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Abstract. Consider a Riccati foliation whose monodromy representation is non-elementary
and parabolic and consider a non-invariant section of the fibration whose associated
developing map is onto. We prove that any holonomy germ from any non-invariant fibre
to the section can be analytically continued along a generic Brownian path. To prove this
theorem, we prove a dual result about complex projective structures. Let X be a hyperbolic
Riemann surface of finite type endowed with a branched complex projective structure:
such a structure gives rise to a non-constant holomorphic map D : £ — CP', from the
universal cover of ¥ to the Riemann sphere CP!, which is p-equivariant for a morphism
p w1 (X) — PSL(2, C). The dual result is the following. If the monodromy representation
p is parabolic and non-elementary and if D is onto, then, for almost every Brownian path
in f), D(w(t)) does not have limit when ¢ goes to co. If, moreover, the projective structure
is of parabolic type, we also prove that, although D(w(¢)) does not converge, it converges
in the Cesaro sense.

1. Introduction
Given a complex algebraic foliation, the study of the holonomy maps is crucial since
they encode the dynamics of the leaves. This paper is devoted to the problem of analytic
continuation of these holonomy maps. This problem, which goes back to the times of
Painlevé, regained interest recently with the works of Loray [L], II’yashenko [IlI] and
Calsamiglia et al [CDFG].
Let us explain the context. Consider the following differential equation in C:
dy P(x.y)
dx  Q(x,y)
where P and Q are polynomials in C[X, Y] without common factors.
The solutions of (1) define a singular holomorphic foliation of complex dimension one
in C? which can be extended to a singular holomorphic foliation F of CP?,
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Let Cg, C1 be two complex curves in CP? and L be a leaf of F which intersects Cg in
po and Cq in p1. Assume that pg and p are not singularities of the foliation and that the
curve Cy (respectively, C1) is transverse to F in pg (respectively, p1). Let y : [0, 1] = L
be a continuous path such that y(0) = po and y (1) = p;. Then one can find a continuous
family y,, : [0, 1] — CP? of paths parametrized by p € C close enough to pg such that:
M ) =p:
2 yp()eCy;
() ¥p=y:and
(4) forall p, y, belongs to the leaf through p.
The germ of the holomorphic map p — ¥, (1) in py is uniquely determined by the relative
(i.e. with fixed endpoints) homotopy class of y under the above conditions and is called
the holonomy germ associated to y.

A rather general question is to define the domain of definition of such a germ.

In [L], Loray makes the following conjecture.

CONJECTURE 1.1. (Loray) Let F be a singular holomorphic foliation in CP?. Let L;
and L, be two non-invariant projective lines and h : (L1, p1) — (L2, p2) be a holonomy
germ. Then h can be analytically continued along any continuous path which avoids a
countable set of points called singularities of h.

This was motivated by the following result which can be found in [CDFG, Theorem 1.1]
and which is a consequence of Theorem 1 of Painlevé (see [L]). If the polynomials P and
QO of equation (1) are such that w = P dx — Q dy is a closed one-form, then Loray’s
conjecture is true.

In the same vein, II’yashenko asks the following [Il] questions.

Question 1.2. (Ilyashenko) Consider the foliation in C? associated to equation (1) and let
h: (L1, p1) — (L2, p2) be a holonomy germ between two lines. Can & be analytically
continued along a generic ray emerging from p;?

In [CDFG], the authors prove that Loray’s conjecture fails to be true. More precisely,
they prove the following results.

e For an algebraic foliation of CP? with hyperbolic singularities and without invariant
curves (these are generic properties), there is a holonomy germ between a projective
line and a curve whose set of singularities contains a Cantor set.

e There exist algebraic foliations of CP? admitting a holonomy germ % : (L1, p1) —
(L2, p2) between complex lines whose set of singularities is the whole L.

Our main result is particularly linked to the second assertion. To see this, let us explain

briefly how they built such a foliation. They consider a parabolic projective structure

on the punctured Riemann sphere whose monodromy group is dense in PSL(2, C).

Suspending the monodromy representation, one obtains a CP!-fibre bundle over the

punctured Riemann sphere endowed with a non-singular foliation transverse to every fibre

and a section A (given by the developing map). There exist local models (introduced
by Brunella in [B]) over the cusps which allow to one compactify the CP'-fibre bundle,
the foliation and the section. After the compactification, one gets a singular holomophic
foliation on a CP!-fibre bundle over CP! whose fibres are transverse to the foliation,
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with the exception the ones over the punctures which are invariant lines containing the
singularities of the foliation. Now consider a holonomy germ 4 between a transverse fibre
and the section given by a developing map of the projective structure. Then % is a local
inverse of the developing map. If the monodromy group of the projective structure is dense
in PSL(2, C), the authors prove that /4 has full singular set. The CP'-bundles over CP! are
parametrized by an integer n > 0. Choosing, conveniently, the local models around the
cusps, this number is n = 1, so that the ambient space is the first Hirzebruch surface [y
which has a unique exceptional curve disjoint from A. Blow-down gives CP? with the
desired property.

This paper is based on the following observation. With the same hypothesis, even if
the germ A has full singular set, & can be analytically continued along a generic Brownian
path, that is, the Brownian motion does not see this full set of singularities.

The foliations previously defined on Hirzebruch surfaces are examples of Riccati
foliations. More generally, a Riccati foliation is the data of (I1, M, X, F), where M is
a compact complex surface, X is a compact Riemann surface, IT: M — X is a CP!-fibre
bundle and F is a singular holomorphic foliation transverse to all the fibres except a finite
number of them which are invariant lines for the foliation and contain the singularities.
The main theorem of this paper now follows.

THEOREM A. Let F be a Riccati foliation with a parabolic and non-elementary

monodromy representation. Let F be a non-invariant fibre and so, s1 be two sections of

the bundle. Denote by So and S| the images of X by so and s1. Endow F, So and S| with

complete metrics in their conformal class. Assume, moreover, that the developing map

associated to Sy is onto.

(1) Ifh:(F, p)— (So, po) is a holonomy germ, then h can be analytically continued
along almost every Brownian path in F starting at p.

2) Ifh: (S1, p1) — (S_o, po) is a holonomy germ, then h can be analytically continued
along almost every Brownian path in Sy starting at p.

Remark 1.3. A holomorphic CP'-fibre bundle always admits a holomorphic section
(see [BPV, p. 139]).

Theorem A is a consequence of a theorem concerning complex projective structures,
which we now explain.

1.1. Complex projective structures. Let X be a Riemann surface. A branched complex
projective structure in ¥ is a (PSL(2, C), CP!)-structure where CP' is the Riemann
sphere and PSL(2, C) is the group of Mdbius transformations acting on CP!. Such a
structure gives rise to a non-constant holomorphic map D : £ — CP! from the universal
cover of ¥ to the Riemann sphere CP! and to a morphism p : 7 (X) - PSL(2, C)
satisfying the equivariance relation

forallx € ¥ and forall € 71(E), D(a-x) = p(a) - D(x).

The map D (well defined up to a post-composition by a Mobius transformation) is called
a developing map, the morphism p is called a monodromy representation and the group
p(r1(X)) is called a monodromy group (see §2 for more details on projective structures).
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If ¥ is not compact, we will need a parabolicity hypothesis around the cusps: a
representation is said to be parabolic if the holonomy around each cusp is parabolic
(i.e. it is conjugated to the group generated by the transformation z — z + 1). A complex
projective structure is said to be parabolic if, in some coordinate z around each puncture,
some developing map writes D(z) = (1/2imw) log z. Our Theorem B is proved under the
hypothesis of parabolicity of the monodromy representation, while Theorem C is proved
under the stronger hypothesis of parabolicity of the projective structure.

1.2. The image of a generic Brownian path by the developing map. In [CDFG], the
authors prove that if the monodromy group is a dense subgroup of PSL(2, C) and if & is
a germ of D! in 70, then the set of singularities for the analytic continuation of / is all
the Riemann sphere CP' (see Proposition 3.2). In other words, for any point z in CP!,
there is a continuous path ¢ from zo to z such that 4 cannot be analytically continued
along ¢ (we will give a proof of this fact in §3). As it has been explained earlier, with the
same hypothesis, 4 can be analytically continued along a generic Brownian path (i.e. the
Brownian motion does not see this full set of singularities). This is stated more precisely
in the following theorem.

THEOREM B. Let ¥ be a Riemann surface of finite type endowed with a branched
projective structure. Let D : £ — CP! be a developing map and p : 71(X) — PSL(2, C)
be the monodromy representation associated to D. Let (xo, zo) be a couple of points in
Y x CP' such that D(xo) = zo and let h be the germ of D~ such that h(zo) = xo. We
also define the Brownian motion in S as the one associated to the hyperbolic metric with
constant curvature —1 and the Brownian motion in CP' as the one associated to any
complete metric in its conformal class.
Assume that D is onto and that the monodromy representation p is parabolic and non-
elementary.
Then the two following equivalent assertions are satisfied.
(1)  For almost every Brownian path w starting from xo, D(w(t)) does not have any limit
when t goes to oo.
(2)  For almost every Brownian path w starting from zg, the map h can be analytically
continued along w ([0, oo[).

The equivalence of the two assertions is a direct consequence of the conformal
invariance of the Brownian motion. In order to prove the first assertion, we will use the
discretization procedure of Furstensberg—Lyons—Sullivan. In our context, this procedure
associates a sequence X,(w) of elements of m1(X) to every Brownian path w in s,
which corresponds, more or less, to the sequence of fundamental domains visited by
w. The sequence X, (w) turns out to be the realization of a right random walk, that
18, Xp41(®) = Xy () - Ynt1(w), the Y, (w) being independent and identically distributed.
Pushing X, (w) forward by p gives a right random walk Y, (w) in p (1 (X)) < PSL(2, C).
Random walks in such matrix groups have been widely studied. A classical result of the
theory is the following. If the support of the measure p defining the random walk Y, is
non-elementary and if v is a -stationary measure on CP!, then, for almost every w, there
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exists z(w) € CP! such that
Yy(w)-v > Sz(w)- (2)
n—0o0

In view of this property, Theorem B is surprising because one could think at first glance
that this contraction property would imply that D(w(¢)) e Z(w).

In §6, we will give a new statement of the last theorem, including the case where D is not
onto. In this case, the opposite conclusion holds. For almost every Brownian path w starting
from xg, there is a point z(w) such that lim;_, o, D(@(#)) = z(w), which is equivalent to
the following: for almost every Brownian path w starting from zo, the map & cannot be
analytically continued along w ([0, oo[).

1.3.  The family of harmonic measures. At the beginning of this study, we did not think
that Theorem B was realistic. On the contrary, we expected to prove that, in both cases (D
onto and D not onto), the following would hold: for all x in f], for almost every Brownian
path w starting at x, there is a point z(w) such that lim;_, .c D(w(t)) = z(w). The existence
of such a point z(w) would allow us to associate to any projective structure on X a family
of measures (vy) .5 in P! in the following way: if P, is the Wiener measure on the set
2, of continuous paths starting at x, for any Borel set A in P!, we would have defined

Vx(A) =Py (w € Q4 such that z(w) € A).

Although D(w(t)) does not converge when ¢ goes to oo (in the case where D is onto)
in the classical sense, D(w(t)) converges almost surely in the Cesaro sense. This gives the
following theorem.

THEOREM C. Let D: ¥ — CP! and p : (X)) — PSL(2, C) be a couple developing
map-monodromy representation associated with a branched complex projective structure
of parabolic type on a hyperbolic Riemann surface % of finite type. Then, for every x in
the universal cover S and for almost every Brownian path o starting from x, there exists

z(w) € CP' such that
1

t
" /0 $D@(s) " ds =2 bz)-

Remark 1.4.

e The limit point z(w) in Theorem C is nothing but the attractive point z(w) of the
random walk p (X, (w)) defined above in (2). Equivalently, z(w) is the projectivization
of Oseledets’ contracting direction of the cocycle p (X, (w))~ L. Hence, the limit point
Z(w) does not depend on the developing map D but it only depends on the monodromy
representation p.

e The monodromy representation of a projective structure of parabolic type is always
non-elementary (see [DD, p. 3] and the references therein).

Then, to any complex projective structure on X satisfying the hypothesis of the previous
theorem, one can associate a family (vy), <5 of harmonic measures on CP!: it is the
distribution law of the point z(w) (given by the previous theorem) for a Brownian path
starting at x. This family of measures gives interesting information about the projective
structure. It has been recently studied by Deroin and Dujardin in [DD]. In a recent work
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in collaboration with Alvarez [AH], we prove the following. For all x € 3, the image
of a generic geodesic ray starting at x by the developing map has a limit in CP!. The
distribution law of this limit point (with respect to the angular measure at x for the Poincaré
metric) is a measure (, which is proved to be equal to vy.

1.4. Organization of the paper. First, §2 is devoted to the basic definitions and
examples concerning branched projective structures. Then §3 deals with generalities about
analytic continuation of holomorphic maps. Section 4, where we prove a contraction
property for random walks in PSL(2, C), and §5, where we explain the discretization
procedure of Furstenberg—Lyons—Sullivan, provide the necessary background for the proof
of Theorem B in §6. In §7, we prove Theorem A and, finally, in §8, we prove Theorem C.

2. Projective structures

This section gives basic concepts about complex projective structures which will be useful
in the subsequent work. For further insight into this notion, we refer the reader to the
survey of Dumas [Du].

Definition 2.1. Let ¥ be a Riemann surface. A branched projective structure on X is
a maximal atlas (¢; : U; — CPY), where the U; are open sets in X and the ¢; are non-
constant holomorphic maps on U; such that, on the intersection of two domains U; N U,
the relation ¢; = y;; o ¢; holds for some Mdbius transformation y;; (i.e. for some element
of PSL(2, C)).

Let ¢; : Ui — V; be a chart of such an atlas. If U; is another chart such that U; N
U;j # 0, then the map y;; o ¢; : U; — CP! is equal to ¢ on U; N U, and allows us to
continue ¢; to U;. Continuing in this way, we obtain a globally defined holomorphic map
whose domain of definition is the universal covering space ¥. This map, denoted by D :
¥ — CP! is called a developing map. D is defined up to a post-composition by a Mdbius
transformation.

Associated with this, we can define a morphism p : 7 (X) — PSL(2, C) called a
monodromy representation which satisfies the equivariance relation

forallx € ¥ foralle € 11 (E), Dl -x) = p(a) - D(x).

The group I' := p(m1(X)) is called a monodromy group of the branched projective
structure. As the developing map D is defined up to a post-composition by a Mdbius
transformation, I' is defined up to a conjugacy by this transformation.

In this paper, we will consider Riemann surfaces of finite type: that is, compact
Riemann surfaces with a finite number of points deleted. Our Theorems B and C,
concerning projective structures, both assume that the monodromy representation is
non-elementary. Theorem B assumes that the monodromy representation is parabolic
and Theorem C assumes that the projective structure is parabolic (which is a stronger
condition). We will now recall the definitions of these notions.
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Definition 2.2.

e A representation p : w1 (X) — PSL(2, C) is said to be parabolic if the monodomy is
parabolic around each puncture (i.e. it is conjugated to the group generated by the
transformation z — z + 1).

e A branched projective structure on a Riemann surface of finite type is said to
be parabolic if, for any puncture p, there is a neighbourhood V, of p and a
biholomorphism ¢ : D(0, e 2y — {0} —> V), such that some developing map satisfies
Do¢p(z) =(1/Qim))logz (in this definition, the developing must be seen as a
multivalued holomorphic map from X to PSL(2, C)).

e A subgroup I' of PSL(2, C) is said to be elementary if there exists a finite set in CP!
which is globally invariant by the action of I" or if it is conjugate to a subgroup of the
projective special unitary group PSU(2, C). A representation p : w1 (X) — PSL(2, C)
is said to be elementary if p (71 (X)) is elementary.

Remark 2.3.

e If the monodromy representation is non-elementary, then the Riemann surface is
necessarily hyperbolic. Indeed, The monodromy group of a branched projective
structure on the sphere is trivial (since 71 (CP!) is trivial) and the monodromy group
of a branched projective structure on a parabolic Riemann surface ¥ is abelian (since
m1(X2) is).

e At the universal covering level, the parabolicity of a projective structure at a puncture
p implies that the developing map in any connected component of the preimage of
V) is holomorphically conjugated to the inclusion map. More precisely, consider the
universal covering map ¢ :Hs; ={Imz > 1} — D(0, e 2y — {0}, T > eH7T, Let
‘H, be a connected component of proj~! (Vp), where proj : ¥ — ¥ is the universal
covering map. If ¢ : D(0, e~ 27) — {0} — V, satisfies D o ¢ (z) = (1/2im) log z, then,
lifting ¢ by g and proj, one gets a biholomorphism ¢ : Hs1 — H, satisfying D o
(l;(l') = 1. Moreover, in [AH] the following lemma is proved.

LEMMA 2.4. ¢ is bi-Lipschitz for the distances associated to the hyperbolic metrics
inHs1 and in Hp.

e IfD(z) = (1/2im) log z in a coordinate z around a puncture, then D(e*7z) = D(2) +
1. So the parabolicity of the projective structure implies the parabolicity of the
monodromy representation. But, in general, the converse is false. Indeed, on the
puncture disc, the projective structure given by D, (z) = (1/2im) log z + 1/7" has a
parabolic monodromy representation (D, (¢*” z) = D, (z) + 1) but it is not parabolic
for n € N* (to see this, one can check, for example, that D, (z) does not have limit
when z goes to zero).

Examples 2.5.

(1) Let X be a hyperbolic Riemann surface. The universal covering space of ¥ is the
upper half-plane H and £ = H/ I, where I' is a subgroup of PSL(2, R) whose action
on H is free and properly discontinuous. The couple (D, p) = (i : H— CP!', i:
I' — PSI(2, C)) (where i is the inclusion map) defines a projective structure on ¥
called the uniformizing projective structure of X.
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(2) Let I be a Kleinian group (i.e. a discrete subgroup of PSL(2, C)) such that the set
of discontinuity ©2(I") € CP! is not vacuous. The quotient Q(I')/ " is a Riemann
surface which can be endowed with a projective structure in the following way.
We cover Q(I")/I" by open sets U; small enough and we choose local inverses s;
of the projection p: Q(I"') - Q(I")/ T defined on U;. The s; : U; — Q(I") C CP!
define an atlas of X whose transition functions are elements of I' (i.e. M&bius
transformations). Note that, by Ahlfors’ finiteness theorem [Ah], the Riemann
surface 2(I")/ I is of finite type and the projective structure is parabolic.

(3) In the two previous examples, the developing map is not onto. Starting with the
uniformizing projective structure of X, as in example (1), there is a surgery operation
introduced by Heijal [He], called grafting, that produces new projective structures
having the same monodromy representation but such that the new developing map is
onto.

3. Analytic continuation
Recall that one of the goals of this paper is to show that, with some good assumptions
on the projective structure, any local inverse / of the developing map can be analytically
continued along a generic Brownian path. In this part, following the paper [CDFG], we
show that, however, there are many paths along which % cannot be analytically continued.
Let us start with some basic definitions about analytic continuation of holomorphic maps.
Let Cp and C be two Riemann surfaces and a germ of holomorphic map 4 : (Co, pg) —
(C1, p1). Let 7: [0, t] > Cp be a continuous path such that t(0) = pg. We say that t
is covered by the sequence of open discs D1, ..., D, if there is a sequence of times
O=f9o<ty<---<ty,=t such that T([#, fx+1]) C Dx4+1- We say that h can be
analytically continued along t ([0, t]) if there is a sequence of discs Dy, . .., D, covering
7, and holomorphic maps f; : Dy — C1, such that the germ of f; in pg is & and such that
forallk e {1,...,n — 1}, we have fy = fx4+1 on Dg N Dy41.

Definition 3.1. A point g € Cy is called a singularity for % if there is a continuous path
T :[0, 1] = Cp such that:

(1) ©(0) = po and 7(1) =g;

(2) forall € > 0, h can be analytically continued along ([0, 1 — €]); and

(3) & cannot be analytically continued along 7 ([0, 1]).

The set of singularities could be, in principle, any subset of Cy. If it is the whole Cy, we
say that i has full singular set.

There may also exist an open set D C Cp containing po such that, for any path
7:[0, 1] - Cop with 7(0) = pg, T(1) € 9D and t([0, I[) C D, h can be analytically
continued along 7 ([0, 1 — €]) but not along 7 ([0, 1]). In the case where d D is a topological
disc, we say that & has a natural boundary for analytic continuation.

PROPOSITION 3.2. [CDFG] Let X be a hyperbolic Riemann surface endowed with a

branched projective structure. Let D be a developing map and h be a germ of D™

(1) If the projective structure is the one given by uniformization, then h has a natural
boundary for analytic continuation.

(2)  If the monodromy group is dense in PSL(2, C), then h has full singular set.
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Proof. For a complete proof, see [CDFG]. We will now state some of the ideas contained
in this proof because we think it could be helpful for the comprehension of the proof of
Theorem B.

(1) In this case, the developing map is the inclusion i : H < CP'. Then dH c CP! is a
natural boundary for analytic continuation of /.

(2) Let i be a germ of D! at zp € CP! and po = h(zp). The proof is based on the
following lemma.

LEMMA 3.3. [CDFG] For all z € CP!, there is a finite set A C w1(X) and an infinite
sequence (otn)neN+ of elements of A which have the following properties. Denoting A, =
a1y - - - oy and Ag = id:

(a) the diameter of the ball

1
B, = {w € CP! such that |(p(An)) (w)| = 2_"}
converges to zero exponentially fast when n tends to infinity;
() forallneN, p(A,)(CP! — B,) C D(z, cst/2"); and
(¢) foralln €N, neither zo nor p(oty)(z0) belong to B,_1.

In this lemma (the proof of which can be found in [CDFG]), CP! is endowed with
the standard spherical metric. In any of the two charts, this metric is written as |ds| =
|dz|/(1 + |z|%). If y is a Mobius transformation, y’ is the derivative of y and |y’(z)| is
the spherical norm in z. If z € CP! and « € R, then D(z, «) is the spherical disc of radius
o centred at z. We now prove that the previous lemma implies the following proposition.
With properties (a) and (c) of the previous lemma, one can construct for all n € N, a C*®
path ¢, : [0, 1] — £ from pg to a,(po), whose length is bounded by a constant that is
independent of n and such that, for n big enough, D o ¢, does not meet B,,_;. Then we
define the path ¢ : [0, co[— 3 as the infinite concatenation of paths a, := A,,_1¢, (from
Ap—_1(po) to A, (po)). The p-equivariance gives

Doa,=p(A,—1)oDocy.

As Do ¢, does not meet B,_1, we deduce, from property (a) of the previous lemma,
that the length of the path D o g, converges exponentially fast to zero and so D o c¢(t)
converges, when ¢ goes to infinity, toward a point in CP'. Using property (b) of the
previous lemma, this point is necessarily z (because D o a, C D(z, cst/2"_1)). So z is
a singularity for analytic continuation of A. O

4. Random walks
In this section, after explaining some basic facts about random walks and stationary
measures, we prove Proposition 4.4, which is the key of the proof of Theorems B and C.
In this part, I is a subgroup of PSL(2, C), finitely generated, and w is a probability
measure on I'. Also, supp(n) is the support of w and (supp(w)) is the group generated
by supp(u). Define Q@ =TN" and P= V", The coordinate maps h; : 2 — I' are P-
independent and identically distributed with law w. This part deals with the statistical
behaviour of the action on CP! of the right random walk in ' with law u: X, (0) =
hi(@) - - - hy(w).
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The action of I" on CP! gives an action of T on the set P(CP') of Borel probability
measures on CP'. If y € I", v € P(CP') and A is a Borel set in CPP!, this action is defined
by ¥ - v(A) =v(y~'(A)).

We also define ™" := % u * - - - % . The measure u*" on I is the push-forward of
the product measure u® onT" bythemapI' x --- xI' =T, (y1, ..., V)= Y1 Vn.
The law of X, is *". If v € P(CP'), we also define the measure 11 * v as the push-forward
on CP! of the product measure on I' x CP! by the map I' x CP! — CP', (y, x) > y - x.
So, if A is a Borel set in CP!,

pxv(A) =" u(y)vly = (A)).

yel’

Definition 4.1. The measure v € P(CP') is said to be pu-stationary if u % v = v, which
means that for any Borel set A in CP!,

D uywy T (A) = v(A).

yell

The following results are classical.

THEOREM 4.2. (Furstenberg)

(1)  There always exists a ju-stationary measure on CP! [Fur].

(2) Let v be a p-stationary measure on CP'. Then, for almost every w € Q, there is a
measure A(w) € P(CPY) such that the sequence of probability measures X, (w) - v
converges weakly towards A(w) [Fur2].

(3) If (supp(u)) is not an elementary group. Then, for almost every w € 2, there is
z2(w) € CP! such that »(w) = 87 (w) (Dirac in z(w)) [Fur2].

(4)  If (supp(w)) is not an elementary group, then any ji-stationary measure on CP! is
non-atomic [Wo.

4.1. The Lyapunov exponent. The positivity of the Lyapunov exponent is a central
result in the theory of random walks and is one of the key points of the proofs of
Theorems B and C.

THEOREM 4.3. (Furstenberg) If

() frloglylldu(y) < 400 and

(2) (supp(w)) is not an elementary group,

then there exists A > 0 such that P-almost surely and

1
- log | X, | — 2.

where A is called the Lyapunov exponent of the random walk. The fact that (1/n) log || X, ||
converges almost surely to A € [0, oo[ is a direct consequence of Kingman’s subadditive
ergodic theorem and requires the first hypothesis of the theorem ( fr log lyll du(y) <
400). The fact that A > 0O requires the second hypothesis and was first proved by
Furstenberg [Fur, Theorem 8.6] (see also [BLa]).
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4.2. A corollary of the positivity of the Lyapunov exponent. ~ We work with the distance
induced by the Fubini—Study metric on CP!,

52 dx? +dy?
=
(1+x2+y2)2

and we denote the closed disc centred in x with radius o by D(x, o) and its complementary
set by (D(x, «))¢. As a rather direct consequence of Theorem 4.3, we get the following
proposition (see [Hu] for a proof).

PROPOSITION 4.4. If

() frlogllylldu(y) < +oc and

(2)  (supp(w)) is not an elementary group,

then there are constants 0 < A’ < A" such that, for P-almost every w € Q, there is N(w)
such that, for all n > N(w), there are y,(w), zn(w) € CP! such that

(1) Xa(@)(D(yn(@), e *™)°) C D(za(@), e*™) and

) Xa(@)(D(n(@), e72'M) C (D(za(®), $))°-

Remark 4.5.

e Almost surely, the sequence (z,(w)), defined in the previous Proposition 4.4,
converges to the point z(w), defined in Theorem 4.2(3). Indeed, let o be an
accumulation point of the sequence (z,) that is different from z. Let (n;);cN such
that lim; , oo z,,; = . Theorem 4.2 gives

Xn; - v(D(e, (d(z, @))/2)) = 8:(D(e, (d(z, @))/2)) =0.

We deduce, from Proposition 4.4, that v(D(yy,, e Mni )) — 1. Extracting a new time,
one can suppose that y,, — y € CP!. Then v({ v}) = 1, which contradicts the fact that
v is a non-atomic measure.

e The limit z(w) of the sequence (z,(w)) has also a dynamical interpretation: it is the
projectivization of Oseledets’ contracting direction of X, (w)~!. More precisely, when
applying Oseledets’ theorem to our situation (see [Ar]), we get, for almost every
w, a one-dimensional vector space F(w) in C2 (which depends measurably of w)
such that

1 A ifveC?— F(w)
lim — log | X, (w)™" - v]| = ’
A, 7, 108 1Xn (@) - v {—A if v e F(w) — {0, 0}.
The point z(w) € CP! is simply the projectivization of the vectorial space F(w) C C2.

5. Brownian motion and discretization

This part deals with the Brownian motion. Firstly, we recall the classical conformal
invariance property of the Brownian motion. Secondly, we include a detailed treatment
of the discretization procedure of Furstenberg—Lyons—Sullivan which is close, but not
identical, to that of Lyons and Sullivan (see [LS, BL]).
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5.1. Brownian motion and conformal invariance. Let (M, g) be a connected
Riemannian manifold with bounded geometry. The Brownian motion on (M, g) is the
diffusion process associated to the Laplace—Beltrami operator A. It is defined on a
probability space (€2, IP) and denoted by (B;);>0. We will make use of the following
classical result of Lévy [Le] which states that conformal maps are Brownian paths
preserving up to a change of timescale.

THEOREM 5.1. (Lévy) Let (S1, g1) and (S2, g2) be two connected, Riemannian surfaces
and f:(S1, g1) = (52, 82) be a conformal map. Let (B;):c[o,1[ be a Brownian motion
starting from a point by € S1, running up to a stopping time T. Then the process
(f(Bi)teo, 1 s a changed time Brownian motion. In other words, there exists a family of
strictly increasing functions o, : [0, T (w)[ —> [0, 4+00[ and a Brownian motion (B;)Szo
starting from f (bg) such that

foB=Boo.

Remarks 5.2.

(1)  f oB =B oo means that, for all ® € Q and for all ¢ € [0, T (w)[, we have f o
B (w) = B(;w(l)(a)).

(2) 1If | f/(z)| denotes the modulus of the derivative of f in z relative to the metrics g
and g7, then the timescale change is explicitly given by

t
0u(t) = /0 | £/ (Bu(w))|* du.

5.2. Discretization of the Brownian motion.  In the most general context, this procedure
associates a Markov chain in a discrete *-recurrent set X C M, with time homogeneous
transition probabilities, to the Brownian motion in a Riemannian manifold (M, g). Here
we explain the discretization in the case where M = ¥ =D is the universal covering
space of a hyperbolic Riemann surface X of finite type, and X = m1(X) - 0. We follow
the presentation of [KL].

Let ¥ be a hyperbolic Riemann surface of finite type. The fundamental group 771 (¥) of
¥ acts on ¥ (= D), the universal covering space of £, by isometry for the Poincaré metric
of the disc. For all X € m(X), we define Fx = X.D(0, §) and Vx = X.D(0, 8’), with
8 < §’. We also require that § and &' are small enough so that Fx N Vys = & for X # X'.
Let (R2x, P,) be the set of Brownian paths starting from x in D with the Wiener measure
associated to the Poincaré metric in the hyperbolic disc. Also |y, () Fx is arecurrent
set for the Brownian motion (because X is of finite type). Let X € 71(¥). For x € Fy,
consider efc) YX which is the exit measure of Vy for a Brownian motion starting from x. The
Harnack constant Cx of the couple (Fx, Vx) is defined by

aVy
dey

Cx = SUP{T(Z); x,yeFy,ze 8Vx},
dey'*

where (deg VX) / (def, VX) is the Radon-Nikodym derivative. Notice that, as elements of
1 (%) act isometrically on D, the Harnack constant of (Fy, Vx) does not depend on X €
1(X) (i.e. there is a constant C such that for all X € 7;(X), Cx = C). Hence, the family
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of couples (Fx, Vx)xer, (x) defines a system of Lyons—Sullivan (L-S) data in the sense of
Ballmann and Ledrappier [BL, p. 4].
If x € Viq and w € Q,, we define, recursively,

So(w) = inf{t > 0; w(t) ¢ Via}

and, forn > 1,

R(@) = inf{r = Sp-1(@); o) €| Fx},

Sn(@) =inf{r = Ru(@): o) ¢ VX}-
We also define X, (w) by

Xo(w) =Id and w(R,(w)) € Fx,(@ forn>1,
VX (@)

| [ desy Sne
kn(@) = = —220 (1(S, ())) ).
€ \de 8(V§"Ew)))
(R, (w

By definition of C and «,, note that 1/C 2 < Kkn <1.
Now we define (2 x [0, 11V, Py ® 1eb®N) = (2, P). Let
Ny - Q — N
(0, @) = (0, (@n)neN) =0 > Ni(®)
be the random variable defined, recursively, by
No(w) =0,

Ni(w, a) = inf{n > Ny_1(w, a); o < kp(w)}.
The following theorem is stated in [LS] in the cocompact case but it is observed in [K,
Proposition 4] that it is also valid in the general set-up.

THEOREM 5.3. [LS, Theorem 6] The distribution law of Xy, defines a probability
measure (L on 71 (X) which satisfies, for any Borel set A in D,

BXy, =15+ 3 Xn =Xk, 0(Sy) € A) = pxDu (e ' x2) - - px x0er of (A).
COROLLARY 5.4. [LS] (X, )keN is the realization of a right random walk in 71 (X) with
law w: in other words, (yn, =X ;,k]_l XN ken+ is a sequence of independent, identically
distributed random variables with law .

The following two propositions will be useful later.

PROPOSITION 5.5. [KL, Corollaire 3.4] There is a constant T > O such that almost surely
Sy, / k converges to T when k goes to infinity.

Note that there is a constant D such that, for all X € 7;(X) and for all z € 0 Fy, the
Green’s function Gy, (X - 0, z) = D. This is because the Green’s function of a hyperbolic
disc centred at zero is radial. Hence the L-S data (Fx, Vx)xen, (z) are balanced (see
definition in [BL, p. 9]). This gives the next proposition.

PROPOSITION 5.6. [BL, Theorem 3.2(b)] The measure w has full support and has a finite
first moment with respect to the distance d associated to the Poincaré metric in D: in other

words, fyem(z) d(y -0,0)du(y) < +oo.
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6. Proof of Theorem B

Actually, we are going to prove the following theorem which is a reformulation of
Theorem B including the case where D is not onto. In this theorem, the Brownian motion
in D (respectively, CP!) is the one associated to the hyperbolic metric (respectively, any
complete metric in its conformal class).

THEOREM 6.1. Let ¥ be a Riemann surface of finite type endowed with a branched
projective structure. Let D : ¥ — CP! be a developing map and p : m1(Z) — PSL(2, C)
be the monodromy representation associated to D. Assume that p is parabolic and non-
elementary. Let (xo, zo) be a couple of points in ¥ x CP! such that D(xo) = z0 and let h
be the germ ofD_1 such that h(zg) = xo.

First case: D is onto. Then the two following equivalent assertions are satisfied.

(1)  For almost every Brownian path w starting from xo, D(w(t)) does not have limit
when t goes to 0.

(2) For almost every Brownian path o starting from zg, h can be analytically continued
along w ([0, o).

Second case: D is not onto. Then the two following equivalent assertions are satisfied.

(1)  For almost every Brownian path w starting from xo, there is a point z(®) such that
lim;— 00 D(w(1)) = z2(w).

(2) For almost every Brownian path o starting from zo, h cannot be analytically
continued along w ([0, oo[).

Firstly, notice that, according to Remark 2.3, as the monodromy group I" := p (71 (X))
is non-elementary, ¥ is a hyperbolic Riemann surface. Notice also that in either of
the two cases (D onto and D not onto), the two conclusions are equivalent because of
the conformal invariance of the Brownian motion. More precisely, in the first case, if
(Bt)te[0,00[ 1S @ Brownian motion in 3, then (Do BO.—I(S))Ofsz is a Brownian motion
in CP! stopped at time T =lim;—. o (¢). If D o B; does not have limit when ¢ goes
to oo, then almost surely T = oco. Thus, almost surely, the germ & of a local inverse of
D can be analytically continued along the Brownian motion (defined for every positive
time) (D o B, (s))0§s§oo~ Conversely, if & can be analytically continued along a generic
Brownian path in CP!, then, almost surely, D o B; does not have limit when ¢ goes to
00. Otherwise, we would have T (w) < oo for w belonging to a set A with strictly positive
Wiener measure. Hence, for all w € A, the germ & could not be analytically continued
along the Brownian path (D o BO_(;l (x))OSSST(w% The proof of the equivalence of the two
assertions in the second case (i.e. in the case where D is not onto) is similar.

6.1. Proofin the case where D is onto.

The discretization.  In order to prove the theorem, we are going to use the discretization
procedure explained in the previous part and the contraction property 4.4 proved in §4. To
simplify the notation, we take xo =0 and w € Qp. If ® = (w, @) € Q, then the path w can
be written as an infinite concatenation of paths

w:ﬂo*wo*ﬂl*a)l*--~ s
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where ,30 = wHO»SNOl’ for k >0, wp = wHSNk’RNkH] and for k> 1, B = w“RNk’SNk]' Let
cx(t) = X;,kl ~wi(t — Sy,). The (ci)ren form a family of portions of Brownian paths
independent and identically distributed: the distribution law of their starting point is the
exit measure of Vig = D(0, §’) for a Brownian motion starting at zero and they are stopped
attime Ry, , — Sn,. So

a):ﬂo*XNOCO*,Bl *XNlcl*"' .
Because of the p-equivariance,

D(w) =D(po) * p(Xny)D(co) * D(B1) * p(Xn,)D(c1) * - - - .

Now we are going to push forward the right random walk Xy, by p in order to obtain a
right random walk in the monodromy group I' and then apply Proposition 4.4. For this, we
write (i = p,u (Where u is the probability measure in 771 (X) defined by the discretization
procedure of the previous part) and Yy, = o(Xy,). The process (Yn,)k>0 is a realization
of a right random walk in I with law . The parabolicity of the monodromy representation
implies the following (see [A, Theorem 3.4.2]) for a proof). There is a constant a
such that, for all « € m1(X), we have log(||p(«)]) <a -d(0, o - 0). We deduce, using
Proposition 5.6, that faenl(E) log(||p(a)|]) du(e) < +o00 and so fyer log(lly ) di(y) <
+00. Then the hypotheses of Proposition 4.4 are satisfied. Consequently, there are 0 <
A" < 2" such that, for P-almost every @ € S, there is N(®) such that, for all k > N(®),
there is yi (@), zx(®) € CP' such that:

(1) YN (DO, e¥6))¢) € D(zx, e7**); and
@) AN (DO, €20, 20) = 5.
Then the theorem follows from the next proposition.

PROPOSITION 6.2. For almost every o, there is a sequence (ky),eN converging to infinity
such that

D(cy,) N Dy, e )y £ @ and Dick,) N (D(yi,, e ) £ 2.
Proposition 6.2 implies Theorem 6.1. Indeed, by Proposition 4.4, the previous
proposition implies that, for an infinite number of values of k, the portion p (X y,)D(cy)

of the path D(w) visits D(zg, e_)‘,k) and D(zg, %)C, which proves that D(w(¢)) does not
have limit when ¢ goes to infinity.

The technical lemma. We still have to prove Proposition 6.2. For that purpose, let us
define
Ey = (D) N DOy, e %) # @) N {D(e) N (DO e+ # 2.
We need to prove that
E»(ﬂ U Ek> =1. (3)
n>0k>n

It turns out that there is a constant ¢ such that, for all k € N*, I?’(Ek) >c/k,
which implies that Zkzl P(Ey) = co. So, if the sequence (Ey)xeN Were a sequence of
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independent events, one could conclude that (3) is true using the Borel-Cantelli lemma.
Unfortunately, one can be convinced easily that the Ej are not independent: this is due to
the fact that the y; are not mutually independent. This observation makes the proof of (3)
more technical: instead of proving that P(Ey) > ¢ / k, we are going to prove the following
lemma.

LEMMA 6.3. There exist constants ¢ > 0 and Ny € N* such that, for all N > Ny and
k>N,

P(Ex | ES |, ..., ES) >

Eanll e

Lemma 6.3 implies Proposition 6.2.  Let us assume that Lemma 6.3 is proved. To prove
Proposition 6.2, it is enough to prove (3). So it is enough to prove that, for all N € N,
P(Noy ES) =0.Let N > Ny. Then

00 k
P(ﬂ E,g) :klggop(m E)
n=N n=N
Letk > N, ux =P(N_y ES) and o = P(ES|ES_, ..., ES). Then

Up = O - Ug—1

= Ok—1 " OEN+1 " UN

() ()

IA

k
c
= 1 (1-5)
n
n=N+1
k
n=N+1
k c
=exp| — —)-uy — 0.
p( Z n) Nk—)oo
n=N+1

So, for all N > N, I?’(ﬂflozN E¢) =0. And, if N < No, then (2 y E¢ C ﬂfliNO E¢.
So I@’(ﬂf’iN E¢) = 0, which finishes the proof of (3).

Proof of Lemma 6.3. The proof of this lemma will occupy the rest of this section. To do
it, we will need the following lemma.

LEMMA 6.4. There exists B > 0, r > 0, and No € N such that, for all y € CP!, there exists
x € D(0, r) such that, for all k > N,

D(x, B %) c DTN (D(y, e 'y).

Proof. D is onto, so there exists r >0 such that D(D(0, r)) = CP!. Let 1/8=
SUPp(0,2r) |D’|. Let Ny € N such that ﬂe_Z)‘//NO <r. Let ye CP! and let x € D(0, r)
such that D(x)=1y. Let k> Ny and x; € D(x, Be=2*"%). Then d(D(x), D(x1)) <
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SUPpy(p ge—2ky DI -d(x, x1).  As  D(x, Be=2"ky c D(0,2r), we deduce that
d(D(x), D(x1)) < 1/B - B - e 2"k = ¢=2"k which finishes the proof. 0

Let us notice that, for big enough k,
Ex ={D(ex) N D, ¢~ %) # ).

Indeed, for big enough k, the event D(cg) N (D (v, e_’vk))c # & is certain. To see this,
note that

{D(cx) N (D, e ¥ N £ 2y = {ex ND DG, e 75 £ 2} = 2.

Moreover, if D is a compact disc in D, then D_I(D(yk, e_}‘/k)) N D is a finite union of
topological discs whose diameters converge to zero when k goes to infinity, and the number
of these discs is bounded by the degree of D|p. So the sequence of continuous paths ¢
from 9 Viq to [ F, cannot, for big enough &, be included in D~Y(D(y, e_)‘/k)).

Let N € N big enough and k > N. Write Dy(®) = D~ Y (D(y(®), e‘Z)‘”k)). We are
going to prove the following lemma.

LEMMA 6.5.

B(Ec | Ef_y.--. ER) = inf  P{eon D(x, Be k) # o)),

X

where r and B are given in Lemma 6.4.

Proof. From the proof of Proposition 4.4, we see that, by construction, y; depends only
on the set X, ..., Xy, (i.e. it depends on the set yy,, . . ., yn,) and c; depends only on
X ;,kl XNiy1 = VNiyp- As the yy,; are mutually independent, we deduce that y; and ¢ are
independent. Thus

P(Ex | E{_,, ..., ES)
> inf PAenD (DG, e ) £ 2} a1 N D1 =2, ... ex N Dy =2))
yeCP
_ A -1 -2k
= inf P{cxND™ (D(y, e ) #2Y)
yeCP!
(this is because the event {cx_1 N Dyr_1 =9, ...,cy N Dy = 3} and the event {c; N

DY (D(y, e 2"%)) £ @} are independent)

> inf P({ex N D(x, e~ ') £ o))
xeD(0,r)

(this last inequality comes from Lemma 6.4)

= inf P{coND(x, B ) £ o
e (fco N D(x, Be ) # 2}
(because the paths ¢y are independent and identically distributed). O

So we still have to prove the following lemma.
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LEMMA 6.6. There is a constant ¢ such that, for big enough k,

inf P({commx pe k) £ o)) >

?V‘IQ

xeD

Proof. The proof of this fact is a little bit technical. So we start with the general idea.
We will prove that the value of infyep(o,r) I@’({co N D(x, ,36_2N/k) #* J}) is almost the
same as the probability that a Brownian path in C (with Euclidean metric) starting from
z= % would reach D (0, e %) before reaching d D(0, 1). Using Brownian invariance by the
exponential map, this probability is equal to the probability that a plane Brownian motion
starting from z = —log 2 would reach the line x = —k before reaching the line x = 0. As
the two canonical coordinates of a plane Brownian motion are one-dimensional Brownian
motions, the previous probability is equal to P_jo52(7T— < Tp) (the probability that a
Brownian motion in R starting from —log 2 would reach the point —k before reaching the
point zero). For all x € [—k; 0], the map f(x) =P, (T_x < Tp) is harmonic and satisfies
f(—=k)=1, f(0)=0. We deduce that f(x) = —x/k. Hence the desired probability is
f(—log2)=1log2/k.

Let us give a precise proof. Recall that Py is the Wiener measure of the Brownian motion
starting from y (Brownian motion associated to the Poincaré metric of the disc if y belongs
to the Poincaré disc and associated to the Euclidean metric if y belongs to C). Define P, :=
f Py dm(y), where m is the exit measure of Vig = D(0, 8") for a Brownian path starting
from zero. For a closed set A, and a Brownian path w, denote the reaching time of the set
A by Ta(w). Lete > 0 and x € D(0, r). Choose y € w1(%) such that F,, N D(x, €) =&
Then

xe% )P({co N D(x, Be %) £ o}

> P({co N D(x, B ") £ @y N {yn, = ¥)).

As the event {yy, = y} = {Xn, = y} contains the event {N; = 1} N {X| = y}, we deduce
that the previous probability is greater than

P({co N D(x, B2 *)y £ 2} N {X1 =y} N {N; = 1))

ZI@({C‘)“D("’ﬂe‘“/’%#@m{xl y}ﬂ{ CLD

C IED ({ D(x, ﬂL—ZA’/k) =< TUFO(} N {TFV =< TUFH})'

If k is big enough so that ﬂe‘”‘”k

quantity is

< €/2, then, by the strong Markov property, the last

1 .
Z P (Tp(x,es2) < TUF,) - )6351(1)56/2) Py(Tp . pe-2k) = TaD(x,6))
. inf PZ(TFV < TUF,J)~

z€0D(x,¢€)

As x € D(0, r), there exists a > 0 (which does not depend on x) such that

Pw(Tp(x.e2) <Tur,) - inf  P(Tp, <Tur,) > a. O
z€dD(x,€)
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LEMMA 6.7. There exists b > O (which does not depend on x) such that

forally € 8D<x, %) Py(Tp . pe-2ky < Top(x.) = %
Proof. For p € C, denote the disc with centre p and radius « in C for the Euclidean metric
by Deyc1(p, o). Lety € dD(x, €/2). There are constants ¢; > 0,0 < ¢z < 1 such that, for k
big enough, there is a biholomorphism W, which identifies:
o D(x, Be=?"*) and Deyar(0, cre*) := Dy (k);
e D(x,€/2) and Deycl (0, ¢2) := Do;
o D(x,€)and Degy(0, 1) := D3; and
e yandco.
By the conformal invariance of the Brownian motion

Py(Tp . pe-2ky < TaD(x.e)) = Py (Tpy ) = Tay)-

The exponential map sends:

e theline Aj(k) :={x = log(cle_”‘”k)} onto d D1 (k);

e theline Aj := {x =log(cz)} onto dD7; and

e theline A3z := {x =0} onto 3 Ds.

So, by the conformal invariance of the Brownian motion, there is a constant b such that,
for big enough %,

—log(ca) b

—_— —. O
20"k —log(cy) ~— k

Pe, (Tp, ) < Tops) = Progier) (Ta ) < Tay) =
So we found a constant ¢ = ab/C2 such that, for big enough k, infyep(o,r) }fp({co N
D(x, Be=2"%) £ &5}) > ¢/ k. This ends the proof of Lemma 6.3. O

This also completes the proof of the theorem in the case ‘D is onto’.

Remark 6.8. In Theorem B, we made the assumption that I is non-elementary (this
assumption was necessary to get the positivity of the Lyapounov exponent). Note that
the conclusion holds if I' is conjugate to a subgroup of PSU(2, C). Indeed, in this case,
there exists k1 > 0 such that, for almost every @ € 2 and for all n € N, the path D(c, (®))
contains two points at a spherical distance greater than kj. As a group conjugated to a
subgroup of PSU(2, C) quasi-preserves the spherical metric, and

there exists k» > O such that, for all y € I'
andforallz, z e CP', d(y -2,y -2) > ko - d(Z'2).

So, almost surely, for all n € N, the path D(w,) =Y, - D(c,) contains two points at a
distance greater than ki - kp. So, almost surely, D(w(t)) does not have limit when ¢ goes
to infinity.

6.2. Proof in the case where D is not onto.  Let (xg, zo) be a couple of points in ¥ x
CP! such that D(xg) = zo and let i be the germ of D~! satisfying h(z9) = xo. We are
going to prove that, for almost every Brownian path w starting from zg, the germ A cannot
be analytically continued along w ([0, col).
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Let U be the open set in CP! defined by U := D(X). Its complementary U€ is a closed
["-invariant set (infinite because I" is not elementary). As I is non-elementary, we are in
one of the following situations (see [S, Paragraph 1] for a proof):

(1) either I is dense in PSL(2, C);

(2) T isdiscrete; or

(3) replacing I" by a subgroup of index two, if necessary, I" is conjugate to a dense
subgroup of PSL(2, R).

Case (1) is impossible because I" leaves invariant the closed set U¢ # CP!. In case (2), T
is Kleinian. As the limit set A(I") is the smallest closed I-invariant set of CP!, A(I") C
U°. As T is non-elementary, a theorem of Myrberg [My] (see also [Do]) asserts that the
logarithmic capacity of A(I") is strictly positive. Hence A(I") (and so U€) is visited by
the Brownian motion in finite time, which implies that 4 cannot be analytically continued
along a generic Brownian path. In case (3), U¢ contains a Jordan curve. So U is also
visited by the Brownian motion.

7. Analytic continuation of holonomy germs of algebraic foliations

7.1. Riccati foliations and branched projective structures. Let (I, M, X, F) be a
Riccati foliation (see the definition in the introduction). Using the transversality of a
generic fibre with F, we can define a monodromy representation associated to such
foliations. Define {xy, . .., x,} as the points in X such that the fibre over x; is an invariant
line. Denote ¥ =X — {x, ..., x,}. Fix xg € X. Let @ : [0, 1] — X be a closed curve
in X based in xg. Let z € H_l(xo) := Fy,. There is a unique path & : [0, 1] — M lifting
o, belonging to the leaf through z and satisfying @(0) = z. The map z — ¢y (z) = a(1)
is a biholomorphism of Fy, that only depends on the homotopy class of . Then a local
trivialization of the fibre bundle around xy gives an identification Fy, = CP! and we obtain
a representation
p:m (2, xg) —> PSL(2, C)

called a monodromy representation of the foliation. Take any holomorphic section s : X —
M not invariant by the foliation (recall that such a section always exists; see Remark 1.3).
We can transport, by the foliation, the unique complex projective structure on Fy, (or
on any other non-invariant fibre). We obtain a branched complex projective structure on
S :=s(X¥) = X, whose monodromy representation is the monodromy representation of the
foliation (the branched points are the points of S where the foliation is tangential to S). By
definition, if p € § is not a branched point and if & : (Fy,, po) — (S, p) is a holonomy
germ of the foliation, then the analytic continuation of #~! defines a developing map of
the complex projective structure on S.

We have just explained how to pass from a Riccati foliation to a complex projective
structure. Conversely, starting from a parabolic branched complex projective structure on
a Riemann surface ¥ of finite type, we can obtain a Riccati foliation after suspending
the representation and compactifying with local models, as explained briefly in the
introduction (see also [DD] or [CDFG]).
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7.2. Proof of Theorem A. Ttem (1) is a direct application of Theorem B. Proof of item
(2) proceeds as follows. Let (s;);=0,1 be two sections of I1, S; =s;(X) and S; = s5;(X).
Let g; be a complete metric on Sj in its conformal class. Let & : (Sy, p1) — (So, po) be a
holonomy germ. We want to prove that 4 can be analytically continued along a Brownian
motion (B;);>0 (with respect to the metric g1), starting at pj. Firstly, using the strong
Markov property, one can assume that p; € §;. Moreover, (B;) does not visit the points
{x1, ..., xn}. Secondly, A can be written as h = Dgl o Dy, where, fori € {0, 1}, D; is a
developing map associated to the branched projective structure on S;. By the conformal
invariance of the Brownian motion, after time reparametrization, D; o B; is a Brownian
motion in CP! along which D, ! canbe analytically continued, by Item (1). This concludes
the proof.

8. Proof of Theorem C

Let ¥ be a hyperbolic Riemann surface of finite type. Let D: ¥ =D — CP' and p:
m1(X) — PSL(2, C) be a couple developing map-monodromy representation associated
with a branched complex projective structure on X. Assume that this structure is parabolic
and recall that, with this hypothesis, p is necessarily non-elementary. We need to prove
that, for almost every Brownian path w starting at 0 € I, there exists z(w) € CP! such that

1

1
;'/0 $D(w(s)) dS 2 z(w)-

As in the proof of the previous theorem, we are going to use the discretization procedure
of Furstenberg, Lyons and Sullivan. Nevertheless, the notation is slightly modified. If @ =
(w, o) € 2, then the infinite path w can be written as an infinite concatenation of paths

w:ﬂo*wo*w1*~-- ,

where Sy = @|[0,5y,] and, for k > 0, wx = oy
wy. Then

oyl
Sny - Snyy, 1- FOr k = 0, we define ¢ := Xy -

o= Po* Xnyyco* Xy cp%--- .
Using p-equivariance of D,
D(w) =D(Bo) * p(Xny)D(co) * p(Xn)D(cy) * - - - .

The sequence of random variables X y, is a realization of a right random walk in 771 (%)
with law @ and the sequence Yy, = p(Xy,) is a realization of a right random walk in
p (@1 (X)) with law i = p,u. Let yg (@) and z; (@) be the two sequences of random points
in CP! defined in Proposition 4.4. According to Remark 4.5, almost surely zx (©) — z(®).

In order to prove the theorem, it is enough to prove that, for P-almost every @ =
(w, a) € Q and for all € > 0,

lim l - leb{u € [0, t] such that D(w(u)) € D(z(®), €)} = 1. 4)

t—oo t
For k > 0, define
Ty (@) = leb{t € [Sn,, Sn,.,] such that D(cy(@)(1)) € D(yr(®), e‘“‘)}.

We get the following proposition.
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PROPOSITION 8.1. Almost surely limg_, oo Ty = 0.

Before proving this proposition, let us show why this implies the theorem. First, if we
assume that almost surely limy_, oo Ty = 0, then, almost surely,

n—1

o1
> =0 5
k=0
Now the fact that equality (5) implies (4) is a direct consequence of the following three
facts.
(1)  According to Proposition 5.5, there is a constant T such that, almost surely,
S
lim M — 7T,
n—oo n
(2) According to Remark 4.5, almost surely,
li =z.
Jim o=

(3) According to Proposition 4.4, almost surely,

p(Xn) (D, e ™)) € Dz, e*5).

8.1. Beginning of the proof of Proposition 8.1. Using Borel-Cantelli, it is enough to
prove that, for all € > 0, ]f”(Tk >e€)<2/ k*. LetK bea positive constant (to be determined

later) and define
Ar = {@ s.t. co(@) N D(0, K log(k))¢ # @}.

We are going to prove the following lemma.

LEMMA 8.2.

P(Ty > €) <P(Ax) + sup Po(zyx > e€),
yeCP!

where 7, ¢ = leb{t € [0, Tjp(0,k og k)] 5.t. D(@(1)) € D(y, e **)).

Proof. Let us define
Ury = leblt € [Sw;, Sniy, 1 8.t Diex(@)(1) € D(y, e X)),
Vi,y = leb{t € [Sny, Sn,]s.t. D(co(@) (1)) € D(y, ek
As explained in the proof of Theorem 6.1, cx and y; are independent. So

]fD(Tk >¢€) < sup I?’(Uk,y >€)
yeCP!

= sup P(Viy>e)
yeCP!

= sup (P({Viy > €} N Ap) + P({Viy, > €} N AD)
yeCP!

< P(Ap) + sup Po(tyx > e).
yeCP!

The last inequality is due to the fact that, for all y € CP!, {(Vk,y =€} N A,‘; C{tyx > €} x
[0; 11N, which implies that P({ Vi, > €} N A7) < Po(tyk > €). O
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Now we are going to bound the two terms of the right side of the inequality in
Lemma 8.2 by 1/k%. For the term P(A;), we have the following proposition.

PROPOSITION 8.3. There exists K such that for k big enough, P(Ay) < 1/k>.

Proof. In [DD2, Proposition 2.15], the authors prove that there is & > 0 such that
E[e*M]=M < oco.
Using Markov inequality, one deduces that
P[Sy, > 1] =P[e*M > '] < e ¥ E[e*M] = Me ™.
If w is a Brownian path, define

§i(w) = sup d(@(0), w(r)).

O<u<t
Let Cq > 0 satisfying «Cy > 2. Then
P(Ar) = P(Ax N {Sw, = C1 logk)}) +P(Ax N (S, = C1 log(k)))
< B(Sw, = C1 log(k)) + Po(Ec, tog) = K log(k)).
The first term of the right hand side satisfies

- 1
P(Sy, = Crlog(k)) = Me™C1 I8t < o,
for big enough k. In order to bound the second term, we will use the following estimate
(see [P, Paragraph 6] for a proof). There is ¢ > O such that, for all y € D and for all r > 2,

Pyi>r)< efcrz. Hence

Ey[ef1] = 1 +/ Py (&1 > u) du
u>0

<1 +/ ™ gy,
u>0

The last integral converges. Let a4 be the constant satisfying e =1 + fu>oe“"‘“2 du.
Denote the integral part of ¢ by [#]. Using successively the Markov inequality and the
strong Markov property of Brownian motion, gives

Po(& > r) < e "Ele¥]
lr]—1
fe_rE[exp(Z sup d(w(k),w(s))ﬂ

k=0 k<s<k+1
t
<e . <sup Ey[eg' ]> .
yeD
For t = C1 log(k) and r = K log(k), one gets
Po(€c, togty = K log(k)) < k™ - k™.
Consequently
- 1
P(Ag) < — + k KraaCr,
(Ak) = TR

Choose K big enough so that —K + a4C1 < —2. We get that, for k big enough, P(Ay) <
1/k2. O
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Up to now, we have fixed K to satisfy the previous proposition. In order to bound
the second term SUpccp! Po(ty x > €) of the inequality in Lemma 8.2, we will need the
following proposition.

PROPOSITION 8.4. There exist two positive constants o and B such that, for all y € CP!
and for k big enough, the intersection of D~ (D(y, e*'*)) with D(0, K log k) is included
in a union of at most k* discs with radius e =P,

Proof. Let us fix y € CP!. Let F be the Dirichlet fundamental domain associated to the
base point 0 € D given by

F={xeDst.Vyen(X),d0,x)<d(y-0,x)}.
Let D = F N D(0, K log k). First, note that
D(0, K logk) C U y - D. (6)
d(0,y-0)<2K log k

To see this, take z € D(0, K log k). There exists y € m1(X) such that z € y - F. We have
d(0, y_l -7)=d(y -0,2) <d(0,z) <Klogk. So z€y-D. Moreover, d(0, y -0) <
d©0,z2)+d(z,y-0)<2-d(0, z) <2K logk.

Second, the p-equivariance of D gives, for every y € m1(X2),

DDy e ) NyD=y - @ oy HDG. e ) N D).
A direct calculation gives

lo)I? = sup 1p(y~ 1 (2)I. 7
zeCP!

Indeed, if p(y~') = (¢ %), then

lo(y) - VI
o> = sup ————
vecr—o:0) VI

W eC2—{0;0} lo(y=1) - W2
|Z|2 + |w|2
= sup . .
(z,w)eC2—{0;0} laz + bw|* + |cz + dw]|
— sup 2> + 1
zeC laz + b2 + |cz +d|?
sup ! L+ |z
zeC lcz +d|2 1+ |:0(V_1)(Z)|2

sup [p(y ™1 @)I.
zeCP!

Moreover, as the monodromy representation is parabolic, we have already seen, at the
beginning of the proof of Theorem B, that there exists a constant a such that

log [lp(W)Il <a-d(O,y -0). ®)
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From equations (7) and (8), we deduce that if y € m1(X) is such that d(0, y - 0) <
2K log k, then

sup |p(y ™1 (2)] < kK,
zeCP!

which implies that
p(y D@, ey C D(p(yHy, K*E . e7Hhy,

If o is a constant such that 0 < @ < A/, then, for big enough %, krak . =Mk < e ik,
This implies that, for big enough k and y satisfying d(0, y - 0) < 2K logk,

D' D@y, e N NyDCy - (DTNDE, e ) N D) ©)
with § = p(y~1)y. To conclude, we will need the following lemma.

LEMMA 8.5. There exist constants N € N and B > 0 such that, for big enough k and for
every 5 € CP!, the set D~1(D (3, e=*1%)) N D is included in an union of at most N discs
with radius at most e~ P¥.

Before proving the lemma, let us finish the proof of Proposition 8.4. Using (9) and
the previous lemma, we get that, for all y satisfying d(0, y - 0) < 2K logk, the set
DY(D(y, e %)) Ny D is included in an union of at most N discs with radius at
most e P*. Now, noting that there is @ > 0 such that Card{y € m1(¥) s.t. (0, y - 0) <
2K log k} < k“ and using equation (6), we get the desired result. O

Proof of Lemma 8.5.  Recall that as the projective structure is parabolic, for any puncture
p in X, there is a neighbourhood V of p that satisfies the following. If H is the
connected component of proj~!' (V) which meets the fundamental domain F, then there
is a bi-Lipschitz biholomorphism ¢ : H>; — H such that some developing map satisfies
Do qS(r) = 7. Denote the set of all such components for each puncture by Hy, ..., H;.
Recall that D= F N D(0, K log k) and define Fy =D N (Uj H ;). We are going to
analyse the intersection of D! (D(y, e‘“’)) with the compact part Fy and with D — Fj
separately.

The compact part Fy.  Let us start with a heuristic argument. D’ has a finite number of
zeros a; in Fy. Let V; be a small neighbourhood of ;. |D’| is bounded away from zero on
Fo— U V;. So, if § € CP! and « is small, D~ (D (¥, «))(N Fo — U V;) is a finite union
of discs with radius of the order of «. For each i, in local coordinates (for V; and D(V;))
the map D writes: D(z) = 2. This implies that D~'(D($, «)) N V; is the union of at
most n; discs with radius at most /.

Now we will give a rigorous proof. Denote the e-neighbourhood of Fyy by N¢(Fp) =
{r e Ds.t. d(z, Fy) <€}. As D is a non-constant holomorphic map, there is a constant N
such that any y has at most N preimages by D in N, (Fp). Moreover, in [AH, Lemma 5.1],
we proved that there exists Cog > 0 such that, for any y € D(N¢(Fp)) and any z € Fp,

d(D(2), §) = Co I1 d(z, w).
D(w)=y,weNe(Fo)
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Let § € CPL. If § ¢ D(N.(Fp)), then, for big enough k, D~ (D5, e * )N Fy = 2.

Otherwise, y € D(N¢(Fp)). Then if N(y) denotes the number of preimages of y in N (Fp),
and if one takes z € D_l(D(i, e‘“‘)) N Fy, one gets

e > d(D(2), §) (10)

=C [ dew (11)

D(w)=y,weFy+e

N
zco( inf d(z,w)) . (12)
D(w)=y,weNe(Fp)

This implies that

i« . =Nk /N
,w) < .
z o

As there exists 8 such that, for big enough «, (e_}‘/k/Co)l/N < e Pk we get that z €
D(w, e~P*) for w a preimage of § by D in Fy + €.

inf
D(w)=y,weNe(Fp)

The non-compact part. We are going to analyse the intersection of the set
DD, e’)‘/k)) with each portion of horodisc D NH ;. Recall that, for each j, there
is a bi-Lipschitz biholomorphism é ;- {Im(z) > 1} — H; such that some developing
map satisfies D o é j(z) =2z (see Remark 2.3). As é ; is bi-Lipschitz (see Lemma 2.4),
it preserves the lengths modulo multiplications by constants. Hence, we can assume
that H; = {Im(z) > 1}, the developing map is the inclusion ¢ : {Im(z) > 1} — CP! and
D NHj = Dyyp(i, Klogk)N [—%, %] X [1, +o0o[. To evaluate the size of the preimage
of the intersection of a disc with spherical radius =% with D NH j» we just have to
compare the spherical metric dssp and the hyperbolic one dsyyp inside Dyyp (i, K log k) N
[—4, 21 % [1, +oo[. Thus

2 2

digy = FET 4

y
Furthermore, there is @ > 0 such that Dyyp (i, K log k) N [—%, %] X [1, +o0[C [—%, %] X
[1; k%], so that dspyp < (% + k%) - dsgph. This implies that a disc with spherical radius
e~ 1% js included in a disc with hyperbolic radius e 1% . (% + k%¥). There is 8 such that,
for k big enough, e~ . (% + k>*) < e~ Pk, This ends the proof of Lemma 8.5. O

8.2. End of the proof of Proposition 8.1.  Using the previous proposition, we are going
to give a bound for the second term of the right side of the inequality in Lemma 8.2:
namely, we are going to prove that, for all € > 0 and for k big enough,

1
sup Po(tyx > €) < . (13)
yeCP! k

Then a combination of Lemma 8.2, inequality (13) and Proposition 8.3 implies that P(Ty >
€) < 2/k?, which ends the proof of Proposition 8.1 and of the theorem.
The proof of equation (13) proceeds as follows. Fix y € [P and € > 0. We recall that

Ty, =leb{t € [0, Typ(o,k 10 k)] 8.t. D(w(1)) € D(y, ey
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and that, according to Proposition 8.4,
DN (D(y. &) () DO, K logk) c | ) Di.
iel
where D; are hyperbolic discs with radius e #% and Card(/) < k. So

1
Po(tyx =€) < < -Eolzy,k]
1
<~ Eoln],
iel

where tp, =leb{r € [0, oo[ s.t. w(t) € D;}. Let D; be such an hyperbolic disc with
hyperbolic radius e ~#*. Then

Eoltp,] = / G0, 2) d hyp(2),

i

where Gp (0, z) = —(1/m) log |z| is the Green’s function. In order to give an upper bound

of this integral, we distinguish two cases.

e Either D; C Deyc1(0, %)C and —log|z|] <log4 for every ze€ D;. Hence
fDi Gn(0, z) d hyp(z) < cst - Volnyp(D;) oSt e 2Pk,

o Or D C Deyer(0, §) and, for every z € D;, d hyp(z) = |dz|>/(1 — |z|%)? < 28 - |dz|.
In polar coordinates, z = re'? and |dz|> =r - dr - df. Hence

/ Gp(0, z) d hyp(z) <cst- / —log(r)r dr d6.
D.

i D

As —rlogr < e !on [0, 1], we get that

/ Gp(0, z) d hyp(z) < cst-/ dr dé

i Dl

< cst - e Pk,

The last line is due to the fact that the hyperbolic disc D; with radius e =A% is also a
Euclidean disc with radius less than e =A%
So, for k big enough, any hyperbolic disc D; with radius e #¥ satisfies Eoltp;] <
cst-e Pk So
1 1
- Z]EO[TDi] <cst-Card(l) - e P* <cst- k¥ - e Pk < 2
€
iel

for big enough k.
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