STRONG CARMICHAEL NUMBERS

Dedicated to George Szekeres on his 65th birthday

D. H. LEHMER

(Received 18 December 1974; revised 3 April 1975)
Communicated by Jennifer Seberry Wallis

A composite number N is called a pseudoprime for the base a in case

$$
\begin{equation*}
a^{N-1} \equiv 1(\bmod N) \tag{1}
\end{equation*}
$$

An odd pseudoprime N is called strong for the base a in case

$$
\begin{equation*}
a^{(N-1) / 2} \equiv\left(\frac{a}{N}\right)(\bmod N) \tag{2}
\end{equation*}
$$

where the symbol on the right is that of Jacobi. To explain the terminology, experiments show that (2), which implies (1), holds only rarely among the ordinary pseudoprimes. Hence (2) makes a good hypothesis item in a test for primality. $N=561$, which is a pseudoprime for every base prime to 561 , is a strong pseudoprime for the base 2 but not for the base 5 since

$$
5^{280} \equiv 67(\bmod 561)
$$

A pseudoprime, like 561 , for which (1) holds for all bases a prime to N is called a universal pseudoprime or Carmichael number. The first 23 such numbers are

561	$=3 \cdot 11 \cdot 17$	15841	$=7 \cdot 31 \cdot 73$
1105	$=5 \cdot 13 \cdot 17$	29341	$=13 \cdot 37 \cdot 61$

A strong Carmichael number N would be such that (2) holds for all bases a prime to N. In this note we show that such numbers do not exist.

Theorem. No Carmichael number is strong.

Proof. In 1912 Carmichael (1912) showed that every Carmichael number N is the product of distinct primes. Therefore we can write

$$
N=p_{1} \cdot p_{2} \cdots p_{t} \quad\left(p_{1}>2, t>1\right)
$$

and we see that

$$
a^{N-1} \equiv 1\left(\bmod p_{i}\right) \quad(i=1(1) t)
$$

holds for every a prime to N and in particular for $a=g$ any common primitive root of all the p 's. Therefore

$$
N-1 \equiv 0\left(\bmod p_{i}-1\right) .
$$

Now the t primes p_{i} can be of two types:

- Type 1 those p for which $(N-1) / 2 \equiv 0(\bmod p-1)$

Type 2 those p for which $(N-1) / 2 \equiv(p-1) / 2(\bmod p-1)$.
Thus we have

$$
a^{(N-1) / 2} \equiv\left\{\begin{array}{l}
1(\bmod p) \text { if } p \text { is of Type } 1 \tag{3}\\
\left(\frac{a}{p}\right)(\bmod p) \text { if } p \text { is of Type } 2
\end{array}\right.
$$

We now choose a to be a quadratic nonresidue of p_{1} and a residue of all the other p 's. First suppose there is a prime of Type 1 which we may take to be p_{1}. If N were strong (2) and (3) would give us

$$
-1=\left(\frac{a}{N}\right) \equiv a^{(N-1) / 2} \equiv 1\left(\bmod p_{1}\right)
$$

This contradiction shows that all the p 's are of Type 2.
Hence (3) gives

$$
a^{(N-1) / 2} \equiv 1\left(\bmod p_{2}\right) .
$$

But, by (2)

$$
a^{(N-1) / 2} \equiv\left(\frac{a}{N}\right)\left(\bmod p_{1} p_{2}\right)
$$

that is,

$$
a^{(N-1) / 2} \equiv-1\left(\bmod p_{2}\right)
$$

This contradiction completes the proof.

Reference

R. D. Carmichael (1912), Amer. Math. Monthly 19, 22-27.

Department of Mathematics
University of California
Berkeley, California, U.S.A.

