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FORCE DISTRIBUTION ON A SLENDER BODY
CLOSE TO AN INTERFACE

J.R. BLAKE AND G.R. FULFORD

The motion of a slender body parallel and very close to a flat

interface which separates two immiscible liquids of differing

density and viscosity is considered for very small Reynolds

numbers. Approximate analytical expressions are obtained for the

distribution of forces acting on the slender body. The limiting

case of a rigid plane wall yields results obtained previously.

1. Introduction

Slender bodies moving in a viscous fluid, where the Reynolds number is

very small, occur in the biological, engineering and industrial fields. In

many cases the movements of these slender bodies are affected by the

presence of an interface with another fluid or a boundary, either rigid or

flexible. Examples include the locomotion of micro-organisms, extrusion of

polymers, bubble flotation processes and the mechanics of colloidal

suspensions.

Previously, many studies have concerned the motion of particles near a

rigid plane wall boundary. In particular, Katz et at [4], using a line

distribution of stokeslets, obtained approximate analytical expressions for

the force distribution on an axisymmetric slender body oriented parallel to

a plane wall and moving along one of its three principal axes. More

recently however, some attention has been given to the more general problem

of a particle moving in the presence of, or straddling the interface
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between two immiscible fluids. An interface is a region (usually

monomolecular) separating two fluids of different viscosities and

densities. Lee et al [5] and O'Neill and Ranger [7] have investigated the

motion of a translating and rotating sphere in the presence of an interface

which they both assume to be flat due to the action of surface tension and

hydrostatic pressure. Clearly there is a need to examine the motions of

other types of particles and in particular, the motion of a slender body

near this type of boundary.

In this paper we extend the results of Katz et at \_4~\ to that of a

slender body moving close to a flat interface between two immiscible,

incompressible, viscous fluids in the limit of zero Reynolds number.

Expressions are presented for the force distributions on the slender body

and the two limiting cases of a plane wall and a flat free surface are

analysed in detail.

2. Slender body theory

Consider an axisymmetric slender body of length 2Z- and radius ^(x)

(which is a smoothly varying function of distance along the axis of

symmetry of the body). The body is moving with velocity U in the lower

of the two fluids [x < o) (which has a dynamic viscosity VL and

density p* ) at a distance h from a flat interface (see Figure l) where

r « h « t . We assume that the interface is not surface active and

consequently the interfacial tension y is constant.

The Green's function for a flat interface between two immiscible

viscous fluids, derived by Adergoba and Blake [7], is

f6.,
(1)

R .R.
i k

Pfl hR. 6.
i t

R3 R

(i, j, k = 1 ... 3) and 1 ... 2) (x < 0)

where 0 = Vo^i ' t*le r a ti° °f viscosities of the two fluids. The

coordinate r measures the distance from the point force (which is located
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FIGURE 1. Slender body translating very close to and parallel to a flat

interface which separates two fluids of different viscosities

and densities.
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at x = -h ) and R measures the distance from the image point (located

at x = h ) . By distributing these singularities along the centreline of

the body we obtain the following integral representation for the velocity

field of the fluid, u(x) :

(2) u.(x) = I G..(x, s)F.(s)dsu.(x) = G..(x, s)F.(
1 J_7 T-3 3

where the repeated suffix summation convention is used. Upon satisfying

the no-slip boundary condition U = U on the surface of the slender body,

integral equations for the unknown force distributions F(x) are obtained.

In the separate cases of

(i) longitudinal motion (in the same direction as the axis of

symmetry of the slender body) we take F = [F , 0, o) and

u = [v1% o, o) ,

(ii) transverse motion (normal to the axis but parallel to the

flat interface) we take F = (o, F o) and

U = (o, U2, 0) , and

(iii) normal motion (normal to both the axis and the interface)

we take F = (o, 0, F ) and U = (o, 0, U ) .

We note that in the more general circumstances, where no assumption is made

on the relative magnitudes of h and I , it proves necessary for

longitudinal and normal motion of the slender body" to take F = (F 0, F J

(that is to include a distribution of stokelets oriented normal to the

motion - see, for example, de Mestre and Russell [6]). Longitudinal motion

is further complicated by a rotation of the slender body about a line

through its centre parallel to the x axis. Neither of these problems

concern us for close approaches to the interface (that is, r << h « I ) .

The three integral equations in the cases of longitudinal, transverse

and normal motion are, using polar coordinates (rnj "K
 x) >
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where now r = (x-s) + r and Br = (x-s) + r - Uhr sin <() + kh .

*

3. Force distributions

For close approaches of a slender body to the "interface we take

« h « I and expand equations (3)-(5), retaining only 0(l) terms.

The resulting equations are solved by making asymptotic expansions of the

force distributions F^ in integral powers of [ln(2i/rQ)]" . This

procedure is common in slender body analysis in low Reynolds number flow

and details of the analysis may be found in Blake [3].

Expressions for the force distributions correct to 0(ln(2Z/r JJ

are

(6)

(T)

and

https://doi.org/10.1017/S0004972700007401 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007401


32 J . R . B l a k e and G . R . F u l f o r d

1 3

( 8 ) F3 = ln(27z/r0U)J-%-t%6/(e+l)J

where

(9) S*(x) = hln{l-x2/l2) .

If the ratio of viscosities 0 is greater than 1 then the magnitudes of

the force distributions are greater than those for a slender body-

translating in an infinite fluid (see Katz et al [4]). When 0 is close

to zero the same applies for the normal force, however the longitudinal and

transverse force distributions are smaller than the corresponding infinite

fluid values.

In the limiting case Q •*•<*> equations (6)-(8) reduce to the Katz et

al [4] results for a plane wall boundary (see Figure 2)

(10) F1 =

1+1TU V
(11) F o

 XZ

F3 =3 = ln[2h/rQ)-l •

The closer the slender body to the boundary the greater is the magnitude of

force acting on the body. In this case there is no dependence of the force

distribution on axial distance a; .

Another important limiting case is that of 0 -*• 0 which corresponds

to a boundary which is a flat free surface. The force distributions in

this case are (see also Figure 2)

(13) F. = 5 i i
1 [

(HO

and
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FIGURE 2. The force distributions on a slender cylinder [RJ^ - -005)

which is translating close to (h/l = .1)

(i) a plane rigid wall (solid lines), and

(ii) a flat free surface (broken lines)

given by equations (1O)-(15) in text. Since the distributions

are symmetric about the a: -axis only the right half is

plotted.

(15)

For motion normal to the free surface, the magnitude of the force

distribution increases as the slender body moves closer to the free surface

while for longitudinal and transverse motion it decreases.

It is important to realise that the 9 = 1 case does not correspond

to motion in an infinite fluid since although the viscosities of the two

fluids are the same, their densities are different and there is an implied

distribution of normal stress acting on the interface which causes the

interface to remain flat.
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4. Limitations

In the analysis used to derive (6)-(8) we had assumed r_ << h « t .

Thus our solution is only valid when the slender body approaches

sufficiently close to the interface (that is, well within one body length

but still several radii away). The error involved in making the asymptotic

expansions of the force distributions are of the order [ln(2Z-/r )]

which is compariable to 0[r /l) when VJ^ ^ .005 • The asymptotic

results are invalid near the endpoints of the slender body for bodies where

lim —5—5- does not exist (for example, a circular cylinder). In these

circumstances, end effects should be modelled by placing a distribution of

stokeslets over the surfaces of the ends of the body.

For such close approaches to the interface, it is realised that the

shape of the interface will be distorted from its assumed flat shape.

Aderogba and Blake [2] obtained expressions for a first order approximation

of the interface elevation t, in the special cases where the flattening

out effect is dominated by

(i) surface tension (y) , and

(ii) hydrostatic pressure (p-,*-p|)<?C where g is the

acceleration due to gravity.

By scaling with respect to the distance from the interface h and taking

the total force on the body as 2FZ (since F is constant along most of

the body except near the end points) one obtains the conditions

corresponding to (i) and (ii) respectively

(16) ^

and

(17)

Thus the flat interface approximation is justified when there is a large

interfacial tension acting on the fluids or a large density difference

between the two fluids.
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5. Summary

Using distributions of stokeslets along the centreline of a slender

body, which is translating parallel and very close to a flat interface

between two immiscible fluids, we were able to obtain expressions for the

force distributions on the slender body. It was shown that the force

distributions (which are approximately constant along most of the slender

body, except near the endpoints) in the limiting case of a rigid plane

boundary, are greater than the equivalent results for an infinite fluid.

For a flat free surface boundary the force distributions were found to be

greater for motion normal to the free surface but less for tangential

motion parallel to the free surface.

It is expected that the results obtained in this paper will have

important consequences regarding our understanding of the motion of

particles near different types of fluid-fluid interfaces.
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