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We have numerically investigated the turbulent flow and sediment grain motion
in an open-channel flow configuration over a subaqueous sediment bed featuring
two-dimensional transverse ripples at moderate Reynolds number and super-critical
Shields number values. The simulation data, which were generated by means of
particle-resolved direct numerical simulation, are the same as in our previous work
(Kidanemariam & Uhlmann, J. Fluid Mech., vol. 818, 2017, pp. 716–743). By carefully
choosing the computational box sizes, we were able to accommodate single ripple units
which form over an initially flat sediment bed at a wavelength equal to the domain length.
The ripples then evolve into their asymmetric shape relatively quickly and eventually
migrate downstream steadily while maintaining their shape and size. In the present study,
using a ripple-conditioned phase-averaging procedure, we are able to obtain novel insights
into the evolution of the turbulent flow and particle motion over the bedforms, in particular
the spatial structure of the basal shear stress and its relation to the particle flow rate.
Our analysis confirms that the boundary shear-stress maximum is located upstream of
the ripple crest, while the particle flow rate is essentially in phase with the ripple topology,
with an average phase difference between the two in the range of 18–19 particle diameters
for the considered parameter values. We were further able to confirm the link between the
sediment flux relaxation behaviour and the observed shear-stress/geometry lag, by direct
evaluation of the saturation length scale.

Key words: sediment transport, particle/fluid flow, turbulence simulation

1. Introduction

One fascinating phenomenon of sediment transport is the formation of patterns, such as
ripples, dunes or ridges. These sediment patterns have important implications for many
environmental and industrial applications, for example, they influence the rate of sediment
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transport in a given river. Although the problem of sediment pattern formation has been
subject to extensive studies over the past several decades, a number of fundamental
questions still remain unanswered due to the inherently complex dynamics (Best 2005;
Andreotti & Claudin 2013; Charru, Andreotti & Claudin 2013). A key challenge is the
accurate description of the driving turbulent flow over the bedforms and its interplay with
the sediment bed. In particular, faithful description of the spatial structure of the boundary
shear stress and its relation to the sediment flux remains an open problem. The latter
defines the morphological evolution process of sedimentary patterns and is an important
ingredient in many sediment transport models (Seminara 2010; Charru et al. 2013).

The present work is concerned with statistically two-dimensional transverse subaqueous
bedforms worked by a uni-directional turbulent flow. The flow evolving over such train
of bedforms is statistically non-homogeneous and entails complex interaction with the
sediment bed (see e.g. review by Best 2005). To simplify the problem, most of previous
experimental and numerical studies of the configuration have considered flow over fixed
dunes with imposed geometry (see e.g. McLean & Smith 1986; Nelson, McLean &
Wolfe 1993; McLean, Nelson & Wolfe 1994; Bennett & Best 1995; Stoesser et al. 2008;
Omidyeganeh & Piomelli 2011). Although such studies have been useful in elucidating the
key features of the flow, they fail to provide information on the mutual interaction between
the flow and the evolving sediment bed composed of mobile grains. Similarly, theoretical
studies that investigate the hydro-morphodynamic instability and evolution of the sediment
bed invoke a disparity in time scales between the flow and the bed shape evolution and
assume a fixed wavy bottom perturbation to solve the fluid flow (see e.g. Kennedy 1963;
Richards 1980; Colombini & Stocchino 2011). Customarily, the flow solution is based on
the seminal work by Jackson & Hunt (1975), which is an extension of the asymptotic
solutions of the laminar flow over a bump by Benjamin (1959) to the turbulent regime (see
reviews by Belcher & Hunt (1998) and Charru et al. (2013) for a detailed account). An
important outcome of these studies is that the flow can be considered as a layered structure:
an outer inviscid region far from the bottom and an inner ‘logarithmic’ region where
turbulent stresses and viscosity are important. In the theoretical analysis, the matching
of the two layers reveals a phase advance of the boundary shear stress with respect to the
topography. In the context of sediment transport, the phase difference between the shear
stress and the bottom is the main destabilising mechanism of a perturbed erodible bed. A
balance between this destabilising mechanism and other stabilising effects such as gravity
(Engelund & Fredsoe 1982) and sediment-bed relaxation effects (Charru 2006; Fourrière,
Claudin & Andreotti 2010) is believed to result in the initiation of bed patterns at a certain
preferred wavelength. However, finite-amplitude effects beyond the linear regime, such
as flow separation downstream of the ripple crest, cannot be accounted for by the above
methods and a theoretical description is still an open issue (Charru & Luchini 2019).

Concerning the sediment bed, the majority of the algebraic models that relate the fluid
shear stress with the sediment flux are developed for the equilibrium state. The transient
behaviour of the sediment bed is usually treated by assuming that the bed responds to
changes in flow conditions instantaneously. This assumption allows one to relate the
local shear stress to the local particle flow rate. However, it is well recognised that the
sediment bed needs some temporal/spatial lag to adapt to a change in the flow conditions
due to its inertia (Sauermann, Kroy & Herrmann 2001; Charru 2006). The sediment-bed
relaxation behaviour, usually expressed in terms of a characteristic saturation length
scale, has been argued to be a stabilising factor during sediment-bed instability and it
thereby controls the scaling of initial aeolian/subaqueous bedforms. Although models
that include such a sediment relaxation effect through the introduction of a separate
differential equation for the particle number density or for the particle flux (Valance
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2005; Charru 2006; Fourrière et al. 2010) into the stability analysis have been partially
successful, they still fall short of accurately determining the initial ripple wavelength
(Langlois & Valance 2007; Ouriemi, Aussillous & Guazzelli 2009). The limitation is
attributed to the lack of a fully appropriate model for the saturation length that stems
from the simplified description of the complex particle dynamics near and inside the bed.
Moreover, the two-way feedback mechanism between the sediment grains and the shearing
flow is usually ignored. The saturation length encompasses a wide spectrum of length
scales as a consequence of simultaneously occurring particle transport modes (rolling,
sliding, saltation, etc.) and dynamical mechanisms (rebounding, inter-particle collision,
particle–turbulence interaction, etc.). A dominant transport mode or mechanism is usually
selected for a given regime. For instance, in the particle inertia dominated regime, the
relaxation is believed to scale with the drag length ld, which is often based on Stokes drag,
i.e. ld ≈ (ρp/ρf )D, where ρp/ρf and D are the fluid-to-particle density ratio and particle
diameter, respectively (Fourrière et al. 2010). Other saturation length models account for
different hydrodynamic and granular bed interactions and introduce other length scales,
such as the deposition length that represents the distance travelled by particles (moving at
a certain characteristic velocity), during their deposition time td ∼ D/us, where us is the
particle settling velocity (Charru & Hinch 2006; Charru 2006). In the context of aeolian
sand transport (very large particle-to-fluid density ratios), the saltation length, which
represents the distance covered by saltating grains during their flight time, is considered to
be the governing length scale (Sauermann et al. 2001). In an attempt to address the above
shortcomings, Pähtz et al. (2013, 2014, 2015) propose a more elaborate and fairly complex
model with several adjustable parameters that accounts for additional mechanisms such as
the relaxation associated with the fluid–particle and inter-particle interactions.

Carrying out highly resolved experimental measurements of both the flow and the
erodible sediment-bed motion (in the presence of bedforms) is a difficult task and available
data are scarce (see e.g. Charru & Franklin 2012; Rodrıguez-Abudo & Foster 2014;
Leary & Schmeeckle 2017; Frank-Gilchrist, Penko & Calantoni 2018). Notably, Charru
& Franklin (2012) report measurements of the flow over isolated evolving barchan dunes
in a confined channel flow experiment. They assessed the layered structure of the flow
over the barchan as predicted by the asymptotic theories, ignoring the re-circulating flow
downstream of the barchan brink (measurements of the three-dimensional flow were taken
at the symmetry plane of the barchan). However, the experiments did not allow access
to the relationship between the local shear stress and the particle flux. Concerning the
sediment-bed relaxation behaviour, there is currently no direct experimental measurement
of the saturation length for subaqueous sediment transport available (Andreotti & Claudin
2013; Duran Vinent et al. 2019). The majority of field and laboratory measurements as
well as theoretical modelling of the saturation length have been for the aeolian sediment
transport regime (Andreotti, Claudin & Douady 2002; Lajeunesse, Malverti & Charru
2010; Claudin, Wiggs & Andreotti 2013; Pähtz et al. 2015; Selmani et al. 2018; Gadal et al.
2020; Lü et al. 2021). In these studies, saturation length measurements are reported by
retrieving the grain flux indirectly from the measurement of bed elevation profiles through
the sediment mass conservation equation.

Faithful numerical simulation of sediment transport phenomena is very challenging.
It has thus been common practice to simplify the description of the flow and/or the
sediment-bed dynamics. On the one hand, there are studies that fully resolve the turbulent
flow while describing the sediment bed via continuum modelling (see e.g. Chou & Fringer
2010; Khosronejad & Sotiropoulos 2014; Zgheib et al. 2018; Zgheib & Balachandar 2019)
or via point-particle based Lagrangian modelling (Finn, Li & Apte 2016; Guan et al. 2021).
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Other studies, on the other hand, sufficiently account for the dynamics of the sediment bed
(based on discrete-element models) but without resolving the turbulent background flow
(Durán, Andreotti & Claudin 2012; Schmeeckle 2014; Maurin et al. 2015). Both modelling
approaches rely on some sort of (semi-)empirical expression to couple the fluid problem
with the morphodynamic one. Recent progress in particle-resolving direct numerical
simulations (DNS) that account for both the flow and individual grain motion without
modelling the fluid–particle interaction have started to shed light on the grain-scale
dynamics and the interaction of an evolving thick sediment bed with the driving turbulent
flow (see e.g. Kidanemariam & Uhlmann 2014a; Vowinckel, Kempe & Fröhlich 2014;
Kidanemariam 2015; Kidanemariam & Uhlmann 2017; Mazzuoli, Kidanemariam &
Uhlmann 2019; Mazzuoli et al. 2020; Scherer, Kidanemariam & Uhlmann 2020; Jain,
Tschisgale & Fröhlich 2021).

The objective of the present work is to investigate, with the aid of particle-resolved
DNS data, the spatial structure of the turbulent flow and the particle motion over a train
of two-dimensional transverse bedforms, and to address its correlation with the evolving
sediment bed. In our recent work (Kidanemariam & Uhlmann 2017, hereafter termed as
KU2017), we have carried out extensive simulations of subaqueous pattern formation in
a turbulent open-channel flow configuration. The study in KU2017 was devoted to the
initiation and evolution aspects of the sediment patterns. In the present contribution, we
revisit the simulation data in KU2017 and analyse the fluid flow and particle motion. In
particular, we analyse the spatial structure of the bed shear stress and its relation to the
particle flow rate. To this end, we have performed ripple-conditioned phase averaging
of the fluid flow that takes into account the spatio-temporal variability of the sediment
bed. Let us note that the conditions of the simulations reported in KU2017 (varying
the computational box size for a single physical parameter point) allowed systematic
investigation of the different ripple evolution stages. That is, the temporal growth of the
ripple size was systematically ‘frozen’ by limiting the computational domain length that
accommodates only a single ripple unit. The formed ripples were thereby constrained to
migrate steadily, maintaining their asymmetric shape at a mean wavelength equal to the
length of the domain. The strategy allows us to accumulate sufficient statistics for detailed
analysis of the interaction between the turbulent flow and the evolving ripple unit. The
paper is organised as follows: in § 2 we provide a short description of the computational
set-up and numerical solution strategy. The evolution of the bulk flow characteristics in
response to the evolution of the bed is presented in § 3. In § 4 we present phase-averaged
statistics including that of the boundary shear stress and evaluate the phase lag between
the bed shear stress and the sediment flux. The main findings of the paper are summarised
and discussed in § 5.

2. Flow configuration, simulation strategy and numerical method

We consider an open-channel flow of an incompressible viscous fluid with a density ρf
and viscosity ν over an evolving sediment bed, as shown schematically in figure 1. The
sediment bed is composed of spherical particles of diameter D and density ρp. A Cartesian
coordinate system (x, y, z) is defined, x and z representing the streamwise and spanwise
(lateral) directions respectively while y is the vertical direction. The corresponding
Eulerian fluid and Lagrangian sediment particle velocity vectors are defined as uf =
(uf , vf , wf ) and up = (up, vp, wp), respectively. Mean flow is directed in the positive x
direction and the vector of gravitational acceleration g points in the negative y direction.
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g
Flow

(ρf , ν , Ub)
Hf

Hb

Particles

(ρp, D)

Figure 1. Schematics of an open-channel flow of a fluid with density ρf and viscosity ν over an evolving
sediment bed. The sediment bed is represented by a large number of freely moving spherical particles of
diameter D and density ρp.

The mean fluid height is denoted as Hf while the corresponding mean sediment-bed
thickness is denoted as Hb.

The simulation data analysed in the present study are identical to those reported
in KU2017. Specifically, data corresponding to the ripple featuring cases termed H43,
H6 and H7 therein, are considered for the phase-averaging analysis. Details of the
simulation campaign and numerical method used can be found in KU2017. A short
description is provided here for completeness. The simulations were carried out in
bi-periodic three-dimensional computational boxes (periodic in the streamwise and
spanwise directions). No-slip and free-slip conditions were imposed at the bottom and
top planes of the channel, respectively. The flow was driven by a streamwise pressure
gradient imposing a desired constant mean flow rate qf . The fluid flow is described by
the bulk Reynolds number Reb = ubHf /ν or equivalently the friction Reynolds number
Reτ = uτ Hf /ν, where ub ≡ qf /Hf and uτ are the bulk and friction velocities respectively.
Note that uτ is evaluated a posteriori from the mean total shear stress evaluated at a
wall-normal location of the mean fluid–bed interface y = Hb. The location of the interface
between the fluid and the sediment bed has been determined based on the threshold value
of the solid volume fraction. Details of the extraction of the fluid–bed interface and precise
definitions of Hf , Hb and uτ can be found in KU2017. Important parameters describing
the submerged sediment bed include: the particle-to-fluid density ratio ρp/ρf , the length
scale ratios Hf /D and D+ ≡ Duτ /ν and a ratio between the gravity and viscous forces
described by the Galileo number Ga = UgD/ν, where Ug is the gravitational velocity
scale Ug = √

(ρp/ρf − 1)|g|D. Finally, let us define the Shields number, which is the
ratio between the fluid shear force at the bed and the submerged weight of a particle,
as θ ≡ (uτ /Ug)

2 (Shields 1936). The values of these physical parameters are listed in
table 1. Note that the three simulation cases have identical values of the imposed physical
parameters. As shown in table 2, the only difference, in terms of imposed quantities, is the
streamwise extent of the simulation box. Case H4 has a domain length of approximately
four times the mean fluid height, while that of H6 and H7 is approximately six and seven
times the mean fluid height, respectively. These differences in domain length result in
different sizes of the accommodated ripple units that in turn result in somewhat different
values of the derived parameters such as Reτ , θ and D+ (the evolution process is discussed
in more detail in § 3).

The numerical method used to carry out the simulations is based upon the immersed
boundary technique of Uhlmann (2005) for the treatment of the fluid–solid interactions,
wherein the incompressible Navier–Stokes equations are solved with a second-order
finite-difference method throughout the entire computational domain, adding a localised
force term that serves to impose the no-slip condition at the fluid–solid interface.
Individual sediment particle motion is obtained via integration of the Newton–Euler
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Case Reb Reτ ρp/ρf Ga Hf /D D+ θ

H4 3011 264 2.5 28.37 25.14 10.46 0.14
H6 3011 303 2.5 28.37 25.47 11.90 0.18
H7 3011 309 2.5 28.37 25.30 12.22 0.19

Table 1. Physical parameters of the simulations; Reb and Reτ are the bulk and friction Reynolds numbers,
respectively; ρp/ρf is the particle-to-fluid density ratio; Ga and θ are the Galileo number and the Shields
number, respectively.

Case (Lx × Ly × Lz)/D (Lx × Ly × Lz)/Hf �x+ D/�x Np Nfix
p Tobs/Tb Ts

obs/Tb

H4 102.4 × 38.4 × 76.8 4 × 1.5 × 3 1.05 10 86 645 7314 851 557
H6 153.6 × 38.4 × 76.8 6 × 1.5 × 3 1.19 10 127 070 11 040 918 583
H7 179.2 × 38.4 × 76.8 7 × 1.5 × 3 1.22 10 150 521 12 972 976 574

Table 2. Numerical parameters of the simulations; Li is the domain length in the ith direction. The grid spacing
is uniform in all directions, i.e. �x = �y = �z; Np is the number of particles in the simulations, out of which
Nfix

p are fixed in space at the channel bottom to create a rough boundary; Tobs is the total observation time of
each simulation starting from the release of the moving particles. Ripple-conditioned statistics are computed
over the steady dune propagation interval Ts

obs; Tb = Hf /ub is the bulk time unit.

equations for rigid body motion, driven by the hydrodynamic force (and torque) as well
as gravity and the force (torque) resulting from solid–solid contact. The inter-particle
collision process is described via a discrete element model (DEM) based on the soft-sphere
approach (Kidanemariam & Uhlmann 2014b). A pair of particles is defined as ‘being
in contact’ when the smallest distance between their surfaces, Δ, becomes smaller than
a force range Δc. The resulting contact force is then the sum of an elastic normal
component, a normal damping component and a tangential frictional component. The
elastic part of the normal force component is a linear function of the penetration length
δc ≡ Δc − Δ, with a stiffness constant kn. The normal damping force is a linear function
of the normal component of the relative velocity between the particles at the contact point
with a constant coefficient cn. The tangential frictional force (the magnitude of which is
limited by the Coulomb friction limit with a friction coefficient μc) is a linear function
of the tangential relative velocity at the contact point, again formulated with a constant
coefficient denoted as ct. Since the characteristic collision time is typically orders of
magnitude smaller than the time step of the flow solver, the numerical integration of the
equations for the particle motion is carried out adopting a sub-stepping technique, freezing
the hydrodynamic forces acting upon the particles between successive flow field updates.
A detailed description of the collision model and the corresponding parameter values as
well as extensive validation and convergence studies can be found in Kidanemariam &
Uhlmann (2014b).

3. Evolution of the flow and sediment bed

The simulations were initiated by first developing a turbulent flow over a macroscopically
flat bed composed of pseudo-randomly packed stationary particles. The coupled
fluid–solid simulations were then switched on by allowing the particles to move
(except the Nfix

p particles that are fixed in space at the channel bottom to create a
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Figure 2. (a) Time evolution of the root-mean-square sediment-bed-height fluctuation normalised by the
particle diameter (data reproduced from KU2017). (b) The corresponding evolution of the instantaneous friction
Reynolds number for each of the cases. The vertical dashed lines indicate the start time of the steady ripple
propagation interval over which statistics are accumulated. The circle symbols along the Reτ evolution of case
H6 correspond to the time instances of the visualisations in figure 3. (c) The hydrodynamic roughness length
k0 as a function of the mean sediment-bed-height fluctuation 〈σh〉+t . In all plots, lines and symbols are colour
coded as follows: grey, featureless bedload; blue, H4; red, H6; black, H7.

rough boundary). Subsequently, the macroscopically flat sediment bed gets perturbed
as a result of the ensuing particle erosion and deposition processes caused by the
shearing turbulent flow above. For the conditions of our simulations, the sediment-bed
perturbations ultimately evolve towards statistically two-dimensional transverse bedforms
that propagate downstream at a constant migration velocity and with a wavelength
equal to the domain length. The bed evolution in turn modifies the flow from its
initial statistically one-dimensional state towards a two-dimensional flow with strong
spatio-temporal correlation with the morphology of the underlying bed. Let us first look
at the evolution of bulk sediment and fluid flow properties. In figure 2(a), we reproduce
from KU2017 the temporal evolution of the root-mean-square (r.m.s.) sediment-bed height
σh for the three cases considered in the present study (for reference, the evolution of
the featureless bedload transport case H3 is also plotted). After an initial exponential
growth, σh attains a statistically constant value. The corresponding temporal evolution
of the instantaneous friction Reynolds number Reτ

i is also provided in figure 2(b). Here,
Reτ

i is computed from the instantaneous value of the imposed driving pressure gradient Π

that is required to maintain the desired constant flow rate. The latter is obtained from the
integration of the streamwise momentum equation across the whole computation domain
that, subject to the incompressibility constraint, reduces to

Π(t) = − 1
LxLyLz

Np∑
l=1

I(l)
fix (FH(l)

p,x (t) + FC(l)
p,x (t)) − 1

Ly
〈τW〉xz(t), (3.1)

where FH(l)
p,x and FC(l)

p,x are the streamwise components of the hydrodynamic and collision
forces acting on the lth particle, respectively. Here, I(l)

fix is an indicator function that has a
value of unity if the lth particle is held fixed and zero otherwise; 〈τW〉xz is the instantaneous
average shear stress at the bottom smooth wall beneath the stationary particles and has a
negligible contribution due to the practically zero velocity gradients therein. Thus, the
driving volume force is is entirely balanced by the total resistance force exerted by the
stationary particles located beneath the mobile sediment layer. The friction Reynolds
number correspondingly increases from an initial value of Reτ

i ≈ 190 to the average
values Reτ (measured in the asymptotic regime), as reported in table 1. Note that the
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Figure 3. Instantaneous snapshots of the flow field and particle positions of case H6 at times (a) t/Tb ≈ 7, (b)
t/Tb ≈ 110, (c) t/Tb ≈ 212 and (d) t/Tb ≈ 423. The top-view panels show turbulent vortical structures (grey
surfaces) over the sediment-bed particles that are coloured based on their wall-normal location. The side-view
panels show the corresponding spanwise vorticity on an x–y plane located at z = 0 (the intersection region of
particles and the plane is shown in black).

initial Reτ value corresponds to the turbulent flow over the macroscopically flat bed
prior to the start of the coupled fluid–solid simulations. Since the total number of the
heavier-than-fluid spherical particles remains the same during the simulation period, the
average sediment-bed height remains essentially constant with time (except for some initial
short dilation interval). Thus the temporal increase of Reτ

i is entirely a consequence of
the increasing roughness height of the bedforms. This is further confirmed by the direct
correspondence of the evolution of the r.m.s. sediment-bed height and Reτ

i.
One way of quantifying the feedback of the evolving sediment bed on the turbulent

flow is to express the mean fluid velocity profile Uf in the logarithmic layer through the
definition of a hydrodynamic roughness height k0 as U+

f = 1/κ log(( y − y0)/k0), where
κ = 0.41 is the von Kármán coefficient and y0 is some reference origin (Jiménez 2004).
The majority of the available sediment morphodynamic models strongly depend on the
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roughness parameter k0 (Charru et al. 2013) and make use of classical correlations of
k0 versus particle Reynolds number D+ that are obtained, for example, from flows over
stationary roughness elements (see e.g. Fourrière et al. 2010; Colombini & Stocchino 2011;
Duran Vinent et al. 2019). However, as is demonstrated in figure 2(c), the motion of the
sediment bed and the evolving ripples substantially increase the value of k0 for essentially
the same value of D+.

Figure 3 shows sample instantaneous flow visualisations of case H6 at selected times,
spanning the duration from the first instants of the bed instability (several bulk time
units after particles are released), through the initial evolution stage and up to the steady
ripple propagation interval. The snapshots clearly highlight the coupled spatio-temporal
evolution of the sediment bed and turbulent flow above. It can be seen that the intensity
and density of the coherent structures evolve to be the highest in regions downstream of the
crest of the forming transverse bedforms. It is the contrary for regions of the flow above and
upstream of the crest where turbulence activity is weaker. The non-homogeneous spatial
distribution of the vortices visually corroborates previous experimental and numerical
investigation of the flow over fixed dunes (McLean et al. 1994; Stoesser et al. 2008;
Omidyeganeh & Piomelli 2011). It is known that the flow over developed two-dimensional
bedforms possesses distinct regions that can be summarised into an accelerating and a
decelerating flow region upstream and downstream of the dune crest respectively, a shear
layer region downstream of the dune crest where flow separation occurs, a re-circulation
region extending several dune heights downstream of the crest and bounded by the shear
layer and a developing boundary layer region attached to the stoss side of the dune (Best
2005). The snapshots illustrate the complexity of the flow in this configuration. Moreover,
the visualisations additionally show that large coherent structures leave their footprint in
the morphology of the bed, visible as slight longitudinal ridges and troughs superposed on
the transverse bedforms. The mechanism behind the formation of these ridges is equally
fascinating (cf. Scherer et al. 2021) but is outside the scope of the present work.

4. Ripple-conditioned fluid flow and particle motion

Here, we present an analysis of the turbulent flow field and particle motion that develops
over the time-dependent sediment bed. We have performed ripple-conditioned phase
averaging of the flow field in the steady ripple propagation interval. The reader is referred
to Appendix A for the precise definition of the space- and time-averaging operators, while
Appendix B details the phase averaging procedure and definition of notations used in
subsequent sections.

4.1. Spatial structure of the mean flow
The streamwise and wall-normal components of the phase-averaged fluid velocity
vector Ũ f ≡ (Ũf , Ṽf ) and the corresponding particle velocity vector Ũp ≡ (Ũp, Ṽp) for
case H7 are shown in figure 4 (cf. Appendix B for the definitions of Ũ f and Ũp). The
figures highlight significant modulation of the flow by the ripple morphology. As is
expected, below the fluid–bed interface, mean fluid and particle velocities are found to
be negligibly small. Above the fluid–bed interface, on the other hand, velocities of both
phases show large spatial variations that are seen to be strongly correlated with the ripple
geometry. At and near the interface, Ũf is observed to be higher in the region above
the crest of the ripple. The value of Ũf decreases downstream of the crest, attaining
negative values in the re-circulation region highlighted by the negative Ũf contour shown
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Figure 4. (a) Phase-averaged fluid velocity components (Ũf
+
, Ṽf

+
) of case H7. Contour levels of Ũf

+
, Ṽf

+ =
0.1 and −0.1 are marked by red and magenta curves. The phase-averaged sediment-bed height, H̃b, is shown
by the dashed curve. The vertical thin lines indicate the locations where wall-normal profiles of each quantity
are extracted. (b) The corresponding phase-averaged particle velocity components (Ũp

+
, Ṽp

+
). (c) Values of

Ũf and Ũp extracted along the fluid–bed interface (shown by the curve at the top of the figure). The red dashed
line represents the mean ripple migration velocity. (d) Same as panel (c) but for Ṽf and Ṽp. (e) Wall-normal
profiles Ũf and Ũp at selected streamwise locations. Profiles are, from left to right, at x̃/D = 0, 30 and 112
consecutively. The horizontal dashed lines indicate the location of the fluid–bed interface at the corresponding
streamwise locations. ( f ) Same as panel (e) but for Ṽf and Ṽp.

in figure 4(a). Let us remark that a zero-valued contour level does not precisely demarcate
the extent of the re-circulation region as there is very small but non-zero mean velocity
inside the bed. The value of Ũf gradually increases along the ripple stoss side up to the
crest. Similarly, in the outer flow region, Ũf exhibits higher velocity values in the flow
contraction region above the crest and lower velocity values in the expansion region above
the ripple stoss side. The wall-normal fluid velocity also exhibits an upward moving fluid
region (Ṽf > 0) above the stoss side and a downward moving fluid region (Ṽf < 0) above
the region downstream of the crest. A small region of positive Ṽf is observed immediately
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downstream of the crest in the vicinity of the fluid–bed interface that corresponds to the
up-lifting fluid of the re-circulation region. As y tends to the upper boundary, Ṽf tends to
zero due to the imposed boundary condition.

The mean particle velocities also exhibit generally the same spatial structure as that
of the fluid. From the intensity of the colour plots, it can be seen that the magnitude of
streamwise particle velocity is on average smaller than that of the fluid in the region far
above the fluid–bed interface, except in the re-circulation region. The opposite is true for
the wall-normal component Ṽp, which is observed to be higher in magnitude than that of
the fluid. More quantitative comparison of the fluid and particle velocities can be inferred
from the profiles along the location of the fluid–bed interface shown in figure 4(c,d) as well
as from the wall-normal profiles of the same quantities at selected streamwise locations
x̃/D = 0 (near crest), x̃/D = 30 (in trough) and x̃/D = 112 (on the stoss side of the ripple)
shown in figure 4(e, f ). It can be seen that the fluid/particle velocities strongly vary along
the fluid–bed interface. Note that the fluid–bed interface is permeable and is subject to
active mass and momentum exchange of both phases as a result of erosion, transport and
deposition of sediment particles as well as the fluid motion therein. At the ripple crest
the streamwise velocity of both phases reaches local maximum values of up to Ũf

+ ≈ 4
and Ũp

+ ≈ 3, whereas in the ripple troughs, velocities decrease considerably, attaining
negative values in the re-circulation region. Further observation is that particles are on
average moving at a smaller streamwise velocity than that of the fluid along the fluid–bed
interface, except in the re-circulation region, where the opposite trend is observed. On
the stoss side of the ripples, the value of the velocity lag between the two phases ranges
between 1uτ and 1.5uτ , whereas in the re-circulation region, a negative velocity lag of up
to −0.35uτ is observed. The origin of the velocity lag could be explained by the combined
effect of the preferential distribution of inertial particles with respect to the near-wall
high- and low-speed fluid regions (Kidanemariam et al. 2013) and the fact that finite-sized
particles feel the traction effect of neighbouring particles, which are located at a lower
wall-normal location and are moving at a lower velocity, more than fluid particles do.
Note that the particle velocity is much higher than the mean ripple migration velocity uD
over the entire stoss side of the ripples, while the opposite is true at locations downstream
of the crest. This observation is in line with the fact that ripples propagate as a result
of erosion and deposition of sediment grains at the bed surface. Ṽf and Ṽp along the
fluid–bed interface exhibit a notably different trend when compared with their streamwise
counterparts. On the stoss side, Ṽf and Ṽp are positive while the difference between their
values is not substantial. Moreover, the location of the local maximum of Ṽf (Ṽp) is
observed to be located further upstream of the crest when compared with the streamwise
components. Both phases exhibit an approximately zero value of the wall-normal velocity
in the vicinity of the crest.

The wall-normal profiles of fluid and particle velocities presented in figure 4(e, f ) further
corroborate the above observations. Note that the apparent velocity lag is significant even
at wall-normal locations well above the fluid–bed interface. Namely, positive velocity lag
on the stoss side of the ripples (Ũf > Ũp) and negative velocity lag in the re-circulation
region (Ũf < Ũp). In the region well above the fluid–bed interface, the preferential
sampling of low-speed fluid regions by inertial particles (Kidanemariam et al. 2013) is
expected to be the dominant reason for the observed positive velocity lag. The negative
velocity lag in the re-circulation region is again attributed to particle inertia. Sediment
particles that are suspended from the crest with high momentum into the re-circulation
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Figure 5. Streamlines of the phase-averaged fluid velocity (close-up in the region downstream of the ripple
crests). The grey-scale plot in the background represents the mean solid volume fraction φ̃p. (a), H4; (b), H6;
(c), H7.

region do not immediately adapt to the new environment, thus resulting in a statistically
higher mean particle velocity than that of the fluid. Turning to the wall-normal velocity
component, the profiles further highlight the mean positive and negative velocities
upstream and downstream of ripple crests, respectively. Furthermore, upstream of the
crest and above the fluid–bed interface, the particles’ wall-normal velocity is observed
to be larger in magnitude than that of the fluid whereas downstream of the crest and
above the fluid–bed interface, the particle velocity is observed to be substantially smaller
(larger in absolute value) than that of the fluid. This latter effect is in part attributed to
the effect of gravity on the suspended sediment grains that settle in the re-circulation
region.

Finally, we remark that the corresponding results for cases H4 and H6 are in general
of similar spatial structure and plots are not included. In figure 5 we report the streamline
plot of the mean flow for the three cases. The plots effectively show the development of the
re-circulation region at different stages of the ripple evolution. Incidentally, the streamlines
also show the structure of the minute flow inside the sediment bed. The overall trend of
the spatial variation of the mean streamwise and wall-normal components of the fluid
velocity is consistent with the experiments by Charru & Franklin (2012) of the flow over
barchan dunes. However, a rigorous analysis of the structure of the mean flow and turbulent
statistics of the fluid and particle phases, as well as comparison with available experiments,
is left for future work.

4.2. Total shear stress and its spatial variation along the interface
As has been reported in KU2017, the driving mean pressure gradient in the flow is
balanced by the sum of the fluid shear stress and stress contribution from the fluid–particle
interaction resulting in a linearly varying plane-averaged total shear stress across the depth
of the channel. This linearity can also be recovered from the phase-averaged statistics. In
the two-dimensional flow evolving over the ripples, the total plane-averaged fluid shear
stress comprises the viscous and turbulent Reynolds stresses as well as contribution from
the ripple form-induced dispersive stress (Raupach & Shaw 1982; Nikora et al. 2007a).
Similarly, the Eulerian particle–fluid interaction contribution (the last term in 5.10 in
Kidanemariam & Uhlmann 2017) could in principle be recovered from its phase-shifted
counterpart 〈f̃x〉zt. However, the latter quantity is not explicitly available for evaluation
because we have only accumulated time history of the Lagrangian hydrodynamic (F H(l)

p )
and collision (F C(l)

p ) forces for each particle l by integrating over the particle surface.
As has been demonstrated by Uhlmann (2008), the mean Eulerian force density can be
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Figure 6. Wall-normal profiles of the different contributions to the plane-averaged total shear stress
computed based on the phase-shifted statistics (4.2): (a) H4; (b) H6; (c) H7.

approximated from the total hydrodynamic force acting on the particles, viz.

〈f̃ 〉zt ≈ −〈f̃ H
p 〉ztφ̃p/Vp, (4.1)

where the field f H
p is computed from F H(l)

p using relation (B5) in Appendix B and Vp ≡
πD3/6 is the volume of a single spherical particle. Here, φ̃p is the mean solid volume
fraction defined in (B12). The error of this approximation is expected to be small as long
as there is no sharp local gradient in φ̃p. Thus, the total plane-averaged shear stress is given
by

τtot = ρf ν∂y〈ũf 〉xzt︸ ︷︷ ︸
τvis=ρf ν∂yUf

−

⎛
⎜⎝ρf 〈ũ′

f ṽ
′
f 〉xzt︸ ︷︷ ︸

τRey

+ ρf 〈〈ũ′′
f ṽ

′′
f 〉zt〉x︸ ︷︷ ︸

τform

⎞
⎟⎠

︸ ︷︷ ︸
=ρf 〈u′

f v
′
f 〉xzt

− 1
Vp

∫ Ly

y
〈〈f̃ H

p,x〉ztφ̃p〉x dy︸ ︷︷ ︸
τpart=

∫ Ly
y 〈fx〉 dy

. (4.2)

Definitions of the velocity fluctuation covariances 〈ũ′
f ṽ

′
f 〉xzt and 〈ũ′′

f ṽ
′′
f 〉zt are given in

Appendix B. Figure 6 shows the wall-normal profiles of the different contributions in
(4.2). It can be seen that the actual total shear stress is sufficiently recovered with this
approach. A slight deviation from the linear variation is observable, in regions where
the above introduced errors are expected to be non-negligible (in the vicinity of the
fluid–bed interface location). We remark that for the purpose of verifying the convergence
of statistics we actually evaluate the forcing term 〈fx〉xzt during run time. As shown in
Appendix C, τtot is indeed varying linearly throughout the channel height. Moreover,
figure 6 shows that the form-induced stress contribution is of opposite sign to that of the
turbulent Reynolds stress, except in the outer fluid region where it exhibits small positive
values and subsequently tends to zero for increasing y. This means that there is high
momentum fluid that is carried away from the bottom into the outer flow and vice versa
as a result of the form-induced stress. However, the magnitude of the form-induced stress
is small when compared with that of the Reynolds stress. The form-induced momentum
transfer is explainable by observing the streamlines of the mean flow. Upstream of the
crest, the mean flow increases in the positive streamwise direction and is characterised by
a positive wall-normal velocity (first quadrant stress), while downstream of the crest, the
flow decreases and is downward moving (third quadrant stress).

The analysis presented above provides an integral information on the total shear stress
of the flow over a space and time varying sediment bed. However, it fails to provide
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Figure 7. A control volume V (with unit spanwise extent), enclosed by a surface S over which the momentum
equation is integrated for the determination of the boundary shear stress. V is moving at the constant mean
ripple velocity uD in the positive streamwise direction. Note that V is a quadrilateral, i.e. the edge AC is a
straight line with a slope tan (α). Here, n and t are the unit normal and tangential vectors at the edge AC,
respectively and i and j are the unit vectors in the x̃ and y directions, respectively.

information on the local boundary shear stress and its spatial variation with respect to
the evolving bed. This quantity, and its relation to the local sediment flow rate, is highly
relevant in sediment transport modelling and thus its accurate determination is important.
In developed bedforms, the total boundary shear stress is the sum of the dune-form drag
that results from the pressure difference between the regions upstream and downstream of
the crest of a ripple, as well as the skin friction due to fluid viscous stress and fluid–particle
interaction at the grain scale (see e.g. Yalin 1977; Nikora et al. 2007a). Usually in
experiments, the form drag is estimated by integration of pressure measurements along
a stationary bedform and the skin friction is estimated by assuming a logarithmic velocity
profile below the lowest velocity measurement point and performing extrapolation in
which a certain value for the hydrodynamic roughness height has to be prescribed (see
e.g. McLean & Smith 1986; Maddux, Mclean & Nelson 2003; Nikora et al. 2007b).
Similarly, Charru & Franklin (2012) estimate the boundary stress by extrapolation of the
total shear-stress profile (corrected for streamline curvature) within the internal developing
boundary layer to the surface of the bed. However, the degree of uncertainty inherent in
such approaches is substantial, and in the present case, proved to be unreliable due to
the strong degree of particle modulation therein. Instead, we have determined the local
boundary shear stress by evaluating the momentum balance in a local control volume as
described below.

First, we define quadrilateral control volumes V with a fixed shape and of unit spanwise
extent, enclosed by a surface S , an exemplary one of which is shown in figure 7. Here, V
is moving at the constant mean ripple velocity uD in the positive streamwise direction and
is demarcated by the locations of the points A, B, C and D. The top boundary (face BD)
coincides with the top boundary of the computational domain while faces AB and CD are
aligned perpendicular to the streamwise direction. The streamwise extent of the control
volume is chosen to be two particle diameters (i.e. ΔV = 2D) so that the ripple geometry
is sufficiently resolved. Points A and C coincide with the fluid–bed interface. The small
interface curvature between A and C is ignored and thus face AC is a straight line segment
of constant slope tan(α). Let us recall that the fluid–bed interface is defined based purely
on a threshold of the solid volume fraction and in general is not exactly aligned with the
streamlines of the mean flow. It is expected that there would be advective momentum
transfer across face AC as a result of the mean fluid/particle flux across it.
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The Reynolds phase-averaged momentum equation, integrated over V can be written as∮
S
(Ũ f Ũ f ) · n dS +

∮
S

(
〈ũ′

f ũ′
f 〉zt + 1

ρf
〈p̃〉zt

¯̄I − 〈 ˜̄̄τ 〉zt

)
· n dS −

∫
V
〈f̃ 〉zt dV =

∫
V
〈Π〉t dV,

(4.3)

where 〈p̃〉zt
¯̄I and 〈 ˜̄̄τ 〉zt are the phase-averaged pressure and fluid shear-stress tensor,

respectively. Also, 〈Π〉t is the driving pressure gradient term averaged in the steady ripple
propagation interval. Note that the time rate-of-change term of the momentum equation
vanishes in the moving frame of reference in the steady ripple propagation interval. We
are interested in determining the total shear stress at the bottom face AC by integrating the
momentum balance (4.3) over V . The total shear force acting on face AC has contributions
both from the fluid stresses as well as the particle–fluid interactions

R̃ =
∫

AC
(〈 ˜̄̄τ 〉zt − 〈ũ′

f ũ′
f 〉zt) · n dS +

∫
V
〈f̃ 〉zt dV, (4.4)

and the average total boundary shear stress τ̃b (per unit spanwise width) is then equal to
the component of R̃ parallel to AC, divided by the length of the segment AC (ΔV cos α)
viz.

τ̃b = 1
ΔV cos α

(R̃ − (R̃ · n)n) · t. (4.5)

Here, n = sin(α)i − cos(α)j is the unit normal perpendicular to the interface while t
is the corresponding tangential unit vector; i and j are the unit vectors aligned in the
positive streamwise and wall-normal directions, respectively (cf. schematics in figure 7).
The fluid–solid interaction term in (4.4) implicitly accounts for the total stress as a result
of all particles within the control volume, whether moving as bedload or suspended.

The value of τ̃b can be computed either by directly evaluating (4.5), or from the
balance (4.3) where each term is integrated over the volume V and all bounding faces
(assuming statistical stationarity). In practice, we have resorted to the latter approach as
approximating the fluid–particle interaction term from the available integral Lagrangian
particle forces introduces non-negligible errors in regions of sharp solid volume fraction
gradients at the location of face AC (see discussion above). Moreover, especially in
experiments, the fluid–solid interaction term is not easily accessible. Thus the approach
chosen here at the same time demonstrates a procedure for accurately retrieving the
boundary shear stress from experimentally measurable quantities.

Figure 8(a) shows the streamwise variation of the boundary shear stress τ̃b along the
fluid–bed interface, computed with the above-described method. Profiles of τ̃b for all
cases are seen to exhibit a similar evolution along the ripple geometry: a sharp decrease
downstream of the crest attaining negative values beneath the re-circulation region, with
the location of the minimum value in the range x̃ ≈ 0.14λ–0.16λ, followed by a sharp
increase in the following region up to x̃ ≈ 0.45λ. Subsequently, τ̃b exhibits a quasi-plateau
region with mild increase up to the location of the maximum at x̃ ≈ 0.85λ followed by a
mild decrease region in the interval 0.85λ up to the location of the crest. The location
of the minimum τ̃b is observed to be upstream of the bed’s trough while that of the
maximum of τ̃b is upstream of the ripple crest (with a shift of approximately 15D, 23D and
27D for cases H4, H6 and H7). The observed negative boundary shear stress downstream
of the crest is expected due to the reversed flow in the re-circulation region. Note that,
in correspondence to the almost non-existent re-circulation region of case H4 (cf. the

937 A26-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

11
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.113


A.G. Kidanemariam, M. Scherer and M. Uhlmann

0 0.2 0.4 0.6 0.8 1.0

–0.5

0

0.5

1.0

H�
b

0.1 0.2 0.3 0.4 0.50

1 κ
j

κjD

5

10

15

20

25

30

0.25 0.500

3π/4

π/2

π/4

π

τ�+b �
ϕ

τ j /
D �

ϕ
τ j 

(a) (b)

x�/λ

Figure 8. (a) Streamwise variation of the boundary shear stress τ̃b/(ρf u2
τ ): blue line, H4; red line, H6; black

line, H7. The global minima and maxima of τ̃b are marked by the dot symbols. The mean ripple profile of each
of the cases, along with the location of the crest (maximum of H̃b) and trough (minimum of H̃b) are shown at
the top of the panel for reference. The colour code at the bottom of the panel and the corresponding vertical
dashed lines demarcate different regions of the τ̃b profile, and it is later used in colour coding the data points in
figure 12 (for instance, the grey region shows the region where τ̃b attains negative values). (b) Upstream phase
shift, normalised by the particle diameter, of the first few dominant Fourier modes of τ̃b relative to the phase
of the corresponding modes of H̃b for the different cases (H4, —•—, blue; H6, —•—, red; H7, —•—, black).
The inset shows the phase shift in radians.

streamline plots in figure 5), the region where τ̃b of case H4 attains a negative value is
very small. The observed shift of the maximum of τ̃b with respect to the ripple crest, which
is a consequence of the fluid inertia, is also in line with previous literature on flow over
undulating boundaries (Benjamin 1959; Jackson & Hunt 1975; Zilker & Hanratty 1979;
Charru et al. 2013). The variation of τ̃b along the stoss side of the ripple is comparable
to those reported by Charru & Franklin (2012) for the flow over evolving barchan dunes,
although those authors report the maximum of the shear stress to be located at the brink of
the barchan, contrary to our findings. However, we remark that the variation between the
maximum value of τ̃b and the value at the crest is fairly small and is therefore difficult to
capture subject to measurement and extrapolation technique uncertainties. We also remark
that, in Charru & Franklin (2012), the reported boundary shear stress is normalised by
the unperturbed smooth wall friction velocity upstream of the barchan dune and thus
the normalised values of τ̃b are larger in magnitude when directly compared with our
numerical data.

The shift of the extrema with respect to the ripple geometry discussed above does not
provide a complete picture of the phase shift between the shear stress and topography,
since the shapes of τ̃b and H̃b curves differ visibly. Nevertheless, since τ̃b and H̃b are
periodic, a more robust ‘average’ phase shift can be estimated from the separation length
at which the cross-correlation between the two has a maximum value. The average phase
shift, computed by the latter method, reads approximately 16D, 18D and 19D for cases
H4, H6 and H7 (cf. table 3). That is, the shear stress is in advance of the topography
by approximately 16–19 particle diameters for all simulated cases, showing only few
particle diameters of variation (in contrast to the observation regarding the locations of
the maxima). Note that, due to the nonlinear nature of the system, the reported phase shift
is an integral quantity and does not reflect the phase shift of the individual modes. To this
end, we have computed the phase shift of the Fourier modes of τ̃b relative to the phase of
the corresponding modes of H̃b. More precisely, the phases of τ̃b and H̃b are computed
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Case H4 H6 H7

ϕ̄
τ̃dH̃b

/D 15.7 17.9 18.9
ϕ̄τ̃d q̃p/D 17.6 18.5 19.3

Table 3. Average phase advance in particle diameters of the boundary shear stress with respect to the ripple
profile, ϕ̄τ̃dH̃b

, and with respect to the particle flow rate, ϕ̄τ̃dq̃p . The values are computed from the separations

at which the τ̃b–H̃b and τ̃b–〈q̃p〉zt cross-correlation functions are maximum, respectively.

based upon the real and imaginary parts of their respective Fourier coefficients and
subsequently a relative phase shift �ϕj for mode j is defined as the difference between the
two. Figure 8(b) shows the mode-wise phase shift as a function of the wavenumber κj of the
first few significant Fourier modes. Interestingly, a dispersion among the different modes
can be observed, �ϕj/κj exhibiting a decreasing trend with decreasing wavelength (�ϕj
in radians shows the opposite trend, largest wavelength associated with smallest phase
shift and vice versa). A further observation is that the phase-shift dispersion collapses
fairly well for the three cases only being limited at the lower κ end of the spectrum by
the discreteness of the available numerical harmonics. This indicates that the phase shift
depends purely on the imposed flow conditions and not on the state of the ripple evolution.
The above findings corroborate previous works (Fourrière et al. 2010; Claudin, Charru &
Andreotti 2011) that typically consider a single mode in their modelling efforts. The phase
shift between the local boundary shear stress and the sediment-bed height is believed to
be the main factor for destabilising a mobile sediment bed during the initial stages of
ripple formation as well as during the subsequent nonlinear evolution process (Andreotti
& Claudin 2013; Charru et al. 2013).

Another way of looking at the phase advance of the shear stress is to distinguish between
its component that is in quadrature and the one that is in phase with respect to the bed
topology. In theoretical analysis, a sinusoidal bottom perturbation of small amplitude is
usually considered. Then the flow over a bottom perturbation is analysed as a layered
structure: an outer inertia dominated region in balance with the form-induced pressure
gradient and where viscous effects are less important and an inner logarithmic region
close to the boundary. The matching between these two in some intermediate region
results in the phase advance of the shear stress with respect to the bottom undulation,
the shear-stress maximum being located upstream of the crest (Charru et al. 2013). To
understand the physical mechanisms, the Fourier coefficients τ̂j of the boundary shear
stress τ̃b are commonly expressed in terms of two hydrodynamical parameters A and B as
(Charru et al. 2013; Duran Vinent et al. 2019)

τ̂+
j exp(−iϕb,j) = κj|Âj|(Aj + iBj), (4.6)

where Âj are the corresponding Fourier coefficients of the ripple morphology, ϕb,j is
the phase shift of mode j and where i ≡ √−1 is the imaginary unit. Note that, in the
linear analysis, a single sinusoidal mode (with zero phase shift) is considered for the
bottom perturbation. In our case, the interaction between the flow and the self-formed
finite-size, asymmetric ripples is far from linear. The ripple morphology consists of a
band of modes each with distinct phase shift ϕb,j. Fuller understanding requires rigorous
analysis of the broadband modulation that is beyond the scope of the paper. Nevertheless,
it is worthwhile to look at our data in the context of the linear theories that have been
the basis for modelling sediment-bed evolution. Thus, τ̂j is multiplied by exp(−iϕb,j).
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Figure 9. (a) The symmetric real component A and (b) the anti-symmetric imaginary component B of the
first few modes of the bottom shear stress (relative to the phase of the corresponding modes of the ripple
morphology): blue circles, H4; red circles, H6; black circles, H7.

The parameters A and B exhibit different spatial structures and different physical
meanings. In the linear regime, A is in-phase (symmetric) while B is in-quadrature
(anti-symmetric) with respect to the bottom surface. A positive value of B is associated
with particle erosion from the trough and deposition at crest while a positive value of A
is associated with downstream migration of the perturbation (Charru et al. 2013). Figure 9
shows the shear-stress components A and B corresponding to the first few modes extracted
from the DNS data as a function of the wavenumber scaled with the hydrodynamic
roughness k0 (cf. § 3). The data points collapse well for the three cases (except for the
scatter in the data of case H4), corroborating our previous argument that the phase shift of
individual modes is independent of the ripple evolution stage. Compared with theoretical
linear predictions, the values of A and B fall in general within the same order of magnitude
(Fourrière et al. 2010; Charru et al. 2013; Duran Vinent et al. 2019). However, we recall
that the hydrodynamic roughness height k0, which is an important ingredient of the above
models, is inferred from the flow over stationary roughness. Moreover, the flow separation
downstream of the ripple crests is known to alter the shear-stress phase advance (Charru
et al. 2013). Therefore, a direct comparison of the data presented in figure 9 with the
theoretical linear predictions is not meaningful.

4.3. Relationship between the local sediment flux and the boundary shear stress
The phase-averaged total sediment flow rate per unit width can be evaluated from the
phase-averaged particle statistics as

〈q̃p〉zt(x) =
∫ Ly

0
〈q̃2D

p,x〉zt dy, (4.7)

where 〈q̃2D
p,x〉zt ≡ Ũpφ̃p is the streamwise component of the phase-averaged two-

dimensional particle flow rate per unit area. Note that 〈q̃p〉zt incorporates all particle
transport modes, bedload and suspended load. Figure 10(a) shows the streamwise variation
of 〈q̃p〉zt. The values of 〈q̃p〉zt are different among the cases, that of case H7 being the
largest while that of case H4 being the smallest for most of the ripple profile, including
the stoss side. This is expected due to the difference in the average bottom friction among
the cases that is proportional to the ripple height (see the bottom friction evolution in
figure 2). However, in the region 0.1λ � x̃ � 0.35λ, the opposite trend is observed, i.e.
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Figure 10. Streamwise variation of the volumetric particle flow rate 〈q̃p〉zt, normalised by the inertial scale
qi = UgD. The global minima and maxima are marked by the dot symbols. The mean ripple profile of each of
the cases, along with the location of the crest (maximum of H̃b) and trough (minimum of H̃b) are shown at the
top of the panel. (b) Upstream phase shift, normalised by particle diameter, of the first few dominant Fourier
modes of 〈q̃p〉zt relative to the phase of the corresponding modes of H̃b for the different cases. The inset shows
the phase shift in radians. Colour coding is the same as for figure 8.

〈q̃p〉zt of H4 is the largest. This can be explained by a combined effect of particle inertia
and hindrance related to the smaller ripple amplitude and the very mild recirculation (the
boundary layer of case H4 is not as disrupted as that of the other cases). For all cases, the
particle flow rate exhibits a minimum value in the location very close to the trough and
a maximum value very near the crest essentially in phase with the ripple geometry. Such
an in-phase variation of the ripple morphology and the sediment flux is a consequence
of mass conservation (under the condition that the bedforms are steadily migrating and
are of constant shape) as described by the Exner equation (Charru et al. 2013). However,
a closer look into the spectral decomposition of the phase shift (figure 10b) reveals that,
although the dominant modes have essentially zero phase shift, there is a clear trend of
(somewhat linear) phase-shift increase with increasing wavenumber, albeit only to within
two particle diameters. The mode-wise resolved phase shift will be discussed in more
detail below in relation to that of the bottom shear stress. In table 3 we report the average
phase shift between τ̃b and 〈q̃p〉zt that measures approximately 18–19 particle diameters,
fairly independent of the ripple dimension.

A key quantity in sediment transport modelling is the local relationship between τ̃b and
〈q̃p〉zt. It has been a common practice to relate the two through algebraic semi-empirical
formulae (e.g. Meyer-Peter & Müller 1948; Wong & Parker 2006) that are popular
in engineering applications. However, it is recognised that the sediment flux does not
immediately adapt to local change in the shear stress (Sauermann et al. 2001; Charru
2006; Fourrière et al. 2010; Claudin et al. 2011). Models such as that by Meyer-Peter &
Müller (1948) do not incorporate such a relaxation effect and thus have been shown to
be not adequate to predict the spatial structure of the particle flow rate, in particular in
the context of bedform formation and evolution. Comparing figures 8(a) and 10(a) it is
evident that the two profiles do not follow the same trend, corroborating the relevance of
a relaxation process. It is noteworthy that the location of the respective maxima/minima
do not fall at the same location. Moreover, 〈q̃p〉zt is observed to be entirely of positive
value across the entire ripple profile, including in the re-circulation region where τ̃b
is negative, for all cases. This shows that the spatial structure of sediment transport
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Figure 11. (a) Amplitude of the Fourier coefficients of the first few modes of 〈q̃p〉zt as a function of the
corresponding amplitudes of non-dimensional local Shields number. The dashed line is a power-law function
given by |q̂p|/qi = 4.63|θ̂b|1.5 that best fits the data: blue circles, H4; red circles, H6; black circles, H7. (b)
Upstream phase shift of the boundary shear stress relative to the phase of particle flow rate. The dashed line
shows an average phase shift of the dominant modes (averaged over all cases). Colour coding is the same as for
figure 8.

cannot be entirely predicted by classical models where the particle flow rate is expressed
in terms of local bottom shear stress alone. The non-local correlation between τ̃b and
〈q̃p〉zt can be scrutinised by analysing the amplitude and phase shift of the corresponding
Fourier modes. Figure 11(a) presents the amplitude of the first few dominant Fourier
coefficients of 〈q̃p〉zt (normalised by the inertial scaling qi = UgD) as a function of the
corresponding amplitude of the bottom shear-stress coefficients (expressed in terms of the
non-dimensional local Shields number θ̃b = τ̃b/((ρp − ρf )gD)), while figure 11(b) shows
the mode-wise phase shift between the two quantities (both in particle diameters and in
radians). Interestingly, the correlation of the amplitudes for all cases sufficiently collapses
and it is well represented by a power-law fit of the form

|q̂p|/qi = α|θ̂b|β, (4.8)

with fit parameters α = 4.63 and β = 1.5. The phase shift in radians seems to exhibit
no particular trend and is fairly independent of the wavenumber, in particular at the
lower wavenumber end of the spectrum (subject to the scatter of the data). For our
considered data point, the average phase shift reads �ϕav ≈ 0.336π (the dashed line in
that figure). This translates to a wavenumber-dependent phase shift in particle diameters
�ϕj/D = �ϕav/(κjD) ≈ 27/κj. The above observation motivates us to write a simplified
relationship between the bottom shear stress and particle flow rate, which incorporates the
phase shift between the two, as follows:

qp =
modes∑
j=0

α|θ̂b|β−1θ̂b exp (−i�ϕav) exp (iκjx̃), (4.9)

where ϕav is the average mode-wise phase shift for modes j > 0 (there cannot be a phase
shift in the zeroth-mode). We remark that (4.9) is obtained from a fit to the 〈q̃p〉zt–θ̃b
relationship that has resulted from a nonlinear process. Moreover, an average phase shift
(in radians) is considered that ignores possible mode-wise dispersion. However, it can be
argued that inclusion of the phase shift between the shear stress and sediment flux that
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Figure 12. (a) Particle flow rate 〈q̃p〉zt as a function of the local phase-averaged Shields number θ̃ : �, H4;
◦, H6; �, H7. Marker colours indicate the different locations along the ripple profile (cf. colour coding in
figure 8). The space- and time-averaged mean particle flow rate 〈qp〉zxt for the three cases are shown by the
symbols ⊗. The solid curves correspond to the model (4.9), evaluated using the first ten Fourier modes; blue
line, H4; red line, H6; black line, H7. (b) The same data as in panel (a) but plotted logarithmically. The dashed
line is the Wong & Parker (2006) version of the Meyer-Peter and Müller (MPM) formula for turbulent flows:
qp/qi = 4.93 (θ − θc)

1.6.

encodes the relaxation of the sediment bed (which will be discussed below) is superior
when compared with models based on a local relationship. Let us mention that aeolian
sand transport models that account for a similar phase shift between topology and shear
stress (link with the sediment flux through the Exner equation) have been shown to provide
better prediction of the formation and evolution of dunes (Andreotti et al. 2002; Kroy,
Sauermann & Herrmann 2002; Hersen et al. 2004).

Figure 12 shows the variation of the non-dimensional sediment flow rate resolved along
the ripple profile as a function of the non-dimensional local Shields number θ̃b. We note
that, in plotting the data points in the figure, 〈q̃p〉zt is averaged over bins of width ΔV
that match those used to compute τ̃b. The above-discussed complexity of the relationship
is evident, which classical models such as that by Meyer-Peter & Müller (1948) fail to
predict. It is only for the blue coloured symbols (corresponding to the blue demarcated
region in figure 8 roughly upstream of the maximum shear-stress location) that the particle
flow rate predicted by MPM formula approximately matches the data. Note that, as has
been reported in KU2017 and is reproduced in figure 12(b), the space- and time-averaged
particle flow rate is nevertheless well predicted by the Wong & Parker (2006) version of
the Meyer-Peter & Müller (1948) power-law formula. On the other hand, as demonstrated
in the figure, the scale-resolved, phase-shift accounting model (4.9), evaluated using ten
modes, provides a reasonable representation of the data.

For a closer inspection of the sediment-bed response to the spatial changes in the shear
stress, it is essential to distinguish the particle flux within the mobile transport layer from
possible contributions due to suspended particles, in particular in the re-circulation region
downstream of the crest. Moreover, although minute in magnitude, the motion deep within
the bulk sediment bed is not directly related to the boundary shear stress but rather to the
form-induced pressure gradient from the outer flow (Mazzuoli et al. 2019). To this end,
we have decomposed 〈q̃2D

p,x〉zt into four transport mode regions (cf. figure 13). First we
distinguish between the ‘resting’ sediment bed and the active mobile sediment layer –
usually termed in the community as the ‘transport layer’ – by defining an interface where
the phase-averaged solid volume fraction φ̃p equals the mean value in the resting bed Φbed
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Figure 13. (a) Phase-averaged two-dimensional particle flow rate (streamwise component) per unit area,
〈q̃2D

p,x〉zt, normalised by UgD2 for case H7. The pink dashed-dot curves indicate the boundaries of the bedload
transport layer. The green solid curve demarcates the particle inertia dominated region. The fluid–bed interface
is indicated by the black dashed curve. (b) Contour lines of 〈q̃2D

p,x〉zt/UgD2 in the region downstream of the ripple
crest (the box region shown in panel (a)). The different sediment particle transport regions are colour coded
as follows: orange, quasi-stationary sediment bed; maroon, bedload transport layer; blue, dilute suspension
region; green, particle inertia dominated region. (c) 〈q̃p〉zt/qi of case H7 (thick black line) decomposed into the
different sediment flow rate components. Line colour coding is the same as for panel (b).

(the interface between the orange and red regions in figure 13b). More precisely, for a
streamwise position x̃, we fit a straight line to φ̃p in the interval between the wall-normal
locations where φ̃p = 0.1 and φ̃p = 0.4. Then, we pick the wall-normal location yb(x̃)
where the fitted line crosses the value Φbed. The motivation for the above definition stems
from the solid volume-fraction-dependent rheology of the sheared sediment layer in which
φ̃p tends to Φbed as the local shear rate tends to zero (Boyer, Guazzelli & Pouliquen 2011).
We subsequently demarcate the transport layer from the dilute suspension region by the
interface located at yt(x̃) . In the latter, sediments are transported mainly in suspended
mode (the blue region in figure 13b). The interface is defined based on a threshold value of
the phase-averaged wall-normal inter-particle collision force 〈f̃ C

p,y〉zt (Scherer et al. 2020).
Additionally, we distinguish the sediment flux immediately downstream of the ripple crest
that is dominated by fully suspended particles that have retained a substantial amount
of their momentum from upstream. This ’inertial sediment flux’ region is demarcated
based on a threshold value of the phase-averaged streamwise hydrodynamic force acting
on the particles 〈f̃ H

p,x〉zt as particles are characterised by increased negative 〈f̃ H
p,x〉zt due

to fluid-drag-induced deceleration. The inertial region is shown by the green region in
figure 13(b). Defining the inertial region by an indicator function Ir that has a value of
unity in the region and zero elsewhere, the particle flow rate within the transport layer and
excluding the inertial region can be defined as

〈q̃TL
p 〉zt(x̃) =

∫ yt(x̃)

yb(x̃)
〈q̃2D

p,x〉zt(1 − Ir) dy. (4.10)

The other contributions to 〈q̃p〉zt are analogously defined. As can be seen from figure 13(c),
〈q̃p〉zt is dominated by 〈q̃TL

p 〉zt in almost the entire ripple profile, except in the region
immediately downstream of the crest. It is also noteworthy that 〈q̃TL

p 〉zt attains very small
but negative values in the recirculation region.
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Figure 14. Particle flow rate in the bedload transport layer 〈q̃TL
p 〉zt as a function of the local Shields number θ̃ :

�, blue, H4; •, red, H6; �, H7. Only data points on the stoss side of the ripple are shown. The black dashed
curve is the MPM formula, while the red dashed line shows a linear scaling.

In figure 14, the relationship between the local Shields number and local 〈q̃TL
p 〉zt is

presented. Only data points corresponding to the stoss side of the ripple (defined as the
region between the trough and crest) are shown. The relaxation of 〈q̃TL

p 〉zt to changes in θ̃b

is evident from the figure: in the ‘shear-stress recovery’ region, i.e. the region where the
shear stress increases sharply from its almost zero value downstream of the trough (the red
interval in figure 8), 〈q̃TL

p 〉zt is seen to increase modestly exhibiting a linear relationship
with θ̃b, which is smaller when compared with the 3/2 power law that is expected to hold
in equilibrium. Subsequently, while the shear-stress evolution reaches a plateau (green and
blue regions in figure 8), the particle flux sharply increases and then tends towards a 3/2
power-law relationship in the blue region.

4.4. Relaxation of the sediment flux
Although it is established that the phase lag between τ̃b and 〈q̃TL

p 〉zt is a consequence
of the inertia of the subaqueous sediment bed, there has been no direct measurement
of the relaxation effect. In the following, we evaluate this quantity from our DNS data,
independent of the influence of the bedforms. Let us recall that we have initiated the
simulations by first developing a turbulent flow over a macroscopically flat bed composed
of stationary particles. After the coupled fluid–solid simulations were switched on by
allowing the particles to move, the erosion–deposition process ramps up over a relatively
short time in response to the shear imposed by the flow (see detailed description of the
startup procedure in Kidanemariam & Uhlmann 2014a). Our startup procedure allows us to
investigate the sediment flux relaxation behaviour during the first instants of the sediment
grain motion. To this end, we have computed the space-averaged instantaneous particle
flow rate within the transport layer given as

〈qTL
p 〉xz(t) =

∫ yt(t)

yb(t)
〈upφp〉xz dy, (4.11)

for the time interval before any bed patterns have formed. Here, yb and yt are the lower and
upper extents of the transport layer and are defined in § 4.2. Note that, during this stage,
the transients of all the simulation cases reported in KU2017 are statistically identical.
Therefore, in order to increase the sample size, we have analysed the data corresponding
to case H48 in KU2017. That case possesses a relatively large domain size (Lx = 48H) with
over a million particles and is suitable to scrutinise the transient evolution of the particle
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Figure 15. (a) Time evolution of the particle flow rate within the transport layer of case H48 in KU2017. The
red curve is an exponential fit to the data of the form q = qs(1 − exp(−t/Tq)). (b) Corresponding evolution of
the mean particle velocity within the transport layer along with the exponential fit up = up,s(1 − exp(−t/Tu)).
The inset shows the equivalent distance s travelled by the mobile layer as a function of time defined as
s(t) = ∫ t

0 uTL
p dt. The green and blue dashed lines in the inset show T0.99

u and T0.99
q respectively, while the

ordinates at which the dashed lines cross the curve s(t) correspond to L0.99
u and L0.99

q , respectively.

flow rate accurately. As can be seen in figure 15(a), 〈qTL
p 〉xz requires a finite time to attain

a saturated value in this ’featureless bed’ interval (once bedforms emerge the particle flow
rate increases again in accordance with the temporal increase of the bottom friction). In
order to compute a characteristic time for the transient behaviour we fit an exponential of
the form

q = qs(1 − exp(−t/Tq)), (4.12)

with fit parameters qs and Tq, to 〈qp〉xz in the interval 0 < t/Tb < 80. Our analysis
follows that by Andreotti, Claudin & Pouliquen (2010) and Pähtz et al. (2015) who have
carried out experiments and DEM simulations of aeolian sand transport saturation length,
respectively. Subsequently, we define a transient time scale T0.99

q as the time required for q
to reach 0.99qs. It turns out that, for case H48, qs ≈ 0.08qi, Tq ≈ 5.4Tb and T0.99

q ≈ 25Tb

(cf. figure 15a). Furthermore, T0.99
q can be translated into an equivalent length scale L0.99

q
as

L0.99
q =

∫ T0.99
q

0
uTL

p dt, (4.13)

where uTL
p is the average instantaneous particle velocity within the bedload transport layer,

given as

uTL
p (t) = 〈qTL

p 〉xz

ΦTL
p

. (4.14)

Here, ΦTL
p is the volume of particles in the transport layer per unit horizontal area, viz.

ΦTL
p (t) =

∫ yt(t)

yb(t)
〈φp〉xz dy. (4.15)

The evolution of uTL
p shown in figure 15(b) exhibits a similar relaxation trend as 〈qTL

p 〉xz

albeit at a shorter time scale. We emphasise that the relaxation of uTL
p is mainly controlled
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by the particle acceleration/deceleration due to fluid drag and inter-particle interaction
within the transport layer while that of 〈qTL

p 〉xz is controlled both by the relaxation of
uTL

p and that of the mobile particle number density, or equivalently ΦTL
p (Charru 2006;

Pähtz et al. 2013, 2014). As shown in the inset of figure 15(b), L0.99
q ≈ 20D and agrees

very well with the computed average phase shift between the boundary shear stress and
the particle flow rate over the bedforms, thus suggesting the link between the two. The
relaxation of uTL

p by itself is an important model ingredient (cf. Pähtz et al. 2013, 2014,
2015) and analogous to the particle flow rate, we fit the same exponential function defined
with parameters up,s and Tu (or equivalently T0.99

u ) to the evolution of uTL
p . Incidentally,

up,s ≈ 0.49uτ , Tu ≈ 2.8Tb and T0.99
u ≈ 13Tb. Furthermore, T0.99

u can be translated into an
equivalent length scale L0.99

u , and, as shown in the inset of figure 15(b), it turns out that
L0.99

u ≈ 10D. To the best of our knowledge, there is no direct experimental measurement
of the relaxation length/time scales of subaqueous sediment to compare our results with.
The quantity is usually reconstructed from measured dune shape and migration velocity
(cf. Fourrière et al. 2010; Franklin & Charru 2011).

5. Conclusion

We have numerically investigated the turbulent flow and sediment grain motion in an
open-channel flow configuration over a thick, freely evolving, subaqueous sediment
bed featuring two-dimensional transverse ripples. The fluid–solid interaction has been
faithfully accounted for via particle-resolved direct numerical simulation, while the
sediment bed has been represented by a large number of mobile finite-size spherical
particles. The simulation data analysed in the present study are identical to those in our
recent work (Kidanemariam & Uhlmann 2017). The latter study was exclusively devoted
to the description of the initiation and evolution aspects of the sediment patterns. In
the present contribution, we have extended our analysis, focusing on the unsteady and
non-homogeneous fluid flow over the bedforms, the main driving force in their formation.
Our analysis has also equally focused on the associated sediment grain motion, the process
by which a sheared sediment bed gives way to the formation and evolution of the bedforms.

At the chosen moderate Reynolds number and super-critical Shields number values, the
flow erodes and mobilises an initially featureless sediment bed leading to the formation
of ripples that are, on average, perpendicular to the mean flow direction and that
migrate downstream. The bed evolution in turn strongly modifies the flow from its initial
statistically one-dimensional state towards a two-dimensional state. The conditions of
our simulations have allowed us to constrain the temporal growth of the ripples (by
limiting the computational box length), forcing the patterns to maintain their shape and
size, and migrate at a statistically constant velocity. This in turn has allowed us to
run simulations of the steady ripple migration regime over a sufficiently long temporal
duration. Subsequently, we have performed ripple-conditioned phase averaging of the
generated fluid and particle data and analysed the spatio-temporal correlation of the
turbulent flow with the sediment bed.

The basic features of the two-dimensional phase-averaged mean flow were found to
be, in general, in good resemblance to the flow over fixed dunes for which there exists
extensive literature (Best 2005). However, to the best of our knowledge, there is no detailed
measurement of the corresponding mean particle velocity statistics within and above the
sediment bed. It was evidenced that the permeable bed interface, which lies within the
bedload transport layer, is subject to active mass/momentum exchange of both phases
as a result of erosion and deposition of sediment particles and the fluid motion therein.
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The phase-averaged mean particle velocity is smaller than that of the fluid over most
of the ripple surface, except in the re-circulation region where it exhibits the opposite
behaviour. It should be noted that the apparent velocity difference is mainly attributed
to the preferential sampling of the buffer layer low-speed streaks by inertial particles
(Kidanemariam et al. 2013), thus caution is advised when using such quantity in models
that rely on particle drag correlations. Moreover, downstream of the crest, sediment
particles carry their momentum from upstream into the re-circulation region and, due to
their inertia, do not immediately adapt to the enhanced fluid drag therein, resulting in a
higher mean particle velocity, and thus higher particle flow rate. In general, the observation
highlights the complex particle relaxation effects in response to the spatial changes of the
fluid flow.

We have further performed an evaluation of the momentum budget over moving local
control volumes adapted to the shape of the ripples, in order to compute the basal
shear-stress variation (at the bed interface). The accurate determination of this quantity,
which is one of the main ingredients in models of sediment-bed morphology, has been an
outstanding issue. Our analysis has shown that the shear stress is maximum at a location
upstream of the crests exhibiting a positive phase shift with respect to the ripple geometry.
Likewise, the location of the minimum shear stress is upstream of the ripple trough. For
the considered ripple sizes (mean wavelength λ in the range 100D–180D), the average
phase shift lies in the range 16D–19D. The phase advance of the shear stress, which is a
consequence of fluid inertia, is known to be responsible for the instability of an erodible
sediment bed (Charru et al. 2013).

As a consequence of the sediment mass conservation, the volumetric particle flow
rate, integrated over the whole channel depth but resolved in the streamwise direction,
evolves essentially in phase with the ripple geometry, thus lags the shear stress by
practically the same phase-shift amount as that of the topology, measuring 18D to 19D.
This observation is evidence that expressing the spatial structure of the particle flux as
a function of the local shear stress by an algebraic expression is not adequate. Indeed,
classical empirical power laws such as that by Wong & Parker (2006), which have been
shown to be robust in predicting the space- and time-averaged particle flow rate over
the same ripples (Kidanemariam & Uhlmann 2017), fail to capture the observed spatial
variability. Nevertheless, a scale-resolved, simplified relationship between the bottom
shear stress and the particle flow rate that incorporates a phase-shift parameter, is shown to
reasonably represent the DNS data. This has been shown by comparing the amplitude and
phase shift of the dominant Fourier modes of the boundary shear stress and those of the
particle flow rate. It is found that corresponding amplitudes of the two quantities exhibit
a power-law relationship with exponent 3/2, while the relative phase shift (in radians)
remains essentially independent of the wavenumber.

It has been long recognised that the phase lag of the particle flux with respect to the shear
stress is a consequence of sediment inertia. That is, an erodible sediment bed needs some
time/distance to adapt to change in flow conditions. This sediment relaxation behaviour
is usually expressed in terms of a saturation length scale (Sauermann et al. 2001; Charru
2006). The saturation length is believed to be an important controlling parameter of the
initial ripple size and has been included in a number of models (cf. the introduction § 1 and
references therein). Nevertheless, there has been no direct measurement of this quantity, in
particular for subaqueous sediment transport (Duran Vinent et al. 2019). This in turn has
impeded a fuller understanding of the relevant processes and mechanisms. Our numerical
data set has, for the first time, allowed us to evaluate this quantity accurately. To this
end, we have investigated the link of the observed phase lag of the particle flow rate
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with respect to the boundary shear stress over the bedforms to that of the sediment-bed
relaxation behaviour. By monitoring the evolution of the particle flow rate within the
transport layer in the first few bulk time units of the simulation interval (before any
bedforms have emerged), it was found that, for the parameter values considered, the
sheared transport layer gets mobilised from the initial state of zero particle flow rate
towards some steady-state value within a time lag of approximately 25 bulk time units.
By evaluating the temporal evolution of particle velocity, the saturation length, which
measures approximately 20D, is found to be in close agreement with the phase lag
measured over the fully developed ripples.

The saturation length of the particle flux, computed for the current parameter point to
be approximately 20D, is clearly larger than that of the particle velocity, which measures
approximately 10D. That is, the particle flux needs longer time to saturate than the
particle velocity (similar results were also obtained from DEM simulations of aeolian
sediment transport by Pähtz et al. 2015). Note that the relaxation of the sediment flux is a
consequence of multiple inter-linked mechanisms that include the relaxation of the number
density of the mobile sediment grains within the transport layer (or equivalently the mass
of the mobilised sediment particles per unit area) and the relaxation of the sediment
grain motion. The saturation of the mobile sediment number density is conjectured to be
governed by the net rate of particle entrainment and deposition between the transport layer
and the stationary sediment bed beneath. The saturation is said to scale with the deposition
length, proportional to (uτ /us)D, us being the particle settling velocity (Charru 2006;
Charru & Hinch 2006). On the other hand, the temporal evolution of the particle velocity
is modulated by the inertial response of the mobilised particles to the hydrodynamic forces
and inter-particle collisions (Fourrière et al. 2010; Andreotti et al. 2011). The latter authors
consider the effect of hydrodynamic drag only and they propose a dominant drag length
(i.e. the length needed for a particle to reach its saturation value) proportional to (ρp/ρf )D.
The fact that the present study considers only one parameter point makes it difficult to
assess the scaling of the sediment flux relaxation with respect to the above length scales.
Interestingly, our computed value of the relaxation length (in particular for the saturation
of the particle velocity) is comparable to the saturation length Lsat estimated by Fourrière
et al. (2010). The latter authors estimate Lsat (indirectly from experimental measurements
of initial ripple wavelengths) in the range between 7 and 15 grain diameters, agreeing very
well with our computed value of L(0.99)

u but slightly underestimating L(0.99)
q , consistent

with their model assumption.
Finally, we note that a single parameter point (in terms of flow Reynolds number, particle

size, density ratio and Shields number) is considered in the present study. Although
desirable, it was not possible to sweep the parameter space and thereby study the regime
dependence of the observed flow and particle motion behaviour due to the immense
computational cost. In particular, an assessment of model assumptions that link the
observed bottom shear-stress variation with the sediment-bed dynamics is only possible
when the simulated parameter space is extended. This will allow us, for instance, to
investigate the influence of the Reynolds number or the channel confinement on the
shear-stress parameters Aj and Bj (4.6). Furthermore, additional simulations are required
to study the mechanisms behind the sediment-bed relaxation behaviour (both at the
grain scale and collectively) and its dependence on the Reynolds number and particle
quantities such as the density ratio and Galileo number. This will allow us to evaluate the
relative importance of the deposition length and the drag length on the saturation length
and evaluate sophisticated models such as that by Pähtz et al. (2013) more rigorously
in the subaqueous setting. Finally, although the flow over stationary imposed dunes
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has striking similarity to the flow over evolving bedforms, the former configuration
falls short of representing the ‘four-way’ coupled interaction between the flow and the
dynamic sediment bed. An assessment of the validity of such a simplified configuration
in representing the flow over evolving dunes needs to be done. These tasks remain to be
addressed in future work.
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Appendix A. Definition of averaging operators

A.1. Plane and time averaging
Let us first define an indicator function φf (x, t) for the fluid phase that has a value of unity
if x lies inside Ωf (t) – the part of the computational domain Ω that is occupied by the
fluid at time t – or zero otherwise

φf (x, t) =
{

1 if x ∈ Ωf (t)
0 else . (A1)

Similarly, an individual particle indicator function φ
(l)
p is defined as

φ(l)
p (x, t) =

{
1 if x ∈ Ω

(l)
p (t)

0 else
, (A2)

where Ω
(l)
p (t) is the volume occupied by the lth particle at time t. Thus, an instantaneous

discrete counter of fluid sample points in a wall-parallel plane at a given wall distance yj
and time tm is defined as

nxz( yj, tm) =
Nx∑
i=1

Nz∑
k=1

φf (xijk, tm), (A3)

where Nx and Nz are the number of grid nodes in the streamwise and spanwise directions,
respectively, and xijk = (xi, yj, zk)

T denotes a discrete grid position. Furthermore, a
discrete counter of fluid sample points in a wall-parallel plane at a given wall distance
yj, sampled over Nt number of time records, is defined as

n( yj) =
Nt∑

m=1

nxz( yj, tm). (A4)

Consequently, the ensemble averages of an Eulerian quantity ξ f of the fluid phase over
wall-parallel planes, while considering only grid points located in the fluid domain, are
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defined as

〈ξ f 〉xz( yj, tm) = 1
nxz( yj, tm)

Nx∑
i=1

Nz∑
k=1

φf (xijk, tm) ξ f (xijk, tm) (A5)

and

〈ξ f 〉xzt( yj) = 1
n( yj)

Nt∑
m=1

nxz( yj, tm)〈ξ f 〉xz( yj, tm), (A6)

where the operator 〈·〉xz in (A5) indicates an instantaneous plane average and the operator
〈·〉xzt in (A6) indicates an average over plane and time. The corresponding averaging
operators for a particle related Eulerian quantity ξp are analogously defined as

〈ξp〉xz( yj, tm) = 1
NxNz − nxz( yj, tm)

Nx∑
i=1

Nz∑
k=1

(
1 − φf (xijk, tm)

)
ξp(xijk, tm), (A7)

and

〈ξ f 〉xzt( yj) = 1
NxNzNt − n( yj)

Nt∑
m=1

(
NxNz − nxz( yj, tm)

) 〈ξp〉xz( yj, tm). (A8)

A.2. Averaging in the spanwise direction and time
For the purpose of the phase averaging introduced in Appendix B, we introduce averaging
operators only in the spanwise direction and in time. First, a two-dimensional discrete
counter of fluid sample points in the x–y plane at points xi and yj is defined as

nzt(xi, yj) =
Nz∑

k=1

Nt∑
m=1

φf (xijk, tm). (A9)

Consequently, the ensemble average of an Eulerian quantity ξ f of the fluid phase over
spanwise-perpendicular planes, while considering only grid points located in the fluid
domain, is defined as

〈ξ f 〉zt(xi, yj) = 1
nzt(xi, yj)

Nz∑
k=1

Nt∑
m=1

φf (xijk, tm) ξ f (xijk, tm). (A10)

Similarly, the particle related Eulerian field defined in (B5) is averaged in the spanwise
direction and time as follows:

〈ξp〉zt(xi, yj) = 1
NzNt − nzt(xi, yj)

Nt∑
m=1

Nz∑
k=1

Np∑
l=1

φ(l)
p (xijk, tm)ξ (l)

p (tm), (A11)

where Np is the total number of particles.
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Appendix B. Phase averaging

In this section, we specify the ripple-conditioned phase-averaging procedure. The
phase-averaged fluid–bed interface is defined as follows:

H̃b(x̃) = 〈hb(x̃, t)〉t, (B1)

where x̃ is the x-coordinate in a frame of reference that is moving at the average migration
velocity

x̃ = x − uD(t − ts), (B2)

where uD is the average migration velocity of the patterns and ts is the starting time of the
steady ripple propagation interval; uD is determined from the shift of the maximum of the
space–time correlation function between the fluid–bed interface fluctuation at times ts and
t (see KU2017 for the precise definition of uD). Similarly, we define the phase-shifted fluid
and particle velocity fields as

ũf = uf (x̃, y, z, t), (B3)

ũp = up(x̃, y, z, t), (B4)

where up is a surrogate instantaneous Eulerian particle field that contains information
regarding the Lagrangian velocity of all particles at time t, viz.

up(x, y, z, t) =
Np∑
l=1

φ(l)
p (x, y, z, t)u(l)

p (t). (B5)

Here, φ(l)
p is a particle indicator function that has a value of unity if the position x lies inside

the domain occupied by the lth particle at time t and is zero otherwise (cf. Appendix A
for the precise definition). Other phase-shifted fluid and particle quantities are similarly
defined. Subsequently, ripple-conditioned statistics, which are function of both x̃ and
y, are computed by applying standard averaging of the phase-shifted fluid and particle
quantities, in the spanwise direction z and over time (over the number of available fluid
and particle snapshots). For instance, the phase-averaged fluid and particle velocities are
defined, respectively, as

Ũ f (x̃, y) = 〈ũf 〉zt, (B6)

Ũp(x̃, y) = 〈ũp〉zt. (B7)

The instantaneous phase-shifted fluid and particle velocities are decomposed in the usual
way into mean and fluctuating components

ũf (x̃, y, z, t) = Ũ f (x̃, y) + ũf
′(x̃, y, z, t) (B8)

ũp(x̃, y, z, t) = Ũp(x̃, y) + ũ′
p(x̃, y, z, t), (B9)

respectively. Using the notation ab with components aibj as the dyadic product of two
vectors a and b, covariances of the fluid and particle velocity fluctuation tensors are
defined similarly as 〈ũf

′ũf
′〉zt and 〈ũ′

pũ′
p〉zt, respectively. The averaging operator 〈·〉zt,

which applies differently to the fluid and particle fields by taking into account the fraction
of space occupied by the respective phases, is precisely defined in Appendix A.

Let us note that, due to the streamwise periodicity, further averaging in the streamwise
direction results in the mean velocities of the respective phases that would be obtained
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Figure 16. Sediment-bed-height profiles 〈h̃b〉z at various instants over the steady-state interval (grey curves).
The corresponding phase-averaged fluid–bed interface 〈h̃b〉zt is indicated as a black curve: (a) H4; (b) H6; (c)
H7.

from standard averaging over wall-parallel planes and time (taking into account the
solid/fluid volume fraction). For instance, 〈Ũ f (x̃, y)〉x = U f ( y), where U f ≡ 〈uf 〉xzt is
the plane- and time-averaged mean flow field. However, this is not true for the velocity
fluctuation covariances. That is,

〈u′
f u′

f 〉xzt( y) = 〈〈ũf
′ũf

′〉zt〉x( y) + 〈〈ũf
′′ũf

′′〉zt〉x( y), (B10)

where the first term on the right-hand side of (B10) represents the turbulent Reynolds
stresses while the second term corresponds to the form-induced (dispersive) contribution
that results from the deflection of the mean streamlines from the streamwise direction
(Nikora et al. 2007a). The dispersive stress is recovered from the ripple-conditioned
statistics as

〈ũf
′′ũf

′′〉zt(x̃, y) = Ũ f Ũ f (x̃, y) − U f U f ( y). (B11)

Finally, let us define the phase-averaged two-dimensional solid volume fraction

φ̃p(x̃, y) =
〈 Np∑

l=1

φ(l)
p (x̃, y, z, t)

〉
zt

. (B12)

Figure 16 illustrates the phase-averaging procedure by showing the spatial evolution
of the sediment-bed height for different time instants over the considered steady-state
interval of the three cases. It can be seen that all the profiles collapse to within a scatter of
approximately one particle diameter. The phase-averaged sediment-bed height H̃b is also
shown for reference.

Both fluid and particle statistics have been computed considering the same
steady-evolution interval (cf. table 2). However, the frequency at which statistics are
accumulated is different. During our simulations, we typically record particle-related
quantities at intervals of a few computational time steps, while full instantaneous flow
field snapshots are recorded at much coarser time intervals (due to the immense storage
requirement). Then dune-conditioned statistics are computed over the available particle
and flow field snapshots.

Appendix C. Plane-averaged streamwise momentum balance

Here, we evaluate the plane- and time-averaged streamwise momentum equation to
confirm the linearity of the total shear-stress profile across the entire channel depth.
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Figure 17. Wall-normal profiles of the different contributions to the total shear stress computed based on the
run-time accumulated plane-averaged statistics: (a) H4; (b) H6; (c) H7.

Since the driving pressure gradient is balanced by the sum of the fluid shear stress and
stress contribution from the fluid–particle interaction, the streamwise momentum balance
(when integrated over the entire domain comprising the fluid and particles) reduces to

−〈Π〉t(Ly − y) = ρf ν∂y〈u〉xzt − ρf 〈u′v′〉xzt +
∫ Ly

y
〈fx〉xzt dy. (C1)

Here, 〈u〉xzt is the mean composite velocity, and 〈u′v′〉xzt is the covariance with respect to
〈u〉xzt. Note that 〈u′v′〉 represents both the turbulent and form-induced fluctuations. The
last term on the right-hand side of (C1) represents the fluid–solid interaction. Figure 17
shows wall-normal profiles of the different contributions to the total shear stress for the
three simulated cases. The match with the linear profile indicates that the flow is in a
statistically steady state in the considered steady ripple evolution interval.
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