Δ).

5. If Δ; Γ 	 e : τ and x ∈ fvv(e), then x ∈ dom(Γ).

A.3 Type safety

Theorem 52 (Preservation)

If σ; e ↪→ σ′; e′ and 	 σ; e : τ, then 	 σ′; e′ : τ.

Lemma 53 (Canonical Values)

Assume 	 σ; v : τ. Then:

1. If τ = τ1 × τ2, then v = 〈v1, v2〉.
2. If τ = τ1 → τ2, then v = λx:τ′1.e.

3. If τ = ∀α.τ1, then v = Λα.e.

4. If τ = ∃α.τ1, then v = pack 〈τ2, v1〉 as τ′.

5. If τ = μα.τ1, then v = roll v′ as τ′.

Theorem 54 (Progress)

If 	 σ; e : τ and e �= v, then σ; e ↪→ σ′; e′.
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A.4 Contextual approximation and equivalence

(contexts)C ::= [ ] | 〈C, e〉 | 〈e, C〉 | C.1 | C.2 | λx:τ.C | C e | e C |
Λα.C | C τ | pack〈τ, C〉 | unpack〈α, x〉=C in e |
unpack 〈α, x〉=e in C | roll C as τ | unroll C | new α≈τ in C

Contexts 	 C : (Δ; Γ; τ) � (Δ; Γ; τ)

(Cempty)
Δ ⊆ Δ′ Γ ⊆ Γ′ Δ′ 	 Γ′

	 [ ] : (Δ; Γ; τ) � (Δ′; Γ′; τ)

(Cabs)
	 C : (Δ; Γ; τ) � (Δ′; Γ′, x:τ1; τ2)

	 λx:τ1.C : (Δ; Γ; τ) � (Δ′; Γ′; τ1 → τ2)

(Cpair.1)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ1) Δ′; Γ′ 	 e : τ2

	 〈C, e〉 : (Δ; Γ; τ) � (Δ′; Γ′; τ1 × τ2)

(Cpair.2)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ2) Δ′; Γ′ 	 e : τ1

	 〈e, C〉 : (Δ; Γ; τ) � (Δ′; Γ′; τ1 × τ2)

(Cproj)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ1 × τ2)

	 C.i : (Δ; Γ; τ) � (Δ′; Γ′; τi)

(Capp.1)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ1 → τ2) Δ′; Γ′ 	 e : τ1

	 C e : (Δ; Γ; τ) � (Δ′; Γ′; τ2)

(Capp.2)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ1) Δ′; Γ′ 	 e : τ1 → τ2

	 e C : (Δ; Γ; τ) � (Δ′; Γ′; τ2)

(Cgen)
	 C : (Δ; Γ; τ) � (Δ′, α; Γ′; τ′)

	 Λα.C : (Δ; Γ; τ) � (Δ′; Γ′; ∀α.τ′)

(Cinst)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; ∀α.τ1) Δ′ 	 τ2

	 C τ2 : (Δ; Γ; τ) � (Δ′; Γ′; τ1[τ2/α])

(Cpack)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ1[τ2/α]) Δ′ 	 τ2

	 pack〈τ2, C〉 : (Δ; Γ; τ) � (Δ′; Γ′; ∃α.τ1)

(Cunpack.1)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; ∃α.τ1) Δ′, α; Γ′, x:τ1 	 e2 : τ2 Δ′ 	 τ2

	 unpack 〈α, x〉=C in e : (Δ; Γ; τ) � (Δ′; Γ′; τ2)

(Cunpack.2)
	 C : (Δ; Γ; τ) � (Δ′, α; Γ′, x:τ1; τ2) Δ′; Γ′ 	 e : ∃α.τ1 Δ′ 	 τ2

	 unpack 〈α, x〉=e in C : (Δ; Γ; τ) � (Δ′; Γ′; τ2)

(Croll)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ′[μα.τ′/α])

	 roll C as μα.τ′ : (Δ; Γ; τ) � (Δ′; Γ′; μα.τ′)
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(Cunroll)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; μα.τ′)

	 unroll C : (Δ; Γ; τ) � (Δ′; Γ′; τ′[μα.τ′])

(Cnew)
	 C : (Δ; Γ; τ) � (Δ′, α≈τ1; Γ′; τ2) Δ′ 	 τ2 Δ′ 	 Γ′

	 new α≈τ′ in C : (Δ; Γ; τ) � (Δ′; Γ′; τ2)

(Cconv)
	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ′) Δ′ 	 τ′ ≈ τ′′

	 C : (Δ; Γ; τ) � (Δ′; Γ′; τ′′)

Termination and divergence σ; e↓ σ; e↑

σ; e↓ def⇐⇒ ∃σ′, v. σ; e ↪→∗ σ′; v

σ; e↑ def⇐⇒ �σ′, v. σ; e ↪→∗ σ′; v

Contextual approximation Δ; Γ 	 e � e : τ

Δ; Γ 	 e1 � e2 : τ
def⇐⇒ Δ; Γ 	 e1 : τ ∧ Δ; Γ 	 e2 : τ ∧ ∀σ, C, τ′.

	 σ ∧ 	 C : (Δ; Γ; τ) � (σ; ε; τ′) ∧ σ;C[e1]↓ ⇒ σ;C[e2]↓

Contextual equivalence Δ; Γ 	 e ≡ e : τ

Δ; Γ 	 e1 ≡ e2 : τ
def⇐⇒ Δ; Γ 	 e1 � e2 : τ ∧ Δ; Γ 	 e2 � e1 : τ

A.5 Encoding recursive functions

A.5.1 Using cast

fix′ f(x).e : τ1 → τ2 with vd := λxa:τ1.v (∀α.α→ τ1 → τ2) v xa
where v = Λα.λxs:α.(λf:(τ1 → τ2).λx:τ1.e) v

′

and v′ = λxa:τ1.(cast α (∀α.α→ τ1 → τ2) xs vd) xa

Due to cast’s required default argument, fix′ also needs to take a default value.

Consequently, a fixed-point operator only exists for inhabited types. It is easy to

verify the following two properties:

• σ; (fix′ f(x).e : τ1 → τ2 with vd) v ↪→∗ σ; e[fix′ f(x).e : τ1 → τ2 with vd/f][v/x],

for any σ.

• If Δ; Γ, f:τ1 → τ2, x:τ1 	 e : τ2 and Δ; Γ 	 vd : ∀α.α → τ1 → τ2, then

Δ;Γ 	 (fix′ f(x).e : τ1 → τ2 with vd) : τ1 → τ2.

https://doi.org/10.1017/S0956796811000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000165


558 G. Neis et al.

A.5.2 Using recursive types

fix f(x).e : τ1 → τ2 := λxa:τ1.v (roll v as μα.α→ τ1 → τ2) xa
where v = λxs:(μα.α→ τ1 → τ2).(λf:(τ1 → τ2).λx:τ1.e)

(λxa:τ1.(unroll xs) xs xa)

It is easy to verify the following two properties:

• σ; (fix f(x).e : τ1 → τ2) v ↪→∗ σ; e[fix f(x).e : τ1 → τ2/f][v/x], for any σ.

• If Δ; Γ, f:τ1 → τ2, x:τ1 	 e : τ2, then Δ; Γ 	 (fix f(x).e : τ1 → τ2) : τ1 → τ2.

Appendix B Some proofs

B.1 Lemma 13 from Section 4

If (δ1, δ2, ρ) ∈ Dn[[Δ]]w0 and δ = au(δ1, δ2, w0.η) and Δ 	 τ, then:

1. Vn[[τ]]ρ = Vn[[δ(τ)]]w0.ρ

2. En[[τ]]ρ = En[[δ(τ)]]w0.ρ

Proof

By primary induction on n and secondary induction on the derivation of Δ 	 τ, we

show the interesting cases.

1. • Case τ = α were α ∈ Δ:

— Then, we know from the definition of Dn[[Δ]]w0 that there is (τ1, τ2, r) ∈
Tn[[Ω]]w0 such that δi = δi1, α �→ τi, δi2 and ρ = ρ1, α �→ r, ρ2.

— By definition of Tn[[Ω]]w0, there is τ′ such that τi = w0.η
i(τ′) and

r.R = Vn[[τ
′]]w0.ρ.

— Hence, Vn[[α]]ρ = Vn[[τ
′]]w0.ρ.

— Since τi = w0.η
i(δ(α)) by Lemma 12, the injectivity of w0.η

i implies

τ′ = δ(α).

• Case τ = α where α≈τ′ ∈ Δ:

— Then, we know from the definition of Dn[[Δ]]w0 that δi = δi1, α �→ αi, δi2
and ρ = ρ1, α �→ (ρ1

1(τ
′), ρ2

1(τ
′), Vn[[τ

′]]ρ1), ρ2 with αi = w0.η
i(α′) and

Vn[[τ
′]]ρ1 = w0.ρ(α′).R for some α′.

— Because of the injectivity of w0.η
i, w0.η

i(α′) = αi = δi(α) = w0.η
iδ(α)

implies α′ = δ(α).

— Hence, Vn[[α]]ρ = Vn[[τ
′]]ρ1 = Vn[[α

′]]w0.ρ = Vn[[δ(α)]]w0.ρ.

• Case τ = ∀α.τ′ with Δ, α 	 τ′:

— We show Vn[[τ]]ρ ⊆ Vn[[δ(τ)]]w0.ρ; the other direction is symmetric.

— Suppose (k, w,Λα.e1,Λα.e2) ∈ Vn[[∀α.τ′]]ρ.

— Suppose further (k′′, w′′) � (k′, w′) � (k, w) and (τ1, τ2, r) ∈ Tk′ [[Ω]]w′.

— We know (k′′, w′′, e1[τ1/α], e2[τ2/α]) ∈ En[[τ
′]]ρ, α �→ r.

— To show: (k′′, w′′, e1[τ1/α], e2[τ2/α]) ∈ En[[δ(τ′)]]w0.ρ, α �→ r
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— This reduces to showing Ek′ [[τ
′]]�ρ�k′ , α �→ r = Ek′ [[δ(τ′)]]w′.ρ, α �→ r.

— By assumption and Lemma 4, (δ1, δ2, �ρ�k′ ) ∈ Dk′[[Δ]]w′.

— Let (δ′1, δ
′
2, ρ

′) := ((δ1, α �→ τ1), (δ2, α �→ τ2), (�ρ�k′ , α �→ r)), so (δ′1, δ
′
2, ρ

′) ∈
Dk′ [[Δ, α]]w

′.

— By Lemma 12, δ = au(δ1, δ2, w
′.η).

— Since (τ1, τ2, r) ∈ Tk′ [[Ω]]w′ we know τi = w′.ηi(τ′′) and

r = (w′.ρ1(τ′′), w′.ρ2(τ′′), Vk′ [[τ
′′]]w′.ρ).

— It is easy to see then that δ, α �→ τ′′ = au(δ′1, δ
′
2, w

′.η).

— Hence, by induction, Ek′ [[τ
′]]ρ′ = Ek′ [[δ(τ′)[τ′′/α]]]w′.ρ.

— And by LR-Substitution,

Ek′ [[δ(τ′)[τ′′/α]]]w′.ρ

=Ek′ [[δ(τ′)]]w′.ρ, α �→ (w′.ρ1(τ′′), w′.ρ2(τ′′), Vk′ [[τ
′′]]w′.ρ)

=Ek′ [[δ(τ′)]]w′.ρ, α �→ r.

2. Follows immediately from part (1). �

B.2 Partly benign effects (Repeatability)

Consider the following functions (where τ is arbitrary but closed):

v1 := λx:(unit → τ). let x′ = x () in x ()

v2 := λx:(unit → τ). x ()

We first prove ε; ε 	 v1 � v2 : (unit → τ) → τ. The key here is that we relate the

second call of x in v1—the one whose return value matters—to the single call of x

in v2. To do so, we have to construct a world w′1 that differs from the “initial” world

w′ in that its first type store is the one in which the second call of x is executed.

Proof

• Suppose w0 ∈ Worldn and (k, w) � (n, w0).

• To show: (k, w, v1, v2) ∈ Vn[[(unit → τ) → τ]]

• So suppose (k′, w′, λx.e1, λx.e2) ∈ Vn[[unit → τ]] where (k′, w′) � (k, w).

• To show: (k′, w′, let x′ = (λx.e1) () in (λx.e1) (), (λx.e2) ()) ∈ En[[τ]]

• Suppose that w′.σ1; let x′ = (λx.e1) () in (λx.e1) () terminates:

w′.σ1; let x′ = (λx.e1) () in (λx.e1) ()

↪→1 w′.σ1; let x′ = e1[()/x] in (λx.e1) ()

↪→j1 σ′1; let x′ = v′1 in (λx.e1) ()

↪→1 σ′1; (λx.e1) ()

↪→1 σ′1; e1[()/x]

↪→j2 σ1; v
′′
1

and that 3 + j1 + j2 =: j < k′.

• Let w′1 := (σ′1, w
′.σ2, w

′.η, w′.ρ), so (k′, w′1) � (k′, w′).

• Instantiating (k′, w′, λx.e1, λx.e2) ∈ Vn[[unit → τ]] with (k′ − j1 − 3, �w′1�, (), ()) ∈
Vn[[unit]] gives us (k′ − j1 − 3, �w′1�, e1[()/x], e2[()/x]) ∈ En[[τ]].
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• Instantiating this with σ′1; e1[()/x] ↪→j2 σ1; v
′′
1 yields (k′ − j, w′′) � (k′ − j1 −

3, �w′1�) such that

w′.σ2; e2[()/x] ↪→∗ w′′.σ2; v
′
2

with w′′.σ1 = σ1 and (k′ − j, w′′, v′′1 , v
′
2) ∈ Vn[[τ]].

• This implies (k′ − j, w′′) � (k′, w′) and

w′.σ2; (λx.e2) () ↪→∗ w′′.σ2; v
′
2. �

It remains to show the other direction, i.e., ε; ε 	 v2 � v1 : (unit → τ) → τ. We

first relate the single call of x in v2 (resulting in a value v′1) to the first call of x in

v1. From that we learn that the latter terminates. We can then construct a world w′2
from w′ as in the previous part and use that to relate the call of x in v2 also to the

second call of x in v1. From that we learn that also this call terminates and that it

results in a value v′′2 to which v′1 is related.

Proof

• Suppose w0 ∈ Worldn and (k, w) � (n, w0).

• To show: (k, w, v2, v1) ∈ Vn[[(unit → τ) → τ]]

• So suppose (k′, w′, λx.e1, λx.e2) ∈ Vn[[unit → τ]] where (k′, w′) � (k, w).

• To show: (k′, w′, (λx.e1) (), let x′ = (λx.e2) () in (λx.e2) ()) ∈ En[[τ]]

• Suppose w′.σ1; (λx.e1) () terminates:

w′.σ1; (λx.e1) ()

↪→1 w′.σ1; e1[()/x]

↪→j ′ σ1; v
′
1

and that 1 + j ′ =: j < k′.

• Instantiating (k′, w′, λx.e1, λx.e2) ∈ Vn[[unit → τ]] with (k′ − 1, �w′�, (), ()) ∈
Vn[[unit]] yields (k′ − 1, �w′�, e1[()/x], e2[()/x]) ∈ En[[τ]].

• Consequently, there exists (k′ − j, w′′) � (k′ − 1, �w′�) such that

w′.σ2; e2[()/x] ↪→∗ w′′.σ2; v
′
2.

• Let w′2 = (w′.σ1, w
′′.σ2, w

′.η, w′.ρ), so (k′, w′2) � (k′, w′).

• Instantiating (k′, w′, λx.e1, λx.e2) ∈ Vn[[unit → τ]] with (k′ − 1, �w′2�, (), ()) ∈
Vn[[unit]] yields (k′ − 1, �w′2�, e1[()/x], e2[()/x]) ∈ En[[τ]].

• Consequently, there exists (k′ − j, w′′′) � (k′ − 1, �w′2�) such that

w′′.σ2; e2[()/x] ↪→∗ w′′′.σ2; v
′′
2

with w′′′.σ1 = σ1 and (k′ − j, w′′′, v′1, v
′′
2 ) ∈ Vn[[τ]].

• Note that

w′.σ2; let x′ = (λx.e2) () in (λx.e2) ()

↪→1 w′.σ2; let x′ = e2[()/x] in (λx.e2) ()

↪→∗ w′′.σ2; let x′ = v′2 in (λx.e2) ()

↪→1 w′′.σ2; (λx.e2) ()

↪→1 w′′.σ2; e2[()/x]

↪→∗ w′′′.σ2; v
′′
2 �
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B.3 Partly benign effects (Order independence)

Consider the following functions (where τ and τ′ are arbitrary but closed):

v′1 := λx:(unit → τ).λy:(unit → τ′). let y′ = y () in 〈x (), y′〉
v′2 := λx:(unit → τ).λy:(unit → τ′). 〈x (), y ()〉

We show ε; ε 	 v′1 � v′2 : (unit → τ) → (unit → τ′) → (τ × τ′). (The proof for the

other direction is nearly identical.) We start by constructing a world w′2 from the

“initial” world w′′ that lets us relate the second application in v′1 (namely, x ()) to

the corresponding first application in v′2, which yields a future world w′′2 and values

v′′1 , v
′′
2 that are related in it. We then construct another world w′1 that lets us relate

the first application in v′1 (namely, y ()) to the corresponding second application in

v′2, which yields a future world w′′1 and values v′3, v
′
4 that are related in it. Finally,

we need to merge worlds w′′1 and w′′2 to obtain a single future world w3 in which the

resulting pairs 〈v′′1 , v′3〉, 〈v′′2 , v′4〉 are related. The well-formedness of that world is not

obvious and needs to be verified by case analysis.

Proof

• Suppose w0 ∈ Worldn and (k, w) � (n, w0).

• To show: (k, w, v′1, v
′
2) ∈ Vn[[(unit → τ) → (unit → τ′) → (τ× τ′)]]

• So suppose (k′, w′, λz.e1, λz.e2) ∈ Vn[[unit → τ]] where (k′, w′) � (k, w).

• To show: (k′, w′, λy. let y′ = y () in 〈(λz.e1) (), y′〉,
λy. 〈(λz.e2) (), y ()〉) ∈ Vn[[(unit → τ′) → (τ× τ′)]]

• So suppose (k′′, w′′, λz′.e3, λz
′.e4) ∈ Vn[[unit → τ′]] where (k′′, w′′) � (k′, w′).

• To show: (k′′, w′′, let y′ = (λz′.e3) () in 〈(λz.e1) (), y′〉,
〈(λz.e2) (), (λz′.e4) ()〉) ∈ En[[τ× τ′]]

• Suppose w′′.σ1; let y′ = (λz′.e3) () in 〈(λz.e1) (), y′〉 terminates

w′′.σ1; let y′ = (λz′.e3) () in 〈(λz.e1) (), y′〉
↪→1 w′′.σ1; let y′ = e3[()/z

′] in 〈(λz.e1) (), y′〉
↪→j1 σ′1; let y′ = v′3 in 〈(λz.e1) (), y′〉
↪→1 σ′1; 〈(λz.e1) (), v′3〉
↪→1 σ′1; 〈e1[()/z], v

′
3〉

↪→j2 σ1; 〈v′′1 , v′3〉

and j1 + j2 + 3 =: j < k′′.

• Let (k′2, w
′
2) := (k′′ − j1 − 3, (σ′1, w

′′.σ2, w
′′.η, �w′′.ρ�)), so (k′2, w

′
2) � (k′′, w′′).

• Instantiating (k′, w′, λz.e1, λz.e2) ∈ Vn[[unit → τ]] with (k′2, w
′
2, (), ()) ∈ Vn[[unit]]

gives us (k′2, w
′
2, e1[()/z], e2[()/z]) ∈ En[[τ]].

• Note that w′2.σ1 = σ′1.

• Consequently, there exists (k′′ − j, w′′2 ) � (k′2, w
′
2) such that

w′′.σ2; e2[()/z] ↪→∗ w′′2 .σ2; v
′′
2

with w′′2 .σ1 = σ1 and (k′′ − j, w′′2 , v
′′
1 , v

′′
2 ) ∈ Vn[[τ]].

• Let (k′1, w
′
1) := (k′′ − 1, (w′′.σ1, w

′′
2 .σ2, w

′′.η, �w′′.ρ�)), so (k′1, w
′
1) � (k′′, w′′).

• Instantiating (k′′, w′′, λz′.e3, λz
′.e4) ∈ Vn[[unit → τ′]] with (k′1, w

′
1, (), ()) ∈ Vn[[unit]]

gives us (k′1, w
′
1, e3[()/z

′], e4[()/z
′]) ∈ En[[τ

′]].
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• Note that w′1.σ1 = w′′.σ1.

• Consequently, there exists (k′′ − 1− j1, w
′′
1 ) � (k′1, w

′
1) such that

w′′2 .σ2; e4[()/z
′] ↪→∗ w′′1 .σ2; v

′
4

with w′′1 .σ1 = σ′1 and (k′′ − 1− j1, w
′′
1 , v

′
3, v

′
4) ∈ Vn[[τ

′]].

• W.l.o.g. (dom(w′′1 .η)\dom(w′′.η))∩ (dom(w′′2 .η)\dom(w′′.η)) = ∅, so w′′1 .η∪w′′2 .η

and w′′1 .ρ ∪ w′′2 .ρ are well defined.

• Let w3 := (w′′2 .σ1, w
′′
1 .σ2, w

′′
1 .η ∪ w′′2 .η, �w′′1 .ρ�k′′−j ∪ w′′2 .ρ).

• To see that w3 is well formed, it remains to show the injectivity of w3.η
i:

— Note that rng(w′′1 .η
i) \ rng(w′′.ηi) ⊆ dom(w′′1 .σi) \ dom(w′1.σi) by definition

of world extension.

— Similarly, rng(w′′2 .η
i) \ rng(w′′.ηi) ⊆ dom(w′′2 .σi) \ dom(w′2.σi) by definition

of world extension.

— Suppose α, α′ ∈ dom(w3.η).

— Case α, α′ ∈ dom(w′′.η): Trivial.

— Case α ∈ dom(w′′.η) and α′ ∈ dom(w′′1 .η) \ dom(w′′.η):

– Then, w3.η
i(α) ∈ dom(w′′.σi) and w3.η

i(α′) ∈ dom(w′′1 .σi) \ dom(w′1.σi).

– Since w′1.σi = w′′.σi, we have w3.η
i(α) �= w3.η

i(α′).

— Case α ∈ dom(w′′.η) and α′ ∈ dom(w′′2 .η) \ dom(w′′.η):

– Then, w3.η
i(α) ∈ dom(w′′.σi) and w3.η

i(α′) ∈ dom(w′′2 .σi) \ dom(w′2.σi).

– Since w′1.σi = w′′.σi, we have w3.η
i(α) �= w3.η

i(α′).

— Case α ∈ dom(w′′1 .η) \ dom(w′′.η) and α′ ∈ dom(w′′2 .η) \ dom(w′′.η):

– Then, w3.η
i(α) ∈ dom(w′′1 .σi) \ dom(w′1.σi) and w3.η

i(α′) ∈ dom(w′′2 .σi) \
dom(w′2.σi).

– For i = 1, this means w3.η
1(α) ∈ dom(w′′1 .σ1) = dom(σ′1) = dom(w′2.σ1),

so it cannot equal w3.η
1(α′).

– For i = 2, this means w3.η
2(α) ∈ dom(w′′1 .σ2) \ dom(w′′2 .σ2), so it cannot

equal w3.η
2(α′).

• Also note that (k′′ − j, w3) � (k′′ − j, w′′2 ) and (k′′ − j, w3) � (k′′ − 1− j1, w
′′
1 ).

• Hence, (k′′ − j, w3, v
′′
1 , v

′′
2 ) ∈ Vn[[τ]] and (k′′ − j, w3, v

′
3, v

′
4) ∈ Vn[[τ

′]] and therefore

(k′′ − j, w3, 〈v′′1 , v′3〉, 〈v′′2 , v′4〉) ∈ Vn[[τ× τ′]].

• And of course

w′′.σ2; 〈(λz.e2) (), (λz′.e4) ()〉 ↪→∗ w3.σ2; 〈v′′2 , v′4〉. �
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