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Granular systems are of a discrete nature. Nevertheless, it can be advantageous to describe
their dynamics by means of continuum mechanical methods. The numerical solution
of the corresponding hydrodynamic equations is, however, difficult. Therefore, previous
numerical simulations are typically geared towards highly specific systems and frequently
restricted to two dimensions or mild driving conditions. Here, we present the first robust
general simulation scheme for granular hydrodynamics in three dimensions which is not
bound to the above limitations. The performance of the simulation scheme is demonstrated
by means of three applications which have been proven as notoriously difficult for
numerical hydrodynamic description. Although, by construction, our numerical method
covers grain-inertia flows, the presented examples demonstrate that it produces reliable
results even in the jammed or high density limit.
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1. Introduction

When describing ordinary solids or fluids we are usually not interested in the behaviour
of the individual atoms. Similarly, we can consider granular flows on a level of detail
where their discrete nature, that is, the dynamics of the constituting grains, becomes
irrelevant. Typically, this approach can be valuable for systems where a large number of
particles are involved, such as sand dunes (e.g. Schwämmle & Herrmann 2003), planetary
rings (e.g. Borderies, Goldreich & Tremaine 1985) or geological flows (e.g. Pudasaini
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& Hutter 2007). In such cases, a macroscopic, continuum mechanical description of
granular systems is obvious, similar to the description of ordinary solids or fluids. Here,
the term macroscopic is not to be understood as large compared to atoms or molecules
but rather as large compared to the individual grains of the granulate. Instead of discrete
particle data, spatially and temporally coarse grained field quantities are used for the
macroscopic description of a granular system, such as the fields of density, flow velocity,
temperature, pressure, stress and strain. The evolution of the granular field variables
are then determined by a system of convective and diffusive equations, similar to the
Navier–Stokes equations for ordinary fluids (see e.g. Goldhirsch (2003), Brilliantov &
Pöschel (2010) and many references therein). Additionally, the granular field quantities
need to be related by constitutive relations and equations of state, which incorporate the
material properties of a specific granulate.

The numerical solution of the granular hydrodynamic equations is challenging. One
difficulty is due to the dependence of viscosity on density, that is, the divergence of
viscosity when density approaches random close packing: if explicit schemes are used
to solve the diffusive equation, stability analysis yields that the size of the time step (�t)
and the spatial resolution (�x) have to be chosen to fulfil �t < �x2/2D. In case of the
granular hydrodynamic equations, the diffusive constant D is proportional to viscosity
(see Appendix A). Consequently, the simulation freezes when density increases such that
viscosity diverges (Carrillo, Pöschel & Salueña 2008). Another serious challenge arises
due to the appearance of strong gradients and even discontinuities of the field variables,
which are a common characteristic of the granular systems (Goldhirsch 1998). Most driven
granular systems reveal shocks, e.g. pattern formation in horizontally (Krengel et al. 2013)
and vertically oscillated granular matter (Heil et al. 2004; Eshuis et al. 2007; Carrillo
et al. 2008) or material flow due to gravity (Savage 1979; Gray, Tai & Noelle 2003). Even
in the most simple case, the cooling dilute granular gas, self-organized shocks develop and
the gas becomes super-sonic (Goldhirsch & Zanetti 1993; Goldshtein & Shapiro 1995a,b,
1996a,b; Esipov & Pöschel 1997; Goldshtein, Alexeev & Shapiro 2003).

In this work we analyse the characteristics of the hydrodynamic equations of granular
flow and develop a numerical scheme capable of describing time-dependent granular flow
phenomena over the entire domain of density, from the dilute gas limit to the density
near random close packing where, in experiments, jamming phenomena are observed.
Although, by construction our numerical method covers grain-inertia flows, we will
demonstrate that our numerical technique remains stable and delivers reliable results even
in the presence of shocks and steep gradients due to strong external forcing and large
packing fraction. This is the first general numerical scheme for the three-dimensional
solution of the hydrodynamic equations of granular flow which allows us to study a
wider range of granular matter phenomena in the framework of a continuum mechanic
description. To achieve the three-dimensional representation, we derive the required
diffusion matrices in three dimensions (see (5.1)) which were not available so far. In
contrast to other approaches, we solve the mass, energy and momentum equations without
any simplifications. The widely used μ(I)-rheology is, e.g. only valid for incompressible
flows and does not take into account the energy equation, and, thus, the dissipative nature
of the interaction between the grains.

Although the hydrodynamic description of granular systems yields reliable results
in many cases, such as the ones quoted above, we do not wish to conceal that there
are fundamental reservations regarding the validity of a hydrodynamic description of
granular flows in general, put forward by Campbell, Goldhirsch and others (Campbell
1990; Goldhirsch & Zanetti 1993; Goldhirsch & Tan 1996; Goldhirsch 1999; Glasser
& Goldhirsch 2001; Goldhirsch 2008; Goldenberg et al. 2006; Wang & Zhang 2015).
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Goldhirsch (1999) put in words: ‘the notion of a hydrodynamic, or macroscopic description
of granular materials is based on unsafe grounds and it requires further study’, albeit
he admits that such a description can be successful in many cases (Goldhirsch 2001).
There are two arguments for his doubts: (a) there is no reference equilibrium state for
granular flows, and (b) the lack of scale separation between the dynamics of the particles
and the macroscopic scale of the dynamics of the hydrodynamic fields, being an essential
precondition for any continuum mechanical description. While there are techniques to treat
the former argument, the latter is fundamental and leads to serious consequences (Rossi
& Armanini 2016). The reason for the lack of scale separation may be traced back to the
fact that the smallest entities, the grains, of a granular flow are macroscopic bodies with
their own (dissipative) thermodynamic properties. This is different from ordinary gases
where stochastic inhomogeneities present on the atomic scale are smoothed out through
molecular interactions on a scale of the order of the mean free path, λ. This property
is the foundation of a meaningful definition of the hydrodynamic field quantities whose
dynamics is governed by transport of mass, momentum and energy. For ordinary gases
under typical conditions, λ ∼ 100 nm (68 nm for air under standard conditions) which
is by orders of magnitude smaller than the smallest hydrodynamic scale given by the
Kolmogorov scale which is of the order of 100 μm. The separation of the micromechanical
scale and the macroscopic scale limited by the Kolmogorov scale allows for the definition
of scale-independent hydrodynamic characteristics such as mass density, flow velocity,
temperature and others. The independence of a length scale justifies the assumption
of local homogeneous equilibrium in a macroscopically non-equilibrium system and,
therefore, the continuum formulation, e.g. on the level of the Navier–Stokes description.
A similar discussion can be had for the separation of time scales.

The situation is different for granular flows. Here, the variation of the macroscale
velocity within λ is γ λ (Tan & Goldhirsch 1998) (γ is the shear rate). Relating
this macroscale velocity to the microscale velocity, expressed through the granular
temperature, T , we obtain the ratio λγ /

√
T ∼ √

1 − ε2, where ε is the coefficient of
restitution (see, e.g. Brilliantov & Pöschel 2010). We see that, except for unphysically
elastic grains, ε � 1, the length scales of the micro- and macrodynamics are not well
separated, thus the definition of scale-independent variables is problematic. Similarly, the
parameters of granular flows, such as pressure and the transport coefficients, depend on
the scale of their definition and, thus, in experiments and numerical particle simulations on
the coarse graining scale used to obtain spatial and temporal averages. Similar arguments
show that the time scales lack also a clear separation, where the microscopic scale is given
by the mean free flight time and the macroscopic scale by the inverse shear rate.

The above arguments show that there are serious doubts about the mathematical
existence of a simple (local) continuum theory (Glasser & Goldhirsch 2001). Being less
pessimistic we note, however, that in many cases the hydrodynamic description agrees well
with experimental observations (see, e.g. Goldhirsch (2001, 2003) and many references
therein). As for the current paper, we do not wish to deepen this discussion. Instead, we
postulate the applicability of granular hydrodynamics, even if the theoretical conditions
are not yet completely clear (Goldhirsch 1999). For further discussion on this subject see,
e.g. Brilliantov & Pöschel (2010), Rossi & Armanini (2016), Puglisi (2015) and Li & Marin
(2016).

2. Hydrodynamic description of granular systems

On the continuum mechanical level, a granular system can be described by the fields of
particle number density, n(r, t), flow velocity, u(r, t), and granular temperature, T(r, t).
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In three dimensions, the particle number density is related to volume fraction φ, and
diameter of grains σ , via n = 6φ/(πσ 3). On Navier–Stokes level, their evolution obeys
the hydrodynamic equations (Jenkins & Savage 1983)

∂n
∂t

+ ∇ · (nu) = 0,

n
(

∂u
∂t

+ (u · ∇)u
)

= − 1
m

∇ · P + ng,

n
(

∂T
∂t

+ (u · ∇)T
)

= −∇ · q − P : ∇u − ζnT,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where P is the pressure tensor, q is the heat flux, g is an external body force per unit mass,
m is the mass of a single grain and ζ describes the rate of energy loss due to dissipative
interaction of particles. To Navier–Stokes order, the components of the pressure tensor are
given by Pij = pδij − τij, where p is the hydrostatic pressure and

τij = η(∂iuj + ∂jui − 2
3δij∇ · u) + γ δij∇ · u (2.2)

is the stress tensor. Here, η indicates the shear viscosity, γ the bulk viscosity,
δij is the Kronecker symbol and A : B ≡ trace(A · B) = AijBji, where we apply the
Einstein notation and sum over indices that appear twice. The granular heat flux is
given by

q = −κ∇T − μ∇n, (2.3)

with the coefficient of thermal conductivity κ and where μ relates heat transfer to the
gradient of density.

Equations (2.1)–(2.3) show that the hydrodynamic simulation of granular systems
involves two essential elements: first, a set of constitutive relations is needed which relates
the hydrostatic pressure, p, the viscosities, γ , and η, the thermal coefficients, κ and μ, and
the cooling coefficient, ζ , to the field variables and to material characteristics. Second, a
numerical scheme to solve the Navier–Stokes equations (2.1) is needed, which is stable
for all density and flow regimes a granulate can adopt. In the following, we will derive a
numerical scheme which fulfils the above requirements.

Regarding the constitutive relations which are required to solve (2.1), we apply the
constitutive relations by Garzó & Dufty (1999). These constitutive relations contain
an Enskog factor to correct for the finite volume of granular particles. We use the
finite volume correction derived by Torquato (1995). To our knowledge, this set of
constitutive relations yields the most accurate description currently available. Other
constitutive relations have been derived by Jenkins & Richman (1986) and Luding (2009),
where the former holds for nearly static systems while the latter is only available for
two-dimensional systems. In the dense limit close to random close packing there further
exist incompressible approaches which assume constant volume fraction in the dense
regime, thus, neglect small but important fluctuations of density due to irregular packings
of granular materials, see e.g. Silbert, Landry & Grest (2003), Jop, Forterre & Pouliquen
(2006) and Barker & Gray (2017). Moreover, the energy dissipation is not considered to
be a consequence of binary dissipative particle collisions, thus, it is not compatible with
kinetic theory. The latter point was improved by Barker & Gray (2017), who proposed a
model that smoothly combines theories for dense and dilute flows. While these approaches
may lead to excellent agreement with experiments and particle simulations, they do not
provide information on the packing fraction or on velocity fluctuations. It has been shown
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that the incompressible μ(I) approaches suffer from ill posedness at high and low inertial
numbers (Barker et al. 2015). Later, several well-posed viscous compressible theories were
developed, see e.g. Heyman et al. (2017) and Schaeffer et al. (2019), as well as non-local
theories that introduce further field variables to regularize the models, see e.g. Kamrin &
Koval (2012) and Kamrin & Henann (2015).

It is advantageous to rewrite the hydrodynamic equations (2.1) in terms of the
conservative variables density (n), momentum density (nu) and energy density (E =
1
2 mu2 + 3

2 T)

∂n
∂t

+ ∇ · (nu) = 0,

∂(nu)

∂t
+ ∇ ·

[
nu ⊗ u + p

m
I

]
= 1

m
∇ · τ + ng,

∂(nE)

∂t
+ ∇ · [(nE + p)u

] = ∇ · [τ · u − q
]+ mnu · g − 3

2
nζT,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

where I is the identity matrix and ⊗ is the tensor product. Albeit the sets (2.1) and (2.4)
are mathematically equivalent, it can be shown (Hou & LeFloch 1994; Toro 2013) that
the numerical solution of the non-conservative formulation (2.1) does not converge to the
exact solution in the presence of shock waves. Therefore, it is inevitable that we work with
the conservative formulation (2.4). The set of equations (2.4) resemble the corresponding
set for a compressible, thermally conducting viscous fluid. It is, however, problematic to
equate granular flows with compressible, thermally conducting viscous fluids due to the
energy source term −3

2ηξT . This term describes the inelastic interaction of the particles
of the granulate and renders standard computational fluid dynamics (CFD) techniques
inapplicable.

In order to rewrite the conservative formulation (2.4) in compact form, we introduce the
five-dimensional vector of conservative variables,

U =

⎛
⎜⎜⎜⎝

n
nux
nuy
nuz
nE

⎞
⎟⎟⎟⎠ , (2.5a)

where the lower index of a vector indicates the corresponding vector element, e.g. ux stands
for the x-component of u (note that only vectors with three spatial dimensions are printed
in bold). We further introduce the convective fluxes F c = (Fc

x, Fc
y, Fc

z ), where

Fc
i (U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nui

nuxui + δxi
p
m

nuyui + δyi
p
m

nuzui + δzi
p
m

(nE + p)ui

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; i ∈ {x, y, z}, (2.5b)
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the diffusive fluxes F ν = (Fν
x , Fν

y , Fν
z ), with

Fν
i (U, ∇U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
m

τxi

1
m

τyi

1
m

τzi

τijuj − qi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; i ∈ {x, y, z}, (2.5c)

and the source term

S(U) =

⎛
⎜⎜⎜⎝

0
ngx
ngy
ngz

mnu · g − 3
2ζnT

⎞
⎟⎟⎟⎠ . (2.5d)

With these definitions, the conservative formulation (2.4) assumes then the compact form

∂U
∂t

+ ∇ · F c(U) = ∇ · F ν(U, ∇U) + S(U), (2.6)

where ∇ · F ≡ ∂iFi and i ∈ {x, y, z}. With this definition, ∇ · F is a 5 × 1 column vector
like U and S(U).

3. Operator splitting

Equation (2.6) contains convective and diffusive contributions. In general, of course,
systems reveal both convective and diffusive effects simultaneously, and this is the case
for most granular systems of interest. Therefore, a universal numerical scheme must
solve the convective and the diffusive equations simultaneously. The contributions are,
however, of a very different nature: while diffusive processes affect the field variables
according to their gradients in all directions, convection propagates the fields only in the
flow direction (Versteeg & Malalasekera 2007). Therefore, the convective and diffusive
contributions behave mathematically very differently and require very different numerical
treatment, which causes difficulties when handled by the same numerical scheme (Holden
et al. 2010): numerical schemes that are robust and efficient for the convective equations
are frequently inappropriate for the diffusive contributions and vice versa. Therefore,
we separate the hydrodynamic equations in such a way that convective and diffusive
contributions can each be solved with individual, highly specialized numerical schemes.

The convective contribution to the hydrodynamic equations (2.4) reads

∂Uc

∂t
+ ∇ · F c(Uc) = 0; Uc(t) = U(t), (3.1a,b)

and the corresponding diffusive problem is given by

∂Uν

∂t
= ∇ · F ν(Uν, ∇Uν) + S(Uν); Uν(t) = U(t). (3.2a,b)

Assume now an exact solution operator Sc
�t to (3.1a,b) and an exact solution operator Sν

�t
to (3.2a,b) which propagate the solutions of (3.1a,b) and (3.2a,b) respectively by one time
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step, �t, such that

Uc(t + �t) = Sc
�tU

c(t), (3.3)

Uν(t + �t) = Sν
�tU

ν(t). (3.4)

To second order of accuracy, the solution of the combined convection–diffusion problem,
(2.6), is then given by

U(t + �t) ≈
[
Sc

�t/2Sν
�tSc

�t/2

]
U(t), (3.5)

according to the splitting scheme by Strang (1968). Regarding the numerical solution
of the hydrodynamic equations (2.4), the operators Sc

�t and Sν
�t can be represented by

specifically tailored numerical schemes which we will describe in the following sections.
For a detailed introduction to operator splitting schemes, see Holden et al. (2010).

4. Solution operator for the convection equation

To derive an appropriate solution operator of the convective problem, (3.1a,b), we apply
a finite volume method (FVM) where the simulation domain is decomposed into discrete
volumes �V . In contrast to frequently used finite difference discretization schemes, FVM
inherently ensure the conservation laws. The surface of the volume elements is denoted by
�S. In practice we use the cells of the Cartesian mesh as volume elements and decompose
the simulation domain into Nx × Ny × Nz discrete volumes �Vijk centred at (xi, yj, zk)

�Vijk = [
xi−1/2, xi+1/2

]× [
yj−1/2, yj+1/2

]× [
zk−1/2, zk+1/2

]
,

i ∈ {0, 1, . . . , Nx}, j ∈ {0, 1, . . . , Ny}, k ∈ {0, 1, . . . , Nz}.

}
(4.1)

The surface of the volume elements is denoted by �S. The key idea is now to transform
a partial differential equation into a set of algebraic equations by integrating the partial
differential equation over the finite volumes. The finite volume integration of (3.1a,b) reads∫

�V

dV
∂

∂t
U +

∫
�V

dV ∇ · F c = 0. (4.2)

Using the divergence theorem the volume integral can be replaced by an integral over the
surface of the cell,

�V
∂Ū
∂t

= −
∫
�S

dS F c · n, (4.3)

where we additionally exchanged integration and differentiation and defined the cell
average of the conservative variables Ū ≡ 1/�V

∫
�V dV U. The vector n denotes the unit

vector normal to the surface, pointing outward.
In the following we consider a cell indicated by C (central) and its neighbours indexed

by an element from the set N = {E, W, T, B, F, R}, indicating the neighbour in the ‘east’,
‘west’, ‘top’, ‘bottom’, ‘front’ or ‘rear’ direction, see figure 1. The corresponding cell
faces are identified by lower case letters from s = {e, w, t, b, f , r}, standing again for ‘east’,
‘west’, etc. According to this nomenclature, variables referring to the faces of the cell are
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EW

y

x

z B

F

R

T

t

r

e

w

f

b

C

Figure 1. A finite volume cell in three dimensions with Cartesian topology. The neighbouring cells are indexed
by capital letters E (east), W (west), T (top), B (bottom), F (front) and R (rear). The corresponding cell faces
are indicated by lower case letters.

indicated by subscript e, w, etc. and variables referring to the body of the neighbouring
cells by subscript E, W, etc. With these definitions, the surface integral in (4.3) expands to

∂ŪC

∂t
= − 1

�x

(
F̄c

x,e − F̄c
x,w
)− 1

�y

(
F̄c

y,t − F̄c
y,b

)
− 1

�z

(
F̄c

z,f − F̄c
z,r

)
, (4.4)

where F̄c
i,j with j ∈ s denoting the spatial average of the ith component of the convective

flux over the cell face j, at time t. For the east cell face, we have, for instance,

F̄c
x,e = 1

�y
1

�z

yj+1/2∫
yj−1/2

dy

zk+1/2∫
zk−1/2

dz Fx,e. (4.5)

In the subsequent derivations we restrict ourselves to F̄c
x,e, the remaining fluxes are treated

analogously.
We approximate the integrals in (4.5) by Gaussian quadrature with two sampling points

in each direction as illustrated in figure 2

F̄c
x,e ≈

2∑
α=1

2∑
β=1

Fc
x,e( yα, zβ, t) ωαωβ, (4.6)

where the arguments yα and zβ are the coordinates of the integration points on the east
surface and ωα, ωβ are the corresponding weights.

Equation (4.6) involves the values Fc
x,e of the convective flux at the quadrature points,

which, in turn, depend on the conservative field variables U according to (2.5b). Indeed,
we would need the values of U at the quadrature points, however, according to our finite
volume discretization, (4.4), only the cell averages of U are available. Therefore, we
interpolate the values of U at the quadrature points from cell averages of U of the cell
where the quadrature points are located and the values of U in a certain neighbourhood of
this cell. This interpolation is delicate as it determines the shock capturing abilities of the
numerical scheme.
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y

(y2, z1)

(y2, z2)

(y1, z1)

e

(y1, z2)x

z

Figure 2. Illustration of the coordinates (filled circles) used for Gaussian quadrature with respect to the east
cell face for the integration in (4.5).

Here we use a fifth-order weighted essentially non-oscillatory (WENO) scheme (Liu,
Osher & Chan 1994) that provides an acceptable balance of accuracy and efficiency and
delivers fifth-order accuracy in smooth regions of the field and third-order accuracy near
discontinuities. For the one-dimensional case, WENO is explained in detail by Liu et al.
(1994). For the extension to three-dimensional problems we additionally apply the method
of dimension-by-dimension interpolation by Titarev & Toro (2004).

The quadrature points on the east face of a cell centred at xi coincide with the
quadrature points on the west face of the neighbouring cell centred at xi+1. However,
the interpolation of U at the east face of a cell centred at xi (UL ≡ Ue(xi, yα, zβ)) is
different from the interpolated value at the west face of the neighbouring cell at xi+1
(UR ≡ Uw(xi+1, yα, zβ)), because a different stencil is considered for each interpolation.
This deviation leads to a violation of conservation laws because UL /= UR implies that
the flux leaving the cell centred at xi at its east face differs from the flux that enters the
neighbouring cell centred at xi+1 at its west face. Therefore, the difference between UL and
UR needs to be corrected. As shown e.g. in Toro (2013), the naïve approach of using the
average of UL and UR leads to instabilities. Therefore, the flux between two neighbouring
cells has to be derived from more elaborate upwind schemes that account for the direction
of the flow. Moreover, to suppress spurious oscillations near discontinuities, the upwind
scheme should assure monotonic flux. The multi-stage scheme by Titarev & Toro (2004)
fulfils both criteria. The key idea of this scheme is to predict the flux from the initial data
UL, UR and then to evolve UL and UR iteratively via the governing equation (3.1a,b). Here
we use the first-order centred (FORCE) flux as a predictor

U1/2 = 1
2

(
U(l)

L + U(l)
R

)
− 1

2
�t
�x

[
F
(

U(l)
R

)
− F

(
U(l)

L

)]

F(l)
FORCE = 1

4

{
F
(

U(l)
L

)
+ F

(
U(l)

R

)
+ 2F

(
U1/2

)
− �t

�x

(
U(l)

R − U(l)
L

)}
,

⎫⎪⎪⎬
⎪⎪⎭ (4.7)

where U(l)
R and U(l)

L denote the lth iterations of the vector of conservative variables

U(l+1)
L = U(l)

L − �t
�x

[
F(l)

FORCE − F
(

U(l)
L

)]
, (4.8)

U(l+1)
R = U(l)

R − �t
�x

[
F
(

U(l)
R

)
− F(l)

FORCE

]
. (4.9)
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We terminate the above iteration after k steps once the relative error of the predictor flux
FFORCE is less than one per cent and assume F = F(k)

FORCE.
We can now compute the right-hand side of (4.4). The numerical solution of the

convective equation (3.1a,b) corresponds to the solution of the ordinary differential
equation (4.4). For this purpose we apply the third-order total variation diminishing
Runge–Kutta method derived by Gottlieb & Shu (1998). The corresponding time iteration
reads

U(1) = U(t) + �tL (U(t))

U(2) = 3
4 U(t) + 1

4 U(1) + 1
4�tL

(
U(1)

)
U(t + �t) = 1

3 U(t) + 2
3 U(2) + 2

3�tL
(

U(2)
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.10)

where the operator L corresponds to the right-hand side of (4.4).

5. Solution operator of the diffusion equation

We rewrite the diffusive flux Fν
i (U, ∇U) in (3.1a,b) by means of diffusion matrices Dij

(i, j ∈ {x, y, z}),
Fν

i (U, ∇U) = Dix∂xU + Diy∂yU + Diz∂zU, (5.1)

where ∂xU = (∂xU1, ∂xU2, ∂xU3, ∂xU4, ∂xU5)
T and analogously for ∂yU and ∂zU. The

diffusion matrices Dij are derived in Appendix A. These matrices are not restricted to
the structured meshes used in this work, they can also be applied for e.g. triangular or
tetrahedral meshes. We define further ∇U ≡ (∂xU, ∂yU, ∂zU)T and

D =
⎛
⎝Dxx Dxy Dxz

Dyx Dyy Dyz
Dzx Dzy Dzz

⎞
⎠ , (5.2)

to write the diffusive flux in the form

F ν(U, ∇U) = D(U) · ∇U = Dij∂iU . (5.3)

Equation (3.2a,b) can then be written as

∂tU = ∇ · [D · ∇U
]+ S(U). (5.4)

Similar as for the convection equation, we map this partial differential equation to a set of
algebraic equations by means of the finite volume approach. The finite volume integration
of (5.4) reads ∫

�V

dV ∂tU =
∫
�S

dS n · [D · ∇U
]+

∫
�V

dV S(U), (5.5)

where we again used the divergence theorem, to replace the first integral on the right-hand
side over the volume element �V by an integral over its surface �S.

The diffusion matrices can be split into diagonal and non-diagonal (cross-diffusion)
contributions. For the case of a Cartesian mesh, Darwish & Moukalled (2009) have shown
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that only the diagonal terms, Dii, contribute to the solution. In this case, the surface integral
over the diffusive fluxes can be written as∫

�S

dS n · (D · ∇U) =
∑

i∈{x,y,z}
(Dii∂iU) �Si, (5.6)

where �Si is the surface element with the normal pointing in the i-direction, e.g. �Sx =
�y�z.

If we expand the sum on the right-hand side over all faces and use a central difference
approximation for the derivatives, the diffusive equation reads

dUC

dt
= Dxx(Ue)

UE − UC

�x2 − Dxx(Uw)
UC − UW

�x2 + Dyy(Ut)
UT − UC

�y2

− Dyy(Ub)
UC − UB

�y2 + Dzz(Uf )
UF − UC

�z2 − Dzz(Ur)
UC − UR

�z2 + S(UC). (5.7)

For convenience, we define

aE = Dxx(Ue)

�x2 , aW = Dxx(Uw)

�x2 , aT = Dyy(Ut)

�y2 ,

aB = Dyy(Ub)

�y2 , aF = Dzz(Uf )

�z2 , aR = Dzz(Ur)

�z2 ,

aC = −(aE + aW + aT + aB + aF + aR),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.8)

and rewrite (5.7) in compact form

dUC

dt
= aC UC + aE UE + aW UW + aT UT + aB UB + aF UF + aR UR + S(UC). (5.9)

The ordinary differential equation (ODE) in (5.9) is stiff in regions of high packing
fractions, where the kinetic coefficients such as, e.g. the viscosity diverge. This is
particularly relevant for driven systems where granulates frequently change in the course
of time between very rarefied and random close packing states. The application of explicit
methods is problematic for stiff ODEs as an impractically small time step may be required
to keep the numerical error bound. Explicit methods would, thus, significantly restrict the
range of applicability of the numerical scheme. Therefore, we use an implicit Runge–Kutta
method (Butcher 1964) to solve (5.9) for all grid cells. In general, a s-stage Runge–Kutta
scheme for the numerical solution of an initial value problem

dU
dt

= f (U) , U (t0) = U0, (5.10a,b)

reads

U(t0 + �t) ≈ U0 + �t
s∑

i=1

bif (ki) (5.11)

where

ki = U0 + �t
s∑

j=1

aij f
(
kj
)
, i = 1, 2, . . . , s (5.12)

denotes the sampling points where the right-hand side of the ODE (5.10a,b) is evaluated.
In general, (5.12) is a nonlinear system of equations which must be solved numerically to
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obtain the sampling points ki. To this end, we use the modified Newton iteration scheme
by Houbak, Nøsett & Thomsen (1985). A scheme due to (5.12) can be specified by the
coefficients aij and bi which can be represented in a Butcher (1964) table

a11 a12 · · · a1s
a21 a22 · · · a2s
...

...
...

as1 as2 · · · ass
b1 b2 · · · bs

(5.13)

We implemented a two stage Gauss–Legendre quadrature formula which provides
fourth-order accuracy. The coefficients of this scheme read

1
4

1
4

−
√

3
6

1
4

+
√

3
6

1
4

1
2

1
2

(5.14)

The efficiency of the algorithm can be improved significantly by switching between this
highly accurate scheme and a less accurate but more efficient scheme in regions where
(5.9) does not reveal stiff behaviour. Such a switching between a highly accurate but
numerically expensive algorithm and a numerically inexpensive implicit midpoint rule was
proposed by Nørsett & Thomsen (1986). The implicit midpoint rule delivers second-order
accuracy and its coefficients read in Butcher notation

1
2
1
2

(5.15)

6. Boundary conditions

Three types of boundary conditions are especially relevant for granular systems: periodic
boundaries, solid walls and oscillating walls. While the implementation of periodic
boundaries is straightforward, there are different ways to model solid boundaries. First,
one can extend the simulation domain by ghost cells. The hydrodynamic variables of
these ghost cells are determined from the corresponding values of their neighbouring cells
within the physical simulation domain whilst taking into account the mirror symmetry
with respect to the bounding wall (Carrillo et al. 2008). For instance, to model a slip
boundary condition with no mass flux through the wall, the normal component of the
velocity field is inverted while the tangential component of the velocity field, as well as
the energy field and the density field, are copied. Similarly, a no-slip boundary can be
achieved by additionally inverting the tangential component of the velocity field.

Another way to model boundary conditions is to determine the hydrodynamic variables
on the boundary explicitly (Blazek 2015). This approach reduces the numerical errors due
to the interpolation of the fluxes on the boundary surface. It is, thus, more consistent
with the applied finite volume method. To represent slip boundaries, only the normal
component of the velocity field is set to zero at the boundary, while for a no-slip boundary
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all components of the velocity field are set to zero at the boundary. For the no-slip solid
wall the convective and diffusive fluxes in (2.5b) and (2.5c), reduce to

Fc
i (U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

δxi
pw

m

δyi
pw

m

δzi
pw

m
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Fν
i (U, ∇U) =

⎛
⎜⎜⎜⎝

0
0
0
0

−qi

⎞
⎟⎟⎟⎠ , (6.1a,b)

where pw denotes the pressure at the wall which can be extrapolated from the neighbouring
cells within the simulation domain (Blazek 2015) and qi is the heat flux through the
boundary. In case of elastic walls, there is no energy loss and the heat flux qi vanishes
at the boundary. If the interaction between the boundary and the particles of the granulate
is dissipative, there is a finite heat flux through the boundary. This heat flux is determined
by the mean collision frequency, ν0, at which the particles collide with the boundary
(Brilliantov & Pöschel 2010) and by the coefficient of restitution εw which describes the
fraction of energy that is dissipated when a grain collides with the wall

qi = 1
2

muiν0
1 − ε2

w

As
, (6.2)

where As denotes the surface area of the boundary. Equation (6.2) is obtained by
multiplying the mean energy loss of a particle impacting the wall by the mean collision
frequency per surface area.

In many cases, granular systems are driven by mechanically vibrating walls with a
certain frequency and amplitude. The corresponding oscillating walls can be modelled
by rewriting the hydrodynamic equations (2.4) in the non-inertial frame of the vibrating
walls (Carrillo et al. 2008). The corresponding inertial forces act on all particles in the
system, irrespective of their position. Therefore, in case of driven systems, inertial forces
have to be added to the momentum equation in (2.4).

The interaction between granular matter and the system boundaries can be much more
complicated. The grains can, e.g. roll along the boundary surface. Additionally, the
shape and the surface roughness of the grains have great impact on the boundary–bulk
interaction. However, these grain-level details are not subject of a hydrodynamic model.

7. Numerical validation

Because of the complexity of the hydrodynamic equations, (2.4), a theoretical validation
of the presented numerical scheme is not feasible. To our knowledge, there are
no experimental results, in which temperature, velocity and density are measured
simultaneously, which precludes us from an experimental validation of our approach
as well. Therefore, we validate our hydrodynamic simulations against well-established
particle-based simulations of the corresponding granular system. For the validation we
consider the following scenarios:

(i) a granular gas which sediments under the action of gravity;
(ii) a bed of grains in a vertically shaken container in presence of gravity; and

(iii) the flow of granular material down an inclined pile.
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These set-ups are demanding, regarding a hydrodynamic simulation because they
involve extreme variations of the packing fraction, from dilute gas to random close
packing, and steep gradients in the hydrodynamic fields. For the particle-based reference
simulations we apply event driven molecular dynamics (EDMD) and the discrete element
method (DEM) (see, e.g. Pöschel & Schwager (2005), and many references therein). Both
methods describe the granular systems reliably on different levels of detail.

7.1. Sedimentation test
First, we consider the sedimentation of a homogeneous gas of 190 985 spherical particles
under the action of gravity. The particles are enclosed by a rectangular box of size 0.1 ×
0.1 × 0.1 m3. The walls of this box are modelled by solid elastic planes on the top and
floor and by periodic boundaries in the horizontal directions. The particles are of diameter
1 mm and of material mass density 2600 kg m−3. For the hydrodynamic simulations, the
domain is divided into 50 × 100 × 50 Cartesian grid cells and the time step 10−6 s is used.

An EDMD simulation is considered as the reference for this test. In EDMD
simulations, the particles are modelled ideally rigid. A collision between two ideally
rigid, smooth particles corresponds to an instantaneous transfer of momentum, that is,
to an instantaneous change of the particles’ velocities. Collisions are characterized by
the coefficient of restitution, ε relating the pre- and post-collisional values of the normal
components of the particles’ relative velocities at the point of contact. In our simulation
we assume ε = 0.9. Further details on event-driven molecular dynamics can be found e.g.
in Bannerman, Sargant & Lue (2011) and references therein.

To compare the results of the hydrodynamic simulations with the results of the
particle-based EDMD simulations, continuous hydrodynamic fields, such as density, flow
velocity and energy density, have been computed from the discrete particle data. For
the sedimentation test, the system is homogeneous in the horizontal direction while
gravity acts in the vertical direction, therefore, we can represent the fields as functions
of the vertical component (height). Figure 3 compares the conservative variables (density,
momentum density and energy density) as functions of the height (direction of gravity)
as obtained from the hydrodynamic simulations with those obtained from the reference
EDMD simulations. We see that the field of density is well described by the hydrodynamic
approach for all times and heights. For the fields of velocity and energy, the hydrodynamic
description and the particle-based reference simulation are in good agreement for times up
to approximately 100 ms. For later times, we still see qualitative agreement of the curves,
however, the values deviate moderately. Similar behaviour can be observed for the field
of temperature shown in figure 4. The numerical results are not affected by substantial
refinements of the spatial and temporal resolutions of the numerical scheme which
indicates the reliability of our numerical solution. We therefore attribute the deviations
to deficiencies of the underlying continuum mechanical model. The constitutive relations
provided by Garzó & Dufty (1999) and the applied equation of state are approximations
to the physics of granulates. As the applied constitutive relations are derived from kinetic
theory, they are only valid for dynamic systems. The deviations start to get significant when
part of the grains rest on the floor (t = 150 ms). Additionally, the hydrodynamic equations
we solve are approximated to first-order derivatives which may cause error when sharp
gradients in the hydrodynamic fields are present. To improve the accuracy, one should
apply hydrodynamic equations beyond the Navier–Stokes level and incorporate terms of
Burnett order and super-Burnett order (Chapman & Cowling 1939; Sela, Goldhirsch &
Noskowicz 1996; Sela & Goldhirsch 1998; Goldhirsch 1999, 2001; Jin & Slemrod 2001;
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Figure 3. Comparison of the conservative variables as functions of the height as obtained from the
hydrodynamic simulations (black line) and those obtained from the reference EDMD simulation (red circles).
The top row shows the density field, the middle row shows the vertical velocity times density and the bottom
row shows the energy density. Each column from left to right corresponds to an instant of time t = 50 ms,
t = 100 ms, t = 150 ms, respectively.

Goldhirsch 2008; Gupta 2012; Saha & Alam 2020). Despite the fully three-dimensional
simulations which have been applied, the present sedimentation test is effectively a
one-dimensional problem. However, to our knowledge, it is the first test case in which
all relevant variables (density, momentum and energy) as obtained from a hydrodynamic
simulation are compared with the corresponding results from the particle system.

7.2. Bouncing bed test
We consider granular particles under the action of gravity in a vertically shaken container.
This system exhibits various modes of behaviour. In an elaborate experimental study, this
rich behaviour was compiled to a phase diagram by Eshuis et al. (2007). For a quantitative
evaluation of our hydrodynamic simulations, we compare the hydrodynamical results with
those obtained from corresponding particle-based discrete element simulations, that is,
we solve Newton’s equation of motion for the translational and rotational motion of all N
grains.

When particles collide, they mutually deform each other, quantified by

ξ = max
(
0, Ri + Rj − rij

)
, (7.1)

where Ri and Rj are the radii of the particles and rij = |rij| is the absolute value of the
inter-centre relative vector rij = rj − ri. The deformation causes a repulsive interaction
force f which can be decomposed into a normal component f n in direction of en = rij/|rij|
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Figure 4. Comparison of the temperature field as a function of the height as obtained from the hydrodynamic
simulations (black line) and from the reference EDMD simulation (red circles), for different values of time
(t = 50 ms, t = 100 ms, t = 150 ms). Different from figure 3, the range of the abscissas is reduced 0.04 m as
all features of interest are contained in this smaller interval.

and a tangential component f t perpendicular to en

f = fn + ft (7.2)

f n = ( f · en)en ≡ fnen (7.3)

f t = f − f n ≡ ftet. (7.4)

For viscoelastic particles, the normal component reads (Brilliantov et al. 1996)

fn = ρelξ
3/2 − 3

2
Adisρelξ̇

√
ξ, (7.5)

where

ρel = 2Y
√

Reff

3(1 − ν2)
, (7.6)

where Y and ν denote Young’s modulus and Poisson’s ratio, respectively, and Reff =
RiRj/(Ri + Rj). The dissipative parameter Adis is a function of the material viscosity, see

Brilliantov et al. (1996). As the coefficient of restitution is a (known) function of the
interaction force (Schwager & Pöschel 1998a,b; Ramírez et al. 1999) and the interaction
velocity, the coefficient Adis can be determined provided the coefficient of restitution
for a particular collision rate is known (Müller & Pöschel 2011), for instance from an
experiment.

The tangential component of the interaction force causes a torque on the colliding
particles, which, in turn, alters their angular velocity. Here, we apply the model by Cundall
& Strack (1979) which mimics static and dynamic friction by means of an imaginary
spring (for an extended discussion see Pöschel & Schwager 2005; Schwager, Becker &
Pöschel 2008). The spring of initial length zero is created at time tc when the particles
touch. Its elongation is then

Z(t) =
∫ t

tc
vt

rel(t
′) dt′, (7.7)

where vt
rel ≡ et · [ṙij + en × (Riωi + Rjωj)] is the tangential component of the relative

velocity of the particles at the point of contact and ωi and ωj are the angular velocities
of particles i and j. The tangential component of the interaction force is then given by the
restoring force of the spring, limited by Coulomb’s law

ft = − sign(vt
rel) · min(|KZ| , μ| fn|). (7.8)

Here, μ denotes Coulomb’s coefficient of friction and K is the elastic constant of the
spring. In contrast to the normal force, the parameters of the tangential force, K and μ,

917 A33-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

29
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.291


A robust numerical method for granular hydrodynamics

cannot be determined from material bulk properties and geometry but they are mainly
determined by surface properties. In practice, they can be only determined by comparison
of the results of benchmark simulations and experimental results. For the bouncing bed
test, we consider a rectangular box with of size Lx × Ly × Lz = 100 × 100 × 10 mm3,
filled by 8560 particles of diameter 1 mm. The material parameters used in the simulation
read Y = 5 × 109 Pa, material density 2.6 g cm−3, ν = 0.3, Adis = 1.61 × 10−7 s, K =
0.347ρel

√
Reff and μ = 0.7. The particles are vertically vibrated in the presence of gravity

with the frequency 12 Hz and the amplitude 4 mm. For the interaction between particles
and the wall we assume the same parameters. The integration time step is 10−5 s.

To compare the results of the DEM simulation with the results of the corresponding
hydrodynamic simulations, the domain is divided into 20 × 100 × 4 Cartesian grid and
a time step of 1/12 × 10−5 s is used. We consider the time-dependent density field as
a function of the vertical coordinate, again averaged over the homogeneous horizontal
dimensions. We assume no-flux boundary conditions at the upper side of the simulation
domain near the free surface. Figure 5 shows the packing fraction as a function of
the distance from the bottom wall as obtained from the hydrodynamic simulations in
comparison with the results from the corresponding DEM simulation. The results of both
methods are in good quantitative agreement for all phases of the vibration cycle. Similar
results were obtained before by e.g. Bougie, Policht & Pearce (2012). There, however, mild
driving conditions are considered which lead to maximum volume fractions way below
0.3. In our study we apply driving parameters causing packing fractions larger than 0.5.
Due to the extreme conditions of the bouncing bed set-up (dynamic transitions between
densely packed and dilute regions) the temperature cannot be reliably obtained from
particle simulations. For high density where the granulate occurs in an almost crystalline
or random close packed state, the relative velocities of the grains obtained from particle
simulations are dominated by unavoidable numerical noise, which impedes a meaningful
evaluation of the granular temperature. For the dilute extreme, the number of particles in
these regions is almost zero; see, e.g. figure 5(b) for small height. Thus, in extremely dilute
regions, we cannot compute the value of granular temperature from particle simulation
data. Nevertheless, the temperature as obtained from granular hydrodynamics can be
computed also in the dilute and the densely packed regions, and this is shown in the bottom
raw of figure 5.

7.3. Flow on a pile with rough sidewalls
The development of general constitutive relations for the continuum description of
granular flows is still work in progress. The constitutive relations for the gas regime can
be derived from kinetic theory (see, e.g. Goldhirsch 2003) and for the solid regime from
soil mechanics (see, e.g. Nedderman 1992). A constitutive law for dense granular flow is
proposed by Jop et al. (2006), where the granular flow is described as incompressible with
a simple visco-plastic relation for viscosity. The law of Jop et al. (2006) is rate independent
to the extent that only the coefficient of friction depends on the shear rate. While the
constitutive law by Jop et al. (2006) leads to excellent agreement with experiments, it
provides no information about packing fraction and velocity fluctuations inside the bulk.

In this section, we consider glass beads of diameter σ = 1 mm, in a channel of length
226 cm and width w = 48σ , with rough sidewalls. The thickness of the flowing material,
h, is initialized to 22.5 mm. The channel is tilted by angle θ = 27◦. Figure 6 shows a sketch
of the set-up. To compare our results with the simulations by Silbert et al. (2003) and Jop
et al. (2006), we define the dimensionless flow rate Q� = Q/(σ 3/2g1/2), where Q is the
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Figure 5. (a–c) Snapshots from the hydrodynamic- and particle-based simulations. Each of the panels is
subdivided into an upper part showing the density field obtained from the hydrodynamic simulations, while the
lower part shows a snapshot of the DEM simulation. (d–f ) Field of packing fraction (density) as a function of
distance from bottom wall, as obtained from hydrodynamic simulations (red lines) in comparison with results
from DEM simulations (blue circles). (g–i) Granular temperature obtained from hydrodynamic simulations.
Each column corresponds to a certain phase of the oscillation cycle, 0.3 T (a,d,g), 0.6 T (b,e,h) and 0.9 T
(c, f,i), where T is the period of vibration. The coefficient of restitution was ε = 0.9.

z

y

Q

w

h
θ

xg

Figure 6. Schematic view of the granular material (dark grey) flowing down a pile between rough sidewalls.
The pile is tilted by the angle θ with respect to the horizon. Therefore, the material is driven by gravity resulting
in a flow in the x-direction.

flow rate per unit of width w, g is the gravitational acceleration and V� = V/(gσ)1/2 is the
dimensionless velocity in the x direction.

The model by Jop et al. (2006) describes dense granular flow as an incompressible fluid
(see discussion in § 2). Here, we solve the full Navier–Stokes equations (2.4) using the
constitutive relations from Garzó & Dufty (1999). We discretize the domain into a 80 ×
80 × 40 structured grid and use the time step 10−6 s for the time integration. The rough
sidewalls and the channel floor are considered as no-slip boundaries, as described in § 6.
We assume no-flux boundary conditions at the upper side of the simulation domain near
the free surface.

The first consequence of solving the full equations (2.4) is that the volume fraction is no
longer constant. Figure 7 shows the profile of the packing fraction along the y direction.
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Figure 7. Profile of the packing fraction, perpendicular to the direction of the flow (solid line). The coefficient
of restitution was ε = 0.9. The vertical axis is chosen such that y/σ = 0 is the height of a fixed plane near
the surface of fluctuating height. For comparison with the experiment, the symbols and dashed line show the
density profile measured for channel flow of glass beads of 1 mm diameter down a rough incline (width 48
mm, slope 27◦, layer thickness 26 mm), see figure 17 in Ancey (2001). We find good agreement between
the experimental and numerical density profiles. The different asymptotic densities (Φ for small y) may be
attributed to the fact that the experiment uses slightly polydisperse grains, whose density at random close
packing is larger than for monodisperse spheres.)

As expected, in the lower part of the flow, the material is more dense, while there is a
dilute gaseous region on the surface of the pile. The existence of this gaseous region is in
good agreement with the experiment performed by Forterre & Pouliquen (see, e.g. figure
1 in Forterre & Pouliquen 2008). For a more quantitative comparison, figure 7 shows
experimental results by Ancey (2001) for channel flow of glass beads of 1 mm diameter
down a rough incline (width 48 mm, slope 27◦, layer thickness 26 mm), see figure 17 in
Ancey (2001). We find good agreement between the experimental and numerical density
profiles. The different asymptotic density (Φ for small y) may be attributed to the fact that
the experiment uses slightly polydisperse grains (‘poorly sorted’, no interval given, see
table 1 in Ancey 2001). Note that the width of the numerically obtained profile in figure 7
extends to y ≈ 26 mm, which is larger than the initial layer width, h, given above. This
inflation can be explained by Reynolds dilatancy of the flowing sand. The initial height, h,
has been chosen such that the width of the stationary flow reaches approximately the same
extension as the experimental data.

The three-dimensional velocity profile resulting from the hydrodynamic simulation is
shown in figure 8. Due to the rough sidewalls and the rough base of the pile, the velocity
is lower close to these surfaces. In our simulation, the velocity profile decays slower as
compared to the simulations by Jop et al. (2006). The reason, therefore, is that the viscosity
is independent of pressure and only depends on temperature and filling fraction in our
constitutive relations. On the contrary, the viscosity depends on pressure in the constitutive
relations by Jop et al. (2006). As the pressure is higher at the bottom of the channel, the
viscosity diverges to infinity faster. As a result, lower velocities are observed close to the
bottom of the channel in Jop et al. (2006).

8. Summary

We presented a numerical scheme for the hydrodynamic simulation of granular systems in
three dimensions. To our knowledge, this is the first general three-dimensional simulation
algorithm for granular hydrodynamics which is neither restricted to certain dynamic states
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Figure 8. The three-dimensional velocity profile for a granulate flowing down an inclined pile between two
rough sidewalls shows that the maximum velocity is attained on the top surface of the granulate and on the
centreline between the two sidewalls. The vertical axis is chosen such that y/σ = 0 is the height of a fixed plane
near the surface of fluctuating height. Thus, at y/σ ≈ −50, the flow velocity almost ceases. The coefficient of
restitution was ε = 0.9.

of the granulate nor to special boundary conditions. Most importantly, unlike previous
methods used, e.g. in soil mechanics or rapid gas flows, our method is not restricted to a
certain range of density. While, by construction, our numerical method covers grain-inertia
flows, it was demonstrated that the algorithm is numerically robust for all values of packing
fraction, from dilute gas to random close packing and likewise also with respect to harsh
driving. However, one has to distinguish between the above-mentioned capabilities of the
numerical scheme used to solve the Navier–Stokes equations, on the one hand, and the
validity of the applied constitutive relations, on the other. The fundamental prerequisites
to successfully apply the presented algorithm are, of course, constitutive relations which
are valid over the whole range of densities and flow regimes. While massive advances have
been made in this direction over the past twenty years, this ultimate research objective is
still unreached.

Comparison of the presented numerical scheme against well-established particle-based
simulation techniques reveals two important points:

(i) There are situations where the hydrodynamic results are in very good qualitative and
quantitative agreement with the particle-based reference simulations. In these cases,
both simulation methods support one another and we can assume that both methods
are correct, including the underlying hydrodynamic model and the numerical scheme
presented here.

(ii) There are situations where we find qualitative agreement between the hydrodynamic
and particle simulations, however, non-negligible quantitative deviations between
the numerical data gained by hydrodynamics and particle mechanics. This, in turn,
may be due to three different arguments:
(a) The underlying hydrodynamic model is inadequate, that is, either the

constitutive equations or the equation of state are inappropriate for the
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investigated system. This is not surprising as all available constitutive relations
and equations of state are approximative and based on phenomenological
arguments rather than on rigorous derivations.

(b) Particularly for systems at large packing density, the Navier–Stokes level of the
hydrodynamic description may be insufficient, that is, linear relations for the
transport coefficients may be insufficient for the description of granular flow at
high density. In this case, higher-order descriptions on Burnett or super-Burnett
order must be considered, see the discussion in § 7.1.

(c) The hydrodynamic description itself may be inadequate due to the arguments
related to the lack of scale separation discussed at the end of § 1. In these
cases, there is no hope for a hydrodynamic description. Fortunately, sufficiently
dynamic systems of practical interest seem not to belong to this class. Our
demonstration examples have been chosen to be hard for a hydrodynamic
description, but still we could obtain stable results in approximate quantitative
agreement with particle simulations.

It would be desirable to compare our results with competing approaches to solve the
equations (2.4). However, all available studies apply explicit schemes and fail in the dense
regime. A comparison which is restricted to the dilute limit is, however, inappropriate as
the aim of the presented implicit method is neither to increase performance nor to optimize
accuracy but only to improve the stability of the solver and, finally, to enable simulations
in the dense regime.

The computational granular hydrodynamics presented here can be extended and
generalized to other constitutive relations (e.g. Jenkins & Richman 1986), and equations
of state (e.g. Luding 2009), available in the literature. The reliable and numerically stable
hydrodynamic simulation method finally allows us to study large-scale granular systems
which are not accessible through particle simulations due to the large number of particles
involved, such as sand dunes (e.g. Schwämmle & Herrmann 2003), planetary rings (e.g.
Grenberg & Brahic 1984; Esposito 2006; Fridman & Gorkavyi 2010), avalanches (e.g.
Pudasaini & Hutter 2007) or large-scale technical apparatus (e.g. Savage & Hutter 1989).
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Appendix A. Diffusion matrices

The derivation of the diffusion matrices according to (5.1) and with respect to (2.5c) is
straightforward. However, the corresponding calculations are prone to errors due to sheer
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length of the expressions involved. To facilitate future work, we provide here the matrices,

Dxx = η

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

− 1
m

h1ux
1
m

h1 0 0 0

−uy

m
0

1
m

0 0

−uz

m
0 0

1
m

0

−u2 − h2u2
x + λ (h1 − mα)ux (1 − mα)uy (1 − mα)uz α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)

Dxy = η

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

− 1
m

h3uy 0
1
m

h3 0 0

− 1
m

ux
1
m

0 0 0

0 0 0 0 0
−h2uxuy uy h3ux 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2)

Dxz = η

n

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
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m

h3uz 0 0
1
m

h3 0
0 0 0 0 0

− 1
m

ux
1
m

0 0 0
−h2uxuz uz 0 h3ux 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A3)

where

α = 2κ

3η
; β = nμ

η
; λ = α(mu2 − E) + β

h1 = γ

η
+ 4

3
; h2 = γ

η
+ 1

3
; h3 = γ

η
− 2

3
.

⎫⎪⎪⎬
⎪⎪⎭ (A4)

The remaining diffusion matrices read then

Dyx = η

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

−uy

m
0

1
m

0 0

− 1
m

h3ux
1
m

h3 0 0 0

0 0 0 0 0
−h2uxuy h3uy ux 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A5)

Dyy = η

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

−ux

m
1
m

0 0 0

− 1
m

h1uy 0
1
m

h1 0 0

− 1
m

uz 0 0
1
m

0

−u2 − h2u2
y + λ (1 − mα)ux (h1 − mα)uy (1 − mα)uz α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A6)
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Dyz = η

n
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, (A7)

Dzx = η
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