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A CENTRAL LIMIT THEOREM FOR
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Abstract

A discrete-time SIS model is presented that allows individuals in the population to vary
in terms of their susceptibility to infection and their rate of recovery. This model is a
generalisation of the metapopulation model presented in McVinish and Pollett (2010).
The main result of the paper is a central limit theorem showing that fluctuations in the
proportion of infected individuals around the limiting proportion converges to a Gaussian
random variable when appropriately rescaled. In contrast to the case where there is no
variation amongst individuals, the limiting Gaussian distribution has a nonzero mean.
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1. Introduction

Discrete-time Markov chains have been used by many researchers for modelling epidemics
(see, for example, [3], [4], and [6]). In this note we consider an extension of the discrete-time
susceptible-infected-susceptible (SIS) model [1]. For each n, let {Xnt }∞t=1 be a discrete-time
homogeneous Markov chain where

Xnt = (Xn1,t , . . . , X
n
n,t ) with Xni,t =

{
1 if individual i is infected at time t,

0 otherwise.

Let B(m, p) denote a binomial random variable with m trials with success probability p.
Conditional on Xnt , the Xni,t+1 are independent with transitions given by

Xni,t+1 ∼ B(Xni,t , si)+ B

(
1 −Xni,t , cif

(
n−1

∑n

j=1
Xnj,t

))
, (1)

where f : [0, 1] �→ [0, 1] is an increasing concave function. The parameter si is the probability
that individual i does not recover from the infection in one time step, given that he/she is
infected. The parameter ci relates to the susceptibility to infection of individual i and may
take values in [0, 1/f (1)]. However, to simplify notation, we will assume that ci takes values
in [0, 1]. In the special case where f (x) = x, si = s, and ci = c for all i = 1, . . . , n, the
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model for the number of infected individuals reduces to the standard discrete-time SIS model.
By allowing variation amongst individuals, we aim to have a more realistic model of epidemic
dynamics.

Note that model (1) is also relevant to modelling metapopulation dynamics. In that context,
the state vectorXnt models the occupied patches in a metapopulation ofnpatches. The parameter
si is the probability of the local population at patch i surviving and ci is related to the probability
of patch i being recolonised. By taking ci = si for all i = 1, . . . , n, the model reduces to the
colonisation-extinction (CE) model studied in [5].

For a model with this level of complexity, asymptotic analysis is a valuable tool for under-
standing the model behaviour. A basic assumption of the analysis is that the parameters {si, ci}
can be treated as random variables having properties similar to the weak law of large numbers
and central limit theorem. Under a similar assumption, in [5] we derived the deterministic
limit of the proportion of occupied habitat patches for the CE model and studied some of the
properties of the limiting deterministic trajectory. The main contribution presented in this note
is an analysis of the fluctuations of the proportion of infected individuals about the limiting
deterministic function. We show that these fluctuations, appropriately scaled, converge in
distribution to a Gaussian random variable. However, the mean of the Gaussian distribution is
nonzero and depends largely on the distribution of {si, ci}, i = 1, . . . , n.

2. Central limit theorem

2.1. Preliminaries

We first extend some results from Section 2 of [5] to the more general setting of model (1).
Consider the sequences of arrays

dn(t; j, k) := n−1
n∑
i=1

s
j
i c
k
i X

n
i,t and mn(j, k) := n−1

n∑
i=1

s
j
i c
k
i ,

where j, k ∈ {0, 1, 2, . . .}. In epidemic modelling, dn(t; 0, 0) is the proportion of infective
individuals in a population of size n while, in the context of metapopulation modelling,
dn(t; 0, 0) is the proportion of occupied patches of a metapopulation comprising n patches.
Throughout this note, we shall assume that there exists a probability measure σ on [0, 1]2 such
that

mn(j, k)
p−→ m(j, k) :=

∫
sj ckσ (ds, dc) (2)

and
dn(0; j, k) p−→ d(0; j, k), (3)

where d(0; j, k) is an array of constants. Under assumptions (2) and (3), dn(t; j, k) converges
in probability to the solution of the recurrence equation

d(t + 1; j, k) = d(t; j + 1, k)+ f (d(t; 0, 0))(m(j, k + 1)− d(t; j, k + 1)). (4)

The proof of this result follows the same arguments as those used in the proof of Theorem 2.1
of [5]. The fixed points of the recurrence equation (4) are given by

d(j, k) =
∫

f (ψ)sj ck+1

1 − s + f (ψ)c
σ(ds, dc), (5)
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where ψ solves

ψ = R(ψ) :=
∫

f (ψ)c

1 − s + f (ψ)c
σ(ds, dc). (6)

If f (0) > 0 then there exists a unique ψ > 0 satisfying (6). If f (0) = 0 and

f ′(0)
∫

c

1 − s
σ (ds, dc) ≤ 1, (7)

then ψ = 0 is the unique solution to (6). Otherwise, (6) has two solutions of which one is
ψ = 0. The derivation of the fixed points of the recurrence equation (4) follows the same
arguments as those used in the proof of Theorem 2.2 of [5].

2.2. Main result

The main contribution of this note is to examine the fluctuations of dn(t; j, k) about their
deterministic limit d(t; j, k) given by (4). Define the sequences of arrays

zn(t; j, k) := n1/2(dn(t; j, k)− d(t; j, k)) and ξn(j, k) := n1/2(mn(j, k)−m(j, k)).

The central limit theorem for zn(t; j, k) given below differs from that presented in [2] due to
the variations in si and ci . If si = ci = s for all i then ξn(j, k) = 0 for all j, k, n and Theorem 4
(CE model) of [2] is recovered.

Theorem 1. Assume that (2) and (3) hold and that f is a twice continuously differentiable
function. Assume also that the infinite array {zn(0; j, k), ξn(j, k)} converges in distribution to
{z(0; j, k), ξ(j, k)}. Then zn(t; j, k) ⇒ z(t; j, k), where

z(t + 1; j, k) = z(t; j + 1, k)+ f (d(t; 0, 0))(ξ(j, k + 1)− z(t; j, k + 1))

+ f ′(d(t; 0, 0))(m(j, k + 1)− d(t; j, k + 1))z(t; 0, 0)+ ε(t + 1; j, k) (8)

and ε(t + 1; ·, ·) is a sequence of independent, Gaussian random arrays with mean 0 and
covariance given by

E ε(t; j1, k1)ε(t; j2, k2)

= d(t; j1 + j2 + 1, k1 + k2)− d(t; j1 + j2 + 2, k1 + k2)

+ f (d(t; 0, 0))(m(j1 + j2, k1 + k2 + 1)− d(t; j1 + j2, k1 + k2 + 1))

− f 2(d(t; 0, 0))(m(j1 + j2, k1 + k2 + 2)− d(t; j1 + j2, k1 + k2 + 2)). (9)

Proof. Let Zn(t; q) denote the array {zn(t; j, k)}, j = 0, . . . , q, k = 0, . . . , q, and let
�n(q) denote the array {ξn(j, k)}, j = 0, . . . , q, k = 0, . . . , q. For any q ≥ 2t , let �n(t; q)
denote

(Zn(t; q − 2t), Zn(t − 1; q − 2(t − 1)), . . . , Zn(0; q),�n(q)).
The proof proceeds by showing that the characteristic function of �n(t; q) converges to the
characteristic function of the desired Gaussian process given by (8) and (9). This is achieved
using induction. By assumption, �n(0; q) converges in distribution for any q ≥ 0. Now
suppose that �n(T ; q) converges in distribution for some T such that T < t . To compute the
characteristic function of �n(T + 1; q), we begin by computing the characteristic function of
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Zn(T +1; q−2(T +1)) conditional onXnT and {si, ci}, i = 1, . . . , n. Let q ′ = q−2(T +1).
Then

E

(
exp

(
i
q ′∑
j=0

q ′∑
k=0

βjkzn(T + 1; j, k)
) ∣∣∣∣XnT , {si, ci}

)

= E

(
exp

(
−i

q ′∑
j=0

q ′∑
k=0

n1/2βjkd(T + 1; j, k)

+ i
n∑
i=1

q ′∑
j=0

q ′∑
k=0

n−1/2βjks
j
i c
k
i X

n
i,T+1

) ∣∣∣∣XnT , {si, ci}
)
. (10)

Let θi = ∑q ′
j=0

∑q ′
k=0 n

−1/2βjks
j
i c
k
i , and let |β| = maxjk |βjk|. As theXni,T+1 are independent

given XnT ,

E

(
exp

(
i
n∑
i=1

θiX
n
i,T+1

) ∣∣∣∣XnT , {si, ci}
)

= exp

( n∑
i=1

Xni,T log(1 − si + si exp(iθi))

)

× exp

( n∑
i=1

(1 −Xni,T ) log

(
1 − cif

(
n−1

n∑
i=1

Xni,T

)

+ cif

(
n−1

n∑
i=1

Xni,T

)
exp(iθi)

))
. (11)

We aim to express the two exponents in (11) in terms of the variables in �n(T ; q) and other
variables that converge in probability to constants as n → ∞. The following estimates will be
required: ∣∣log(1 + z)− z+ 1

2z
2
∣∣ ≤ |z|3, z ∈ C, |z| < 1

2 ,∣∣∣∣ exp(iz)− 1 − iz+ 1

2
z2

∣∣∣∣ ≤ min

(
|z|2, |z|3

6

)
, z ∈ R. (12)

The second exponent in (11) can be expressed as

n∑
i=1

(1 −Xni,T ) log(1 − cif (dn(T ; 0, 0))+ cif (dn(T ; 0, 0)) exp(iθi))

=
n∑
i=1

(1 −Xni,T )

(
cif (dn(T ; 0, 0))(exp(iθi)− 1)

− 1

2
c2
i f

2(dn(T ; 0, 0))(exp(iθi)− 1)2 + Ri,n

)
,

where, for sufficiently large n,

|Ri,n| ≤ | exp(iθi)− 1|3 ≤ |θi |3 ≤ n−3/2(q ′ + 1)6|β|3.
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Using the approximation of the exponential function, we can express the second exponent in
(11) as

n∑
i=1

(1 −Xni,T )
(

icif (dn(T ; 0, 0))θi − 1

2
cif (dn(T ; 0, 0))θ2

i + 1

2
c2
i f

2(dn(T ; 0, 0))θ2
i + R̃i,n

)
,

(13)
where

R̃i,n = Ri,n + cif (dn(T ; 0, 0))
(
exp(iθi)− 1 − iθi + 1

2θ
2
i

)
− 1

2c
2
i f

2(dn(T ; 0, 0))((exp(iθi)− 1)2 + θ2
i ).

Bound (12) implies that |R̃i,n| ≤ 3n−3/2(q ′ + 1)6|β|3. Expression (13) can now be written in
terms of dn(t; j, k) and mn(j, k) as

in1/2f (dn(T ; 0, 0))
q ′∑
j=0

q ′∑
k=0

βjk(mn(j, k + 1)− dn(T ; j, k + 1))

− 1

2
f (dn(T ; 0, 0))

q ′∑
j1=0

q ′∑
k1=0

q ′∑
j2=0

q ′∑
k2=0

βj1k1βj2k2(mn(j1 + j2, k1 + k2 + 1)

− dn(T ; j1 + j2, k1 + k2 + 1))

+ 1

2
f 2(dn(T ; 0, 0))

q ′∑
j1=0

q ′∑
k1=0

q ′∑
j2=0

q ′∑
k2=0

βj1k1βj2k2(mn(j1 + j2, k1 + k2 + 2)

− dn(T ; j1 + j2, k1 + k2 + 2))

+ Rn, (14)

where Rn = ∑n
i=1(1 −Xni,t )R̃i,n and |Rn| ≤ 3n−1/2(q ′ + 1)6|β|3. Similar arguments yield

the following expression for the first exponent in (11):

in1/2
q ′∑
j=0

q ′∑
k=0

βjkdn(T ; j + 1, k)+ R′
n

− 1

2

q ′∑
j1=0

q ′∑
k1=0

q ′∑
j2=0

q ′∑
k2=0

βj1k1βj2k2(dn(T ; j1 + j2 + 1, k1 + k2)

− dn(T ; j1 + j2 + 2, k1 + k2)). (15)

Here |R′
n| ≤ 3n−1/2(q ′+1)3|β|3. Expressions (15) and (14) give the first and second exponents

in (11), respectively. We now substitute these expressions into (10). We first group the terms
in the exponent involving n1/2. They are

−i
q ′∑
j=0

q ′∑
k=0

n1/2βjkd(T + 1; j, k)+ in1/2
q ′∑
j=0

q ′∑
k=0

βjkdn(T ; j + 1, k)

+ in1/2f (dn(T ; 0, 0))
q ′∑
j=0

q ′∑
k=0

βjk(mn(j, k + 1)− dn(T ; j, k + 1)). (16)
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Replacing d(T + 1; j, k) by its recursion (4) and taking a first-order Taylor expansion of f ,
expression (16) becomes

i
q ′∑
j=0

q ′∑
k=0

βjkn
1/2(dn(T ; j + 1, k)− d(T ; j + 1, k))

+ if (d(T ; 0, 0))
q ′∑
j=0

q ′∑
k=0

βjkn
1/2(mn(j, k + 1)−m(j, k + 1)− dn(T ; j, k + 1)

+ d(T ; j, k + 1))

+ if ′(d(T ; 0, 0))zn(T ; 0, 0)
q ′∑
j=0

q ′∑
k=0

βjk(mn(j, k + 1)− dn(T ; j, k + 1))+ R′′
n, (17)

where
R′′
n = i(n1/2(f (dn(T ; 0, 0))− f (d(T ; 0, 0)))− f ′(d(T ; 0, 0))zn(T ; 0, 0))

×
q ′∑
j=0

q ′∑
k=0

βjk(mn(j, k + 1)− dn(T ; j, k + 1)).

Combining expression (17) with the expressions for the two exponents in (11) gives

log E

(
exp

(
i
q ′∑
j=0

q ′∑
k=0

βjkzn(T + 1; j, k)
) ∣∣∣∣XnT , {si, ci}

)

= i
q ′∑
j=0

q ′∑
k=0

βjkzn(T ; j + 1, k)

+ if (dn(T ; 0, 0))
q ′∑
j=0

q ′∑
k=0

βjk(ξn(j, k + 1)− zn(T ; j, k + 1))

+ if ′(d(T ; 0, 0))zn(T ; 0, 0)
q ′∑
j=0

q ′∑
k=0

βjk(mn(j, k + 1)− dn(T ; j, k + 1))

− 1

2

q ′∑
j1=0

q ′∑
k1=0

q ′∑
j2=0

q ′∑
k2=0

βj1k1βj2k2(dn(T ; j1 + j2 + 1, k1 + k2)

− dn(T ; j1 + j2 + 2, k1 + k2))

− 1

2
f (dn(T ; 0, 0))

q ′∑
j1=0

q ′∑
k1=0

q ′∑
j2=0

q ′∑
k2=0

βj1k1βj2k2(mn(j1 + j2, k1 + k2 + 1)

− dn(T ; j1 + j2, k1 + k2 + 1))

+ 1

2
f 2(dn(T ; 0, 0))

q ′∑
j1=0

q ′∑
k1=0

q ′∑
j2=0

q ′∑
k2=0

βj1k1βj2k2(mn(j1 + j2, k1 + k2 + 2)

− dn(T ; j1 + j2, k1 + k2 + 2))

+ Rn + R′
n + R′′

n. (18)
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As f is twice, continuously differentiable and zn(T ; 0, 0) converges in distribution, R′′
n con-

verges in probability to 0. From (18) we see that the conditional characteristic function
(10) is a bounded, continuous function of �n(T ; q), dn(T ; j, k),mn(j, k), and the remainder
terms Rn, R′

n, and R′′
n . As �n(T ; q) converges in distribution and dn(T ; j, k),mn(j, k), and

the remainder terms converge in probability to constants, these variables jointly converge in
distribution. Therefore, the characteristic function of �n(T + 1; q) converges pointwise as
n → ∞. An application of Lévy’s continuity theorem completes the proof of convergence in
distribution. The form of the limiting process given in (8) and (9) can be identified from the
conditional characteristic function (18). This completes the proof.

2.3. Mean of z conditional on ξ

Since {si, ci}ni=1 are essentially parameters of model (1), it seems natural to consider the
distribution of z(t; j, k) conditional on ξ . Although properties of the process defined by (8) and
(9), such as the mean and variance of z(t; j, k) conditional on ξ , can be investigated numerically,
some analytical progress is possible if we impose the restriction that si = ci . In this case
z(t; k) = z(t; j, k−j), d(t; k) = d(t; j, k−j), d(k) = d(j, k−j), andm(k) = m(j, k−j)
for any j = 0, . . . , k and all k. Similar notation applies for all other arrays. Now suppose that
the deterministic limit is in a nonzero equilibrium, that is, d(t; k) = d(k) > 0 for all t and all k.
Recall that d(0) = ψ, where ψ is the nonzero solution to (6). The mean of z(t; k) conditional
on ξ is given by

E(z(t + 1; k) | ξ) = (1 − f (ψ))E(z(t; k + 1) | ξ)+ f (ψ)ξ(k + 1)

+ f ′(ψ)(m(k + 1)− d(k + 1))E(z(t; 0) | ξ). (19)

From (5),

m(k)− d(k) =
∫

λk(1 − λ)

1 − λ+ λf (ψ)
σ(dλ).

To determine the fixed points of (19), consider the difference equation

µ(k) = (1 − f (ψ))µ(k + 1)+ f (ψ)ξ(k + 1)+ µ0f
′(ψ)

∫
λk+1(1 − λ)

1 − λ+ λf (ψ)
σ(dλ), (20)

subject to the initial condition µ(0) = µ0. Standard arguments show that the solution to (20)
must be unique. It is easily verified that this solution is

µ(k) = χ(k)+ χ(0)

1 − R′(ψ)

∫
f ′(ψ)(1 − λ)λk+1

(1 − λ+ f (ψ)λ)2
σ(dλ), (21)

where

χ(k) = f (ψ)

∞∑
r=1

(1 − f (ψ))r−1ξ(k + r), (22)

provided this infinite sum is well defined. Note that R′(ψ) < 1 since R(x) is an increasing,
concave function and ψ is the solution to ψ = R(ψ). Therefore, the unique fixed point of (19)
is given by the right-hand side of (21). Not only is (21) the unique fixed point, it is also a stable
fixed point. To see this, substitute µ(k) + δ(t; k) for E(z(t; k) | ξ) in (19). This leads to the
difference equation

δ(t + 1; k) = (1 − f (ψ))δ(t; k + 1)+ f ′(ψ)(m(k + 1)− d(k + 1))δ(t; 0).

Define δ̂(t; x) = ∑∞
k=0 |δ(t; k)|xk for x ∈ (0, 1]. Using the positivity of (m(k+1)−d(k+1))
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(see (5)) and the triangle inequality, we obtain the inequality

δ̂(t + 1; x) ≤ (1 − f (ψ))δ̂(t; x)
x

+ |δ(t; 0)|
(
f ′(ψ)

( ∞∑
k=0

xk(m(k + 1)− d(k + 1))

)
− 1 − f (ψ)

x

)
.

From (5),

f ′(ψ)
∞∑
k=0

xk(m(k + 1)− d(k + 1)) = f ′(ψ)
∫

λ

1 − λx

1 − λ

1 − λ+ f (ψ)λ
σ(dλ),

which is equal to R′(ψ) for x = 1 − f (ψ). As R′(ψ) < 1, it follows that

f ′(ψ)
( ∞∑
k=0

xk(m(k + 1)− d(k + 1))

)
− 1 − f (ψ)

x
< 0

for x = 1 − f (ψ). By continuity in x, there exists an x∗ > 1 − f (ψ) such that

δ̂(t + 1; x∗) ≤ (1 − f (ψ))δ̂(t; x∗)
x∗ .

Letting t → ∞, δ̂(t; x∗) → 0; hence, δ(t; k) → 0 for all k. We can conclude that µ(k) is a
stable fixed point of (19).

2.4. Example

We now illustrate the result of this note by comparing the distribution of the proportion
of infected individuals in the simulated model (1) with the Gaussian distribution described in
Theorem 1. Consider a population of size n = 50, f (x) = 0.7x, and ci = si, with the si
generated independently from a Beta(0.6, 0.4) distribution. The initial state of the Markov
chain is generated according to

P(Xni,0 = 1 | si) = 0.7ψsi
1 − si + 0.7ψsi

,

where ψ is the nonzero solution to (6). This method of generating the initial state ensures that
the limiting deterministic process is in equilibrium.

Define zn(t; 0) := zn(t; 0, 0) and ξn(k) := ξn(k, 0). To apply the Gaussian approx-
imation, we need to evaluate the conditional mean E(z(t; 0) | ξ) and conditional variance
var(z(t; 0) | ξ). The conditional mean E(z(t; 0) | ξ) can be approximated by truncating the
infinite sum in (22) and replacing the ξ(k) with ξn(k). Note that the infinite sum defining χ(k)
converges quickly provided ψ is not very small. A recursion of the conditional variance can be
derived from Theorem 1 and is given by

cov(z(t + 1; j), z(t + 1; k) | ξ)
= (1 − f (ψ))2 cov(z(t; j + 1), z(t; k + 1) | ξ)

+ (1 − f (ψ))f ′(ψ)(m(j + 1)− d(j + 1)) cov(z(t; 0), z(t; k + 1) | ξ)
+ (1 − f (ψ))f ′(ψ)(m(k + 1)− d(k + 1)) cov(z(t; j + 1), z(t; 0) | ξ)
+ (f ′(ψ))2(m(k + 1)− d(k + 1))(m(j + 1)− d(j + 1)) cov(z(t; 0), z(t; 0) | ξ)
+ E ε(t + 1; j)ε(t + 1; k),

where E ε(t; j)ε(t; k) is given by (9).
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The processXnt was simulated and the behaviour of zn(t; 0) compared with that predicted by
the asymptotic theory. In Figure 1 the process zn(t; 0) is plotted together with the approximation
of the conditional mean and plus and minus two standard deviations. As the recursion for
the conditional variance quickly converged, we simulated zn(t; 0) up to time step 103 and
compared its histogram with the approximating Gaussian distribution. This is given in Figure 2.

0.5

0.0

0.5−

1.0−

1.5−
0 50 100 150 200 250

Figure 1: Plot of zn(t; 0) for the first 250 time steps. The dashed line is the approximation to
E(z(t; 0) | ξ). The dotted lines are two standard deviations from the approximation to the conditional

mean.
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Figure 2: Histogram of zn(t; 0) from the simulated process together with the approximating Gaussian
density from Theorem 1.
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From the figures we see that the asymptotic distribution provides a good approximation to the
distribution of zn(t; 0).

3. Discussion

We have studied a discrete-time Markov chain that can be used to model SIS-type epidemics
and also metapopulations. For this model, we have derived an asymptotic distribution for the
fluctuations of the proportion of infected individuals/occupied patches around the deterministic
limit. Our simulations suggest that the asymptotic distribution provides a good approximation
even when the population size is small, provided ψ is not too small. When ψ is small, simu-
lations not reported here indicate that the population size needs to be large for the asymptotic
distribution to be a good approximation.

One problem for future study will be to examine the recursion for the asymptotic covariance
matrix of zn(t; 0). Our numerical investigations suggest that this recursion will converge quickly
to some limiting covariance matrix. It would be good to be able to show that the recursion has
a unique stable fixed point.
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