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A Characterization of C∗-normed Algebras
via Positive Functionals
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and Carlos Signoret

Abstract. We give a characterization ofC∗-normed algebras, among certain involutivenormed ones.
_is is done through the existence of enough speciûc positive functionals. _e same question is also
examined in some non normed (topological) algebras.

1 Introduction and Preliminaries

Some properties of C∗-algebras appear to be characterizations of such algebras in the
class of involutive Banach algebras. _is is the case, for example, with the Vidav–
Palmer theorem. Here the focus is on positive functionals. It is known that a C∗-alge-
bra always has a large supply of such functionals. _ere is even the following striking
result (see [20, p. 227] and [21,_eorem 12.39]).

_eorem 1.1 Let (E , ∥ ⋅ ∥) be a unital C∗-algebra. _en, for every z ∈ E, there is a
positive functional f such that f (e) = 1 and f (zz∗) = ∥z∥2.

One ûrst notices that this result is still valid in a non complete C∗-normed algebra.
Moreover, it turns out that the property in the theorem is actually a characterization of
C∗-normed algebras in the frame of involutive normed ones (Proposition 2.1). Corol-
lary 2.2 concerns the Banach case.

Section 3 dealswith locallym-convex algebras. We obtain the analogs of the results
in Section 2, ûrst for locally C∗-algebras (Proposition 3.5) and then for pre-locally C∗-
algebras (Proposition 3.7). Notice that here we employ the perfectness property.
C∗-bornological algebras are examined in Section 4, the context being the one

of ∗-pseudo-normed algebras (Proposition 4.2) and ∗-pseudo-Banach algebras (Re-
mark 4.3).

In Section 5, we consider locally uniformly A-convex algebras (Proposition 5.4)
and, more general, locally A-convex ones (Proposition 5.6). In the ûrst case we do
not need perfectness, while in the second case we do.
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In Section 6we examine locally uniformly convex algebras. Without completeness,
we need a somewhat stronger condition (Proposition 6.1). Here thematter is C∗-sub-
normability. In the complete case, we get rid of it. Again the expected conclusion is
∗-subnormability (Proposition 6.2).

Perfectness plays an important role, but we did not ûnd examples and counter-
examples in the literature. We give some examples in Section 3 (see also [9]).

_e interest of the kind of the results obtained here is that the existence of a partic-
ular positive functional implies the existence ofmany of them. _is is very important
for representation theory, andmay have applications in ûeld theory.

In the sequel, we employ the following terminology. A linear form (functional) f
on an involutive algebra E is positive if f (xx∗) ≥ 0, for all x ∈ E. A C∗-normed algebra
is an involutive normed algebra (E , ∥ ⋅ ∥) satisfying the C∗-condition (∥x∗x∥ = ∥x∥2,
for all x ∈ E, viz. ∥ ⋅ ∥ is a C∗-norm). If, moreover, E is complete, it is called a
C∗-algebra. In the non-normed case, a pre-locally C∗-algebra is an involutive topo-
logical algebra, the topology of which is deûned by a (saturated) family (pλ)λ∈Λ of
C∗-seminorms. A locally C∗-algebra is a complete pre-locally C∗-algebra. Let (E , τ)
be a locally convex algebra with a separately continuous multiplication whose topol-
ogy τ is given by a family (pλ)λ∈Λ of seminorms. _e algebra (E , τ) is said to be a
locally A-convex algebra [4, 5] if, for every x and every λ, there is M(x , λ) > 0 such
thatmax[pλ(xy), pλ(yx)] ≤ M(x , λ)pλ(y), for all y ∈ E. In the case of a single space
norm, (E , ∥ ⋅ ∥) is called an A-normed algebra. IfM(x , λ) = M(x) depends only on x,
we say that (E , τ) is a locally uniformly A-convex algebra [4]. If it happens that, for ev-
ery λ, pλ(xy) ≤ pλ(x)pλ(y), for all x , y ∈ E, then (E , τ) is named a locally m-convex
algebra [13]. Recall also that a locally convex algebra has a continuous multiplication
if, for every λ, there is λ′such that pλ(xy) ≤ pλ′(x)pλ′(y), for all x , y ∈ E.

If (E , (pλ)λ∈Λ) is a unital locally-A-convex algebra, then it can be endowed with
a stronger m-convex topology M(τ), where τ is the topology on E. It is determined
by the family (qλ)λ∈Λ of seminorms given by

(1.1) qλ(x) = sup{pλ(xu) ∶ pλ(u) ≤ 1}.

If (E , (pλ)λ∈Λ) is a locally uniformly A-convex algebra, then there is yet [14,15] an
algebra norm ∥ ⋅ ∥0 which induces a topology τ∥ ⋅ ∥0 stronger than M(τ). It is given by

(1.2) ∥x∥0 = sup{qλ(x) ∶ λ ∈ Λ}.

2 Normed Algebras

It is known that unital involutive Banach algebras do not necessarily admit nonzero
positive functionals.

R. S.Doran [6, p. 475] asked if there exists a Banach ∗-algebrawithout identity that
admits no nonzero positive functionals. He also remarks that for C∗-algebras (unital
or not) there are enough positive functionals. Relative to this, N. V. Gorbachev [8]
gave an example of a Banach ∗-algebra without identity and with no nonzero positive
functionals. _e following result shows that, indeed, the existence of a large number
of continuous positive functionals is closely related to the C∗-structure. _e proof
goes along the lines of standard techniques in representation theory.
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Proposition 2.1 Let (E , ∥ ⋅ ∥) be a unital involutive normed algebra. _en the follow-
ing are equivalent.
(i) (E , ∥ ⋅ ∥) is a C∗-normed algebra.
(ii) For every z there is a continuous positive functional fz = f such that f (e) = 1 and

f (zz∗) = ∥z∥2.

Proof (i) ⇒ (ii). Just take the completion Ẽ of E, which is a C∗-algebra and ap-
ply _eorem 1.1. _e continuity of the positive functionals comes from a result of
Varopoulos [22].

(ii)⇒ (i). Take u ∈ E, u /= 0, and fu = f as in (ii). Put

Yu = Y = {y ∈ E ∶ f (xy) = 0, for all x ∈ E},

which is obviously a closed subspace (in fact, a le� ideal) of E. Consider the quotient
space E/Y . One deûnes a scalar product on it, by putting ⟨a′ , b′⟩ = f (b∗a) with
a′ = a + Y , b′ = b + Y , a, b ∈ E. It is well deûned and ⟨a′ , a′⟩ = f (a∗a) ≥ 0. One also
shows that ⟨a′ , a′⟩ = 0 implies that a′ = Y . Hence (E/Y , ∥ ⋅ ∥) with ∥a′∥2 = f (a∗a) is
a pre-Hilbert space. Denote by Hu = Ẽ/Y = Ẽ/Yu the Hilbert space, the completion
of E/Yu .

Now to every x ∈ E, one associates the operator

Tx ∶ E/Y → E/Y , a′ ↦ Tx(a′) = (xa′) ≡ xa + Y .

It is well deûned, and one shows that
● x ↦ Tx is linear.
● Tx2 Tx1 = Tx2x1 , for every x1 , x2 ∈ E.
● Te = IdE/Y .
● ∥Tx∥ ≤ ∥x∥, for every x ∈ E.
● Tx∗ = (Tx)∗, for every x ∈ E.
● ∥Tu∥ = ∥u∥.
So Tx is extended to a bounded operator still denoted by Tx ∶Hu → Hu with the same
properties.

To ûnish, one puts together the Hilbert spaces Hu , by considering the standard
direct sum H =⊕Hu . One ûnally obtains ∥Tx∥ = ∥x∥, for every x ∈ E.

_e continuity condition in Proposition 2.1 (ii) becomes redundant if (E , ∥ ⋅ ∥) is
a Q-algebra, viz., the group of its invertible elements is open. So it is, in particular,
worthwhile to give the following statement. It is the characterization alluded to in the
introduction (_eorem 1.1).

Corollary 2.2 Let (E , ∥ ⋅ ∥) be a unital involutive Banach algebra. _en the following
are equivalent.
(i) (E , ∥ ⋅ ∥) is a C∗-algebra.
(ii) For every z there is a positive functional fz = f such that f (e) = 1 and f (zz∗) =

∥z∥2.
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3 Locally m-convex Algebras

_emain result of the previous section extends to the locally m-convex case,modulo
an additional condition, i.e., perfectness (see Deûnition 3.1). _e term “perfect” has
also been employed by C. Apostol in a diòerent sense [2, Deûnition 1.1]. We now
deûne the term “perfect” as it will be used throughout this section [9, Deûnition 2.7].

Deûnition 3.1 A projective system {(Eλ , fλµ)}λ∈Λ of topological algebras is called
perfect if the restrictions to the projective limit algebra

E = lim←Ð Eλ = {(xλ) ∈ ∏
λ∈Λ

Eλ ∶ fλµ(xµ) = xλ , if λ ≤ µ in Λ}

of the canonical projections πλ ∶∏λ∈Λ Eλ → Eλ , λ ∈ Λ, namely, the continuous algebra
morphisms fλ = πλ ∣E=lim←Ð Eλ ∶ E → Eλ , λ ∈ Λ, are onto maps. _e resulting projective
limit algebra E = lim←Ð Eλ is then called a perfect (topological) algebra.
A perfect locally m-convex algebra is a locally m-convex algebra (E , (pλ)λ∈Λ) for

which the respective Arens–Michael projective system {(Eλ , fλµ)}λ∈Λ is perfect.

In the previous deûnition, by the term Arens–Michael projective system we mean
thatwhich corresponds to the Arens–Michael decomposition (see also [13, Deûnition
2.1, p. 86, (3.9), and Deûnition 3.1]).

_e notion of perfectness as in Deûnition 3.1 is algebraic, however we give exam-
ples in the topological context in which we are working.

Example 3.2 If the Eλ ’s, λ ∈ Λ, are C∗-normed algebras and if the preorder of Λ
is the equality, then the only connecting maps are fλλ = IdEλ and thus lim←Ð Eλ = ΠEλ

(see [3, Example 1]). _erefore, the latter is a perfect pre-locally C∗-algebra. If it is
complete, then it is a locally C∗-algebra.

Example 3.3 If E is aC∗-normed algebra and Eλ = E, λ ∈ Λ and fλµ ∶ Eµ → Eλ , λ ≤ µ
are the identitymaps, then lim←Ð Eλ is the diagonal ∆ ofΠEλ and ∆ = lim←Ð Eλ is a perfect
locally m-convex algebra [10, Example 2.3]. In particular, it is a perfect pre-locally
C∗-algebra. If E is complete, then it is a locally C∗-algebra.

Example 3.4 _e classical locally C∗-algebra (C(R), (∥ ⋅ ∥K)K) is perfect.

Proposition 3.5 Let (E , (pλ)λ∈Λ) be a unital involutive complete, perfect locally m-
convex algebra. _en the following are equivalent.
(i) (E , (pλ)λ∈Λ) is a locally C∗-algebra.
(ii) For every λ and every z, there is a continuous positive functional fλ ,z = f such

that f (e) = 1 and f (zz∗) = pλ(z)2.

Proof (i)⇒ (ii). See Remark 3.6.
(ii)⇒ (i). By perfectness, fλ is onto. So for every λ and u̇ ≡ u + ker(pλ) in Eλ (the

normed factor in the Arens–Michael decomposition of E [13]), there is a zu̇ = z in E
such that u̇ = fλ(z). Consider a positive form g, as in the hypothesis. _en a positive
form gu̇ ∶ Eλ → C is deûned by gu̇(v̇) ≡ gu̇(v + ker(pλ)) = g(y), where v̇ = fλ(y).
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One has gu̇(eλ) = 1, since fλ(e) = eλ . Also

gu̇(v̇v̇∗) = g(yy∗) = pλ(y)2 = ṗλ( fλ(y))2 = ṗλ(v̇)2 .

One can then apply Proposition 2.1 to get C∗-normed factors, and passing to their
completions,we can take an inverse limit ofC∗-algebras,which assures that E is ûnally
a locally C∗-algebra (see [12,_eorem 2.1] and [19, Proposition 1.2]).

Remark 3.6 Condition (ii) is natural since it is fulûlled in any unital locally C∗-al-
gebra [7, Proposition 14.21].

Without completeness, one still has an interesting statement.

Proposition 3.7 Let (E , (pλ)λ∈Λ) be a unital Hausdorò involutive and perfect locally
m-convex algebra. _en the following are equivalent.
(i) (E , (pλ)λ∈Λ) is a pre-locally C∗-algebra.
(ii) For every λ and every z, there is a continuous positive functional fλ ,z = f such

that f (e) = 1 and f (zz∗) = pλ(z)2.

Proof (i)⇒ (ii). Consider the completion Ẽ of E and then apply Proposition 3.5.
(ii)⇒ (i). Without loss of generality,we can assume that pλ(x∗) = pλ(x), for every

x and every λ. _en (E , (pλ)λ∈Λ) is the projective limit of the normed ∗-algebras Eλ =
E/Nλ , where Nλ = {x ∶ pλ(x) = 0}. Now, arguing as in Proposition 3.5, one shows
that the factors Eλ satisfy the same property as E. To ûnish, apply Proposition 3.5.

4 Pre-C∗-bornological Algebras

A pre-C∗-bornological algebra is a bornological inductive limit of C∗-normed algebras
(see Deûnition 4.1). _ismust be a ∗-pseudo-normed algebra, according to the termi-
nology of [1]. When it is complete, it is a ∗-pseudo-Banach algebra. A C∗-bornological
algebra is a bornological inductive limit of C∗-algebras. _ese algebras have been in-
troduced in [11] under the name “Algèbres bornologiques stellaires complètes”. _ey
have been reexamined in [17],where a C∗-normhas been exhibited, and thus one gets
an improvement of the results and a simpliûcation of the proofs.

Deûnition 4.1 Let E be a complex algebrawhich is the union of subalgebras E i , each
one being a C∗-normed algebra (E i , ∥ ⋅ ∥i) such that (E i , f ji), i ≤ j, is an inductive
system,where f ji is the injection of E i in E j . Endowedwith the bornological inductive
limit B, E is named a pre-C∗-bornological algebra and it is symbolized by (E ,B) =
limÐ→(E i , ∥ ⋅ ∥i).

One obtains aC∗-norm ∥ ⋅ ∥ on E by putting ∥x∥ = ∥x∥i , i ∈ { j ∶ x ∈ E j} (see [17]). It
is easy to see that every positive functional on (E ,B) is bounded, and sinceBτ∥ ⋅ ∥ ⊂ B,
it is continuous on (E , ∥ ⋅ ∥). Here,Bτ∥ ⋅ ∥ stands for the collection of all subsets B of E,
which are bounded in the sense of Kolmogorov–von Neumann viz., B is absorbed by
every neighborhood of zero. Arguing in the C∗-algebra Ẽ, the completion of E, one
gets the conclusion of_eorem 1.1. _us, we are led to the following statement.
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Proposition 4.2 Let (E ,B) = limÐ→(E i , ∥ ⋅ ∥i) be a unital ∗-pseudo-normed algebra
such that
(i) _ere is an algebra norm ∥ ⋅ ∥ on E.
(ii) ∥x∥ = ∥x∥i , i ∈ { j ∶ x ∈ E j}.
(iii) For every z there is a positive functional fz = f such that f (e) = 1 and f (zz∗) =

∥z∥2.
_en (E ,B) is a pre-C∗-bornological algebra.

Proof Apply Proposition 2.1 to each factor,which then becomes a ∗-normed algebra.

Remark 4.3 Proposition 4.2 applies, of course, to ∗-pseudo-Banach algebras, in
particular, to involutive p-Banach algebras [1].

Remark 4.4 Condition (iii) in Proposition 4.2 is also necessary. Indeed, if (E ,B)
is a pre-C∗-bornological algebra, then ∥ ⋅ ∥ is a C∗-norm. _e claim follows by arguing
in the C∗-algebra Ẽ.

5 Locally A-convex Algebras

We begin with locally uniformly A-convex algebras. We produce the appropriate
statement of_eorem 1.1. To justify it, let us ûrst recall two examples.

Example 5.1 Let C[0, 1] be the complex algebra of continuous functions on the
interval [0, 1]. Endow itwith the seminorms pKd ,with pKd ( f ) = sup{ f (x) ∶ x ∈ Kd},
where Kd is running over all denumerable compact subsets of [0, 1]. It is a uniformly
A-convex algebra, and the supremum norm ∥ ⋅ ∥∞ makes it a C∗-algebra.

Example 5.2 Let Cb(R) be the algebra of complex continuous bounded functions
on the real ûeld R, with the usual pointwise operations and the complex conjugation
as an involution. Denote by C+0 (R) the family of strictly positive elements of Cb(R)
tending to zero at inûnity. Endow Cb(R) with the seminorms pφ , φ ∈ C+0 (R), given
by pφ( f ) = sup{∥φ(x)∥ f (x) ∶ x ∈ R}. _e family (pφ) determines a locally convex
topology β. _e space (Cb(R), β) is a complete locally convex algebra, which is not
a locally m-convex one [5]. Actually, it is a locally uniformly A-convex algebra, and
under the supremum norm ∥ ⋅ ∥∞ it turns out to be a C∗-algebra.

_e examples above suggest the following deûnition and statement.

Deûnition 5.3 Let (E , τ) be a unital locally uniformlyA-convex algebra. It is said to
be C∗-subnormable (respectively, ∗-subnormable) if there is a C∗-norm (respectively,
∗-norm) the topology of which is stronger than τ.

See (1.1) for the qλ appearing in the following propositions. We also recall that
a locally convex algebra is pseudo-complete if every bounded and closed idempotent
(aliasmultiplicative) disk B is Banach, i.e., the vector space generated by it is a Banach
space when endowed with the respective gauge ∥ ⋅ ∥B of B.
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Proposition 5.4 Let (E , (pλ)λ∈Λ) be a unital involutive pseudo-complete locally uni-
formly A-convex algebra. If, for every z, there is a positive functional fz = f such that
f (e) = 1 and qλ(z)2 ≤ f (zz∗), for every λ, then (E , (pλ)λ∈Λ) is C∗-subnormable.

Proof On E we consider the algebra norm deûned by (1.2). Namely,

∥x∥0 = sup{qλ(x) ∶ λ ∈ Λ},

where qλ(x) = sup{pλ(xu) ∶ pλ(u) ≤ 1}. Without loss of generality, onemay assume
that pλ(x∗) = pλ(x), for every λ. _en it is easily checked that, qλ(x∗) = qλ(x), for
every λ. Whence ∥x∗∥0 = ∥x∥0. Now if f is as in the hypothesis, then ∥zz∗∥0 =
sup{qλ(zz∗) ∶ λ} ≤ f (zz∗). On the other hand, E being pseudo-complete, (E , ∥x∥0)
is a Banach algebra. Hence f is continuous. So f (zz∗) ≤ ∥zz∗∥0. _us f (zz∗) =
∥zz∗∥0. An application of Proposition 2.1 gives the assertion.

Remark 5.5 _e previous result is still valid for a pseudo-complete Q-algebra.
Without any of these two properties, one has to ask for the continuity of the posi-
tive form.

Concerning the general non uniformly A-convex case, one has the following.

Proposition 5.6 Let (E , (pλ)λ∈Λ) be a unital involutive locallyA-convex algebra such
that (E , (qλ)λ) is perfect (see (1.1)). If, for every z, there is a positive functional fz = f
such that f (e) = 1 and qλ(zz∗) ≤ f (zz∗), for every λ, then (E , (pλ)λ) is a pre-locally
C∗-algebra.

We take this opportunity to give two examples of locally uniformly convex algebras
which are not uniformly A-convex ones.

Example 5.7 Let (E , ∥ ⋅ ∥) be a commutative unital C∗-algebra. Endow it with the
weak topology, say σ , given by the convex hull co(M(E)) of its carrier space. _en
(E , σ) is a locally uniformly convex algebra which is not A-convex [18, Example 11].
_e same topological algebra is obviously not uniformly A-convex.

Example 5.8 Let C[X] be the commutative unital algebra of complex polynomi-
als, and (zm)m a sequence of complex numbers such that ∣zm ∣ → +∞. _en C[X]
endowed with the topology, say τ, given by the seminorms P ↦ ∣P∣m = ∣P(zm)∣ be-
comes ametrizable locallym-convex algebra. Let ∥ ⋅ ∥ be a vector space norm stronger
than τ. _en, for everym, there is a km > 1 such that ∣PQ∣m = ∣P∣m ∣Q∣m ≤ ∥P∥km ∣Q∣m ,
for all Q. For the local uniform convexity of C[X], we consider the family (∣ ⋅ ∣m) ∪
(α∣ ⋅ ∣m)m ,α≥1 of seminorms which also deûne the topology. Besides, it cannot be
uniformly A-convex; otherwise we should have a stronger algebra norm than τ, say
∥ ⋅ ∥0. But then the characters P ↦ P(zm) should be continuous, which contradicts
∣P(zm)∣→ +∞ (see [16, Example 6.4]).

Example 5.9 Let Cb(R) be the algebra of Example 5.2 and C(R) the very classi-
cal locally C∗-algebra (see Example 3.4). _en the standard cartesian product algebra

https://doi.org/10.4153/CMB-2017-023-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-023-1


A Characterization of C∗-normed Algebras via Positive Functionals 121

Cb(R) × C(R) is a pre-locally C∗-algebra. It is locally A-convex, but not locally uni-
formly A-convex.

6 Locally Uniformly Convex Algebras

We ûrst recall the basics. A locally convex algebra (E , (pλ)λ∈Λ) is said to be locally
uniformly convex if, for all x and for all λ, there exist M(x) > 0 and λ′ such that
pλ(xy) ≤ M(x)pλ′(y), for all y. When E has a unit element e, onemay suppose that
pλ′(e) /= 0, for every λ. _e family

(6.1) (qλ)λ = ([pλ′(e)]−1pλ)λ

of seminorms determines on E a topology, say τ′. We have

(6.2) sup
λ

[pλ′(e)]−1pλ(x) ≤ M(x), for all x .

But then

(6.3) x ↦ ∥x∥ = sup
λ

[pλ′(e)]−1pλ(x)

is a vector space norm stronger than τ′. What we do have is

∥xy∥ ≤ sup{ pλ′′(e)
pλ′(e)

M(x) 1
pλ′′(e)

pλ′(y)} .

So to proceed, we are led to put a condition on ([pλ(e)]−1pλ′(e))λ , in the sense of
the next result.

Proposition 6.1 Let (E , (pλ)λ∈Λ) be a unital involutive locally uniformly convex al-
gebra such that ([pλ(e)]−1pλ′(e))λ is bounded by 1. If, for every z, there is a posi-
tive functional fz = f such that f (e) = 1 and qλ(zz∗) ≤ f (zz∗), for every λ, then
(E , (pλ)λ∈Λ) is C∗-subnormable.

Proof In view of (6.2) and (6.3), we have ∥xy∥ ≤ M(x)∥y∥, for every y. So (E , ∥ ⋅ ∥)
is an A-normed algebra. One then gets an algebra norm ∥ ⋅ ∥0 given by

∥x∥0 = sup{∥xu∥ ∶ ∥u∥ ≤ 1}

(see also (6.3)). Without loss of generality,wemay assume pλ(x∗) = pλ(x), for every
x and every λ. But, then the same is true for the qλ ’s (cf. (6.1)) and ∥ ⋅ ∥0.

In the case of completeness, we do not need the somewhat artiûcial condition that
([pλ(e)]−1pλ′(e))λ is bounded by 1. But we obtain less, as the following statement
indicates.

Proposition 6.2 Let (E , (pλ)λ∈Λ) be a unital involutive and complete locally uni-
formly convex algebra. If, for every z, there is a positive functional fz = f such that
f (e) = 1 and qλ(zz∗) ≤ f (zz∗), for every λ (see (6.1)), then (E , (pλ)λ∈Λ) is ∗-subnorm-
able.
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Proof Since (E , (pλ)λ∈Λ) is complete, (E , ∥ ⋅ ∥) is a Banach space (with ∥ ⋅ ∥ as in
(6.3)). One hasBτ∥ ⋅ ∥ ⊂ Bτ′, since τ′ is coarser than the topology given by ∥ ⋅ ∥. On the
other hand, the latter has a fundamental basis of zero consisting of τ′-barrels, and then
they are τ′-bornivorous (namely, each one absorbs all τ′-bounded subsets). Hence
Bτ∥ ⋅ ∥ ⊂ Bτ. So the multiplication (x , y) → xy is ∥ ⋅ ∥-separately bounded. _us
it is jointly continuous. _erefore (E , ∥ ⋅ ∥) is a ∗-normed algebra for an equivalent
norm.

Remark 6.3 _e diòerence between the conclusions of the previous propositions
shows the strength of the condition ([pλ(e)]−1pλ′(e))λ ǐs bounded by 1.
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