IDEAL EXTENSIONS OF Γ-RINGS

A. J. M. SNYDERS and S. VELDSMAN

(Received 20 November 1990; revised 18 February 1991)

Communicated by P. Schultz

Abstract

Given Γ-rings N_{1} and N_{2}, a construction similar to the Everett sum of rings to find all possible extensions of N_{1} by N_{2} is given. Unlike the case of rings, it is not possible to find for any Γ-ring M an ideal extension that has a unity. Furthermore, contrary to the ring case, a Γ-ring with unity can not be characterized as a Γ-ring which is a direct summand in every extension thereof.

1991 Mathematics subject classification (Amer. Math. Soc.): 16 Y 99.

1. Introduction

The extension problem is a central one in the study of a specific algebraic structure. It is our purpose here to give a solution to this problem for Γ-rings. Γ-rings were introduced by Nobusawa [5] to provide an algebraic home for the groups $\operatorname{Hom}(A, B)$ and $\operatorname{Hom}(B, A)$ (where A and B are abelian groups) and the relationship between them. Since its inception, Γ-rings have received much attention, see our references and their references, (for example, Booth and Groenewald [2] and Kyuno [4]).

An extension E of a Γ-ring M by a Γ-ring N is a Γ-ring E satisfying the following conditions: (i) M is isomorphic to an ideal I of E and (ii) E / I is isomorphic to N. An extension E of M by N will be denoted by a triple (f, E, g) where f is the Γ-ring isomorphism mapping M onto the ideal I of E and g is the Γ-ring homomorphism from E onto N with M (or its isomorphic image I in E) as its kernel. The functions f

[^0]and g will be referred to as the functions associated with the extension. In most cases we identify M with I and N with E / I. The solutions for the corresponding problem for groups and rings were given by Schreir [8] and Everett [3] respectively (but see also Rédei [7] for an account of both).

As a generalization of rings, it can be expected that the solution of the extension problem for Γ-rings should be along the lines of the ring case. Using the ideas of Petrich [6], who reformulated the ring extension theorem in terms of what he calls the translational hull of a ring this is to an extent the case. But there are some striking differences as well. In Section 2, the translational hull of a Γ-ring is described. This is then used in Section 3 to construct extensions of Γ-rings. The solution to the extension problem for Γ-rings as well as criteria for the equivalence of extensions are given. Using the concepts of double homothetisms and holomorphs developed in Sections 4 and 5 , a discussion on extensions of Γ-rings to Γ-rings with unity is given in Section 6. The main result here is that, unlike the case for rings, it is not possible to embed any Γ-ring as an ideal in a Γ-ring with unity. Furthermore, contrary to the ring case, where a ring with an identity can be characterized as a ring which is a direct summand in every extension thereof, an example is given to show that this is not the case for Γ-rings.

2. Translational hull of a Γ-ring

Γ-rings as a generalization of rings were first defined by Nobusawa [3]. The definition that we will use is the somewhat weaker one due to Barnes [1]. In the sequel M denotes a Γ-ring. We now introduce the translational hull of M along the lines of the ring case (cf. Petrich [6]).

Definition 2.1. Let $\mathscr{E}(M)=\left\{p: \Gamma \rightarrow \operatorname{End}\left(M^{+}\right) \mid p\right.$ is a group homomorphism .
(1) If $r \in \mathscr{E}(M)$ then r is a left translation of M (in which case the argument is written on the right and $r(\gamma)$ is denoted by r_{γ}) if

$$
r_{\gamma}\left(m_{1} \mu m_{2}\right)=\left(r_{\gamma}\left(m_{1}\right)\right) \mu m_{2} \quad \text { for all } m_{1}, m_{2} \in M, \gamma, \mu \in \Gamma
$$

(2) If $q \in \mathscr{E}(M)$ then q is a right translation of M, (in which case the argument is written on the left and $(\gamma) q$ is denoted by ${ }_{\gamma} q$) if

$$
\left(m_{1} \mu m_{2}\right)_{\gamma} q=m_{1} \mu\left(\left(m_{2}\right)_{\gamma} q\right) \quad \text { for all } m_{1}, m_{2} \in M, \gamma, \mu \in \Gamma
$$

(3) A pair $p=(r, q) \in \mathscr{E}(M) \times \mathscr{E}(M)$ is called a bitranslation of M if r is a left translation, q is a right translation and for any $m_{1}, m_{2} \in M, \gamma, \mu \in$ $\Gamma m_{1} \gamma\left(r_{\mu}\left(m_{2}\right)\right)=\left(\left(m_{1}\right)_{\gamma} q\right) \mu m_{2}$, in which case (r, q) is said to be linked.

A bitranslation p will be considered as a double operator with $p(\gamma)=$ $p_{\gamma}=r_{\gamma}$ and $(\gamma) p={ }_{\gamma} p={ }_{\gamma} q$.

Theorem 2.2. Let M be a Γ-ring. Both the sets $\mathscr{E}_{e}(M)$ and $\mathscr{E}_{r}(M)$ of all the left and right translations of M respectively are Γ-rings.

Proof. Let $\mathscr{C}_{\boldsymbol{C}}(M)=\{p \in \mathscr{E}(M) \mid p$ is a left translation $\}$. The set $\mathscr{E}_{\ell}(M)$ is not empty, cf. Example 2.5. Define addition on $\mathscr{E}_{\ell}(M)$ by $\left(p^{1}+p^{2}\right)_{\gamma}=$ $p_{\gamma}^{1}+p_{\gamma}^{2}$ for all $p^{1}, p^{2} \in \mathscr{E}_{\ell}(M)$ and any $\gamma \in \Gamma$. Then $\mathscr{E}_{\ell}(M)$ is an abelian group with zero element 0 defined by $0_{\gamma}(m)=0$ and the additive inverse $-p$ of $p \in \mathscr{E}_{\ell}(M)$, defined by $(-p)_{\gamma}(m)=-p_{\gamma}(m)$. Define the $\operatorname{map}(-,-,-): \mathscr{E}_{\ell}(M) \times \Gamma \times \mathscr{E}_{\ell}(M) \rightarrow \mathscr{E}_{\ell}(M)$ by $\left(p^{1} \gamma p^{2}\right)_{\mu}=p_{\gamma}^{1} \circ p_{\mu}^{2}$ for all $p^{1}, p^{2} \in \mathscr{E}_{\ell}(M), \gamma, \mu \in \Gamma$, where \circ is the usual composition of functions. This mapping is well defined and straightforward calculations will confirm that $\mathscr{E}_{\ell}(M)$ is a Γ-ring with respect to the operations defined above. By defining, for any $q^{1}, q^{2} \in \mathscr{E}_{\Gamma}(M)$ and $\gamma \in \Gamma, q^{1} \gamma q^{2}$ to be the right translation given by ${ }_{\lambda}\left(q^{1} \lambda q^{2}\right)={ }_{\lambda} q^{1} \circ_{\gamma} q^{2}$ for all $\lambda \in \Gamma$, we can show similarly that $\mathscr{E}_{r}(M)$ is a Γ-ring.

Definition 2.3. The set $\mathscr{E}_{2}(M)$ of all bitranslations of M is called the translational hull of M.

Theorem 2.4. The translational hull $\mathscr{E}_{2}(M)$ of $a \Gamma$-ring M is $a \Gamma$-ring with respect to the operations defined by $(p+q)_{\gamma}=p_{\gamma}+q_{\gamma},_{\gamma}(p+q)=$ ${ }_{\gamma} p+{ }_{\gamma} q,(p \gamma q)_{\lambda}=p_{\gamma} \circ q_{\lambda}$ and $_{\lambda}(p \gamma q)={ }_{\lambda} p \circ_{\gamma} q$ for all $p, q \in \mathscr{E}_{2}(M), \gamma, \lambda, \in \Gamma$.

Proof. The set $\mathscr{E}_{2}(M)$ is not empty (cf. Example 2.5) and $\mathscr{E}_{2}(M)$ is an abelian group: We only show $\mathscr{E}_{2}(M)$ is closed under addition: Let $p, q \in$ $\mathscr{E}_{2}(M)$. If $p=\left(r^{1}, s^{1}\right)$ and $q=\left(r^{2}, s^{2}\right)$, then $p+q=\left(r^{1}+r^{2}, s^{1}+s^{2}\right)$. Theorem 2.2 yields that $r^{1}+r^{2}$ and $s^{1}+s^{2}$ are left and right translations respectively. To see that $p+q \in \mathscr{E}_{2}(M)$, let $m_{1}, m_{2} \in M$ and $\gamma, \mu \in \Gamma$. Then

$$
\begin{aligned}
m_{1} \mu\left((p+q)_{\gamma}\left(m_{2}\right)\right) & =m_{1} \mu\left(p_{\gamma}\left(m_{2}\right)\right)+m_{1} \mu\left(q_{\gamma}\left(m_{2}\right)\right) \\
& =\left(\left(m_{1}\right)_{\mu} p\right) \gamma m_{2}+\left(\left(m_{1}\right)_{\mu} q\right) \gamma m_{2} \\
& =\left(\left(m_{1}\right)_{\mu}(p+q)\right) \gamma m_{2} .
\end{aligned}
$$

Thus $p+q$ is linked and so $p+q \in \mathscr{E}_{2}(M)$.
Define the map (-,-,-): $\mathscr{E}_{2}(M) \times \Gamma \times \mathscr{E}_{2}(M) \rightarrow \mathscr{E}_{2}(M)$ by $(p \gamma q)_{\lambda}=$ $p_{\gamma} \circ q_{\lambda}$ and ${ }_{\lambda}(p \gamma q)={ }_{\lambda} p \circ_{\gamma} q$. Let $p, q \in \mathscr{E}_{2}(M)$. If $p=\left(r^{1}, s^{1}\right)$ and $q=\left(r^{2}, s^{2}\right)$, then $p \gamma q=\left(r^{1} \gamma r^{2}, s^{1} \gamma s^{2}\right)$ where $r^{1} \gamma r^{2}$ and $s^{1} \gamma s^{2}$ are defined by $\left(r^{1} \gamma r^{2}\right)_{\lambda}=4_{\gamma}^{1} \circ r_{\lambda}^{2}$ and $\lambda_{\lambda}\left(s^{1} \gamma s^{2}\right)={ }_{\lambda} s^{1} \circ{ }_{\gamma} s^{2}$. Then $r^{1} \gamma r^{2} \in \mathscr{E}_{l}(M)$ and
$s^{1} \gamma s^{2} \in \mathscr{E}_{r}(M)$ (from Theorem 2.2). For any $m_{1}, m_{2} \in M, \lambda, \mu \in \Gamma$,

$$
m_{1} \mu\left((p \gamma q)_{\lambda}\left(m_{2}\right)\right)=m_{1} \mu\left(p_{\gamma}\left(q_{\lambda}\left(m_{2}\right)\right)\right)=\left(\left(m_{1}\right)_{\mu} p\right) \gamma\left(q_{\lambda}\left(m_{2}\right)\right)
$$

and

$$
\left(\left(m_{1}\right)_{\mu}(p \gamma q)\right) \gamma m_{2}=\left(\left(\left(m_{1}\right)_{\mu} p\right)_{\gamma} q\right) \lambda m_{2}=\left(\left(m_{1}\right)_{\mu} p\right) \gamma\left(q_{\lambda}\left(m_{2}\right)\right) .
$$

Hence $p \gamma q$ is linked so that $p \gamma q \in \mathscr{E}_{\ell}(M)$. The rest of the proof that $\mathscr{E}_{2}(M)$ is a Γ-ring follows directly from the proofs that $\mathscr{E}_{\ell}(M)$ and $\mathscr{E}_{r}(M)$ are Γ-rings.

The Γ-ring $\mathscr{E}_{2}(M)$ will be used in Section 3 to construct extensions of Γ-rings, while $\mathscr{E}_{\ell}(M)$ and $\mathscr{E}_{r}(M)$ are of good use when considering Γ-ring extensions with unity (cf. Section 6). The next example shows that $\mathscr{E}_{2}(M)$ (and also $\mathscr{E}_{\ell}(M)$ and $\mathscr{E}_{r}(M)$) is not empty for any Γ-ring M.

Example 2.5. Any $m \in M$ determines a bitranslation of M as follows: Define $p^{m}: \Gamma \rightarrow \operatorname{End}\left(M^{+}\right)$and $q^{m}: \Gamma \rightarrow \operatorname{End}\left(M^{+}\right)$by $p^{m}(\gamma)=p_{\gamma}^{m}$ and $(\gamma) q^{m}={ }_{\gamma} q^{m}$ where $p_{\gamma}^{m}(n)=m \gamma n$ and $(n)_{\gamma} q^{m}=n \gamma m$ for all $m, n \in M$ and $\gamma \in \Gamma$. It is clear that p^{m} is a left translation and q^{m} is a right translation of M. The pair (p^{m}, q^{m}) is linked; hence (p^{m}, q^{m}) is a bitranslation of M which we will denote by $[m]=\left(p^{m}, q^{m}\right)$.

Definition 2.6. The bitranslation $[m$] constructed in Example 2.5 is called the inner bitranslation of M induced by m. The set of all inner bitranslations of M will be denoted by $\mathcal{I}(M)$.

The inner bitranslations play an important role in the theory of Γ-rings with unities (cf. Sections 4 and 6).

Definition 2.7. (i) Two bitranslations p and q of M are amicable if for any $\gamma, \mu \in \Gamma$ and $m \in M$

$$
p_{\gamma}\left((m)_{\mu} q\right)=\left(p_{\gamma}(m)\right)_{\mu} q \quad \text { and } q_{\gamma}\left((m)_{\mu} p\right)=\left(q_{\gamma}(m)\right)_{\mu} p .
$$

(ii) An amicable set of bitranslations of M is a set of bitranslations of M for which all the elements are pairwise amicable.

Theorem 2.8. $\mathscr{F}(M)$ is a set of amicable bitranslations of M and $\mathscr{I}(M)$ is an ideal of the Γ-ring $\mathscr{E}_{2}(M)$ of bitranslations of M.

Proof. It is straightforward to verify that $\mathscr{F}(M)$ is an ideal of $\mathscr{E}_{2}(M)$. Any two elements of $\mathscr{I}(M)$ are amicable: Let $\left[n_{1}\right],\left[n_{2}\right] \in \mathscr{I}(M)$. Then for any $m \in M, \gamma, \mu \in \Gamma$:

$$
\begin{aligned}
& {\left[n_{1}\right]_{\gamma}\left((m)_{\mu}\left[n_{2}\right]\right)=n_{1} \gamma\left(m \mu n_{2}\right)=\left(n_{1} \gamma m\right) \mu n_{2}=\left(\left[n_{1}\right]_{\gamma}(m)\right)_{\mu}\left[n_{2}\right] \quad \text { and }} \\
& {\left[n_{2}\right]_{\gamma}\left((m)_{\mu}\left[n_{1}\right]\right)=n_{2} \gamma\left(m \mu n_{1}\right)=\left(n_{2} \gamma m\right) \mu n_{1}=\left(\left[n_{2}\right]_{\gamma}(m)\right)_{\mu}\left[n_{1}\right] .}
\end{aligned}
$$

3. Extensions of Γ-rings

A Γ-ring can be considered as an Ω-group. As such we immediately have at our disposal the concepts homomorphism, isomorphism, kernel and the isomorphism theorems. The following construction will show, given Γ-rings M and N, how an extension of M by N can be constructed. Recall, for $m \in M,[m]$ is the inner bitranslation of M induced by m.

Construction 3.1. Let M and N be two Γ-rings. Let (p, F, G) be a triple of functions with $p: N \rightarrow \mathscr{E}_{2}(M)$ denoting $p(n)$ by $p^{n} \in \mathscr{E}_{2}(M), F: N$ $\times N \rightarrow M$ and $g: N \times \Gamma \times N \rightarrow M$ satisfying the following conditions for all $n, n_{1}, n_{2}, n_{3} \in N$ and $\gamma, \mu \in \Gamma$:
(E1) $F(n, 0)=F(0, n)=G(0, \gamma, n)=G(n, \gamma, 0)=0 ; p^{0}=[0]$;
(E2) $p^{n_{1}}$ is amicable with $p^{n_{2}}$;
(E3) $p^{n_{1}}+p^{n_{2}}-p^{n_{1}+n_{2}}=\left[F\left(n_{1}, n_{2}\right)\right]$;
(E4) $p^{n_{1}} \gamma p^{n_{2}}-p^{n_{1} \gamma n_{2}}=\left[G\left(n_{1}, \gamma, n_{2}\right)\right]$;
(E5) $F\left(n_{1}, n_{2}\right)=F\left(n_{2}, n_{1}\right)$;
(E6) $F\left(n_{1}, n_{2}\right)+F\left(n_{1}+n_{2}, n_{3}\right)=F\left(n_{1}, n_{2}+n_{3}\right)+F\left(n_{2}, n_{3}\right)$;
(E7) $G\left(n_{1} \gamma n_{2}, \mu, n_{3}\right)-G\left(n_{1}, \gamma, n_{2}, \mu n_{3}\right)=p_{\gamma}^{n_{1}}\left(G\left(n_{2}, \mu, n_{3}\right)\right)$ $-\left(G\left(n_{1}, \gamma, n_{2}\right)\right)_{\mu} p^{n_{3}} ;$
(E8) $\quad G\left(n_{1}, \gamma, n_{3}\right)+G\left(n_{2}, \gamma, n_{3}\right)-G\left(n_{1}+n_{2}, \gamma, n_{3}\right)=\left(F\left(n_{1}, n_{2}\right)\right)_{\gamma} p^{n_{3}}-$ $F\left(n_{1} \gamma n_{3}, n_{2} \gamma n_{3}\right)$;
(E9) $G\left(n_{1}, \gamma, n_{2}\right)+G\left(n_{1}, \gamma, n_{3}\right)-G\left(n_{1}, \gamma, n_{2}+n_{3}\right)=p_{\gamma}^{n_{1}}\left(F\left(n_{2}, n_{3}\right)\right)-$ $F\left(n_{1} \gamma n_{2}, n_{1} \gamma n_{3}\right)$;
(E10) $G\left(n_{1}, \gamma+\mu, n_{2}\right)=G\left(n_{1}, \gamma, n_{2}\right)+G\left(n_{1}, \mu, n_{2}\right)+F\left(n_{1} \gamma n_{2}, n_{1} \mu n_{2}\right)$.
Let $E=N \times M$ with addition defined on E by

$$
\left(n_{1}, m_{1}\right)+\left(n_{2}, m_{2}\right)=\left(n_{1}+n_{2}, F\left(n_{1}, n_{2}\right)+m_{1}+m_{2}\right)
$$

and a mapping $(-,-,-): E \times \Gamma \times E \rightarrow E$ defined by $\left(n_{1}, m_{1}\right) \gamma\left(n_{2}, m_{2}\right)=\left(n_{1} \gamma n_{2}, G\left(n_{1}, \gamma, n_{2}\right)+p_{\gamma}^{n_{1}}\left(m_{2}\right)+\left(m_{1}\right)_{\gamma} p^{n_{2}}+m_{1} \gamma m_{2}\right)$. Define the functions:

$$
\begin{array}{ll}
f: M \rightarrow E & \text { by } f(m)=(0, m) \quad \text { for all } m \in M \quad \text { and } \\
g: E \rightarrow N & \text { by } g(n, m)=n \quad \text { for all }(n, m) \in E
\end{array}
$$

Definition 3.2. The triple $(f, E, g$) of Construction 3.1 is denoted by $E(p, F, G)$ and is called an E-sum of the Γ-rings N and M.

Theorem 3.3. The E-sum $E(p, F, G)$ of the Γ-rings N and M is an extension of M by N.

Proof. Using conditions (E1), (E5) and (E6), it can be verified that E is an abelian group with zero element $(0,0)$ and $-(n, m)=(-n,-F(n,-n)$ $-m) . E$ is a Γ-ring: Let $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),\left(n_{3}, m_{3}\right) \in E, \gamma, \mu \in \Gamma$. Then
(i) $\left(\left(n_{1}, m_{1}\right)+\left(n_{2}, m_{2}\right)\right) \gamma\left(n_{3}, m_{3}\right)$

$$
\begin{aligned}
= & \left(\left(n_{1}+n_{2}\right) \gamma n_{3}, G\left(n_{1}+n_{2}, \gamma, n_{3}\right)+p^{n_{1}+n_{2}}\left(m_{3}\right)\right. \\
& \left.+\left(F\left(n_{1}, n_{2}\right)+m_{1}+m_{2}\right)_{\gamma} p^{n_{3}}+\left(F\left(n_{1}, n_{2}\right)+m_{1}+m_{2}\right) \gamma m_{3}\right) \\
= & \left(n_{1} \gamma n_{3}+n_{2} \gamma n_{3}, G\left(n_{1}+n_{2}, \gamma, n_{3}\right)+p_{\gamma}^{n_{1}}\left(m_{3}\right)+p_{\gamma}^{n_{2}}\left(m_{3}\right)\right. \\
& -\left[F\left(n_{1}, n_{2}\right)\right]_{\gamma}\left(m_{3}\right) \\
& +\left(F\left(n_{1}, n_{2}\right)\right)_{\gamma} p^{n_{3}}+\left(m_{1}\right)_{\gamma} p^{n_{3}}+\left(m_{2}\right)_{\gamma} p^{n_{3}}+F\left(n_{1}, n_{2}\right) \gamma m_{3} \\
& \left.+m_{1} \gamma m_{3}+m_{2} \gamma m_{3}\right)(\text { Condition }(\mathrm{E} 3)) \\
= & \left(n_{1} \gamma n_{3}+n_{2} \gamma n_{3}, F\left(n_{1} \gamma n_{3}, n_{2} \gamma n_{3}\right)+G\left(n_{1}, \gamma, n_{3}\right)\right. \\
& +G\left(n_{2}, \gamma, n_{3}\right)+p_{\gamma}^{n_{1}}\left(m_{3}\right)+p_{\gamma}^{n_{2}}\left(m_{3}\right)+\left(m_{1}\right)_{\gamma} p^{n_{3}}+\left(m_{2}\right)_{\gamma} p^{n_{3}} \\
& \left.+m_{1} \gamma m_{3}+m_{2} \gamma m_{3}\right)(\text { Condition }(\mathrm{E} 8)) \\
= & \left(n_{1}, m_{1}\right) \gamma\left(n_{3}, m_{3}\right)+\left(n_{2}, m_{2}\right) \gamma\left(n_{3}, m_{3}\right) .
\end{aligned}
$$

(ii) $\quad\left(n_{1}, m_{1}\right)(\gamma+\mu)\left(n_{2}, m_{2}\right)$

$$
\begin{aligned}
= & \left(n_{1} \gamma n_{2}+n_{1} \mu n_{2}, F\left(n_{1} \gamma n_{2}, n_{1} \mu n_{2}\right)+G\left(n_{1}, \gamma, n_{2}\right)\right. \\
& +G\left(n_{1}, \mu, n_{2}\right)+p_{\gamma}^{n_{1}}\left(m_{2}\right) \\
& \left.+p_{\mu}^{n_{1}}\left(m_{2}\right)+\left(m_{1}\right)_{\gamma} p^{n_{2}}+\left(m_{1}\right)_{\mu} p^{n_{2}}+m_{1} \gamma m_{2}+m_{1} \mu m_{2}\right) \\
= & \left(n_{1}, m_{1}\right) \gamma\left(n_{2}, m_{2}\right)+\left(n_{1}, m_{1}\right) \mu\left(n_{2}, m_{2}\right) .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \left(n_{1}, m_{1}\right) \gamma\left(\left(n_{2}, m_{2}\right)+\left(n_{3}, m_{3}\right)\right) \\
& \quad=\left(n_{1}, m_{1}\right) \gamma\left(n_{2}, m_{2}\right)+\left(n_{1}, m_{1}\right) \gamma\left(n_{3}, m_{3}\right)
\end{aligned}
$$

is similar to (i) using conditions (E3) and (E9).
(iv) $\left(n_{1}, m_{1}\right) \gamma\left(\left(n_{2}, m_{2}\right) \mu\left(n_{3}, m_{3}\right)\right)$

$$
\left.\begin{array}{rl}
= & \left(n_{1} \gamma\left(n_{2} \mu n_{3}\right), G\left(n_{1}, \gamma, n_{2} \mu n_{3}\right)+p_{\gamma}^{n_{1}}\left(G\left(n_{2}, \mu, n_{3}\right)+p_{\mu}^{n_{2}}\left(m_{3}\right)\right.\right. \\
& \left.+\left(m_{2}\right)_{\mu} p^{n_{3}}+m_{2} \mu m_{3}\right) \\
& +\left(m_{1}\right)_{\gamma} p^{n_{2}} \mu n_{3}+m_{1} \gamma\left(G\left(n_{2}, \mu, n_{3}\right)+\right.
\end{array}\right) p_{\mu}^{n_{2}}\left(m_{3}\right) .
$$

$$
\begin{aligned}
= & \left(\left(n_{1} \gamma n_{2}\right) \mu n_{3}, G\left(n_{1}, \gamma, n_{2} \mu n_{3}\right)+p_{\gamma}^{n_{1}}\left(G\left(n_{2}, \mu, n_{3}\right)\right)+p_{\gamma}^{n_{1}}\left(p_{\mu}^{n_{2}}\left(m_{3}\right)\right)\right. \\
& +p_{\gamma}^{n_{1}}\left(\left(m_{1}\right)_{\mu} p^{n_{3}}\right)+p_{\gamma}^{n_{1}}\left(m_{2} \mu m_{3}\right)+\left(m_{1}\right)_{\gamma}\left(p^{n_{2}} \mu p^{n_{3}}\right) \\
& -\left(m_{1}\right)_{\gamma}\left[G\left(n_{2}, \mu, n_{3}\right)\right]+m_{1} \gamma G\left(n_{2}, \mu, n_{3}\right)+m_{1} \gamma p_{\mu}^{n_{2}}\left(m_{3}\right) \\
& \left.+m_{1} \gamma\left(\left(m_{2}\right)_{\mu} p^{n_{3}}\right)+m_{1} \gamma\left(m_{2} \mu m_{3}\right)\right) \quad(\text { Condition }(\mathrm{E} 4)) \\
= & \left(\left(n_{1} \gamma n_{2}\right) \mu n_{3}, G\left(n_{1}, \gamma, n_{2} \mu n_{3}\right)+p_{\gamma}^{n_{1}}\left(G\left(n_{2}, \mu, n_{3}\right)\right)\right. \\
& +\left(p^{n_{1}} \gamma p^{n_{2}}\right)_{\mu}\left(m_{3}\right)+p_{\gamma}^{n_{1}}\left(\left(m_{2}\right)_{\mu} p^{n_{3}}\right), p_{\gamma}^{n_{1}}\left(m_{2} \mu m_{3}\right) \\
& +\left(\left(m_{1}\right)_{\gamma} p_{\mu}^{n_{2}-{ }_{\mu}} p^{n_{3}}-m_{1} \gamma G\left(n_{2}, \mu, n_{3}\right)\right. \\
& +m_{1} \gamma G\left(n_{2}, \mu, n_{3}\right)+m_{1} \gamma p_{\mu}^{n_{2}}\left(m_{3}\right)+m_{1} \gamma\left(\left(m_{2}\right)_{\mu} p^{n_{3}}\right) \\
& \left.+m_{1} \gamma\left(m_{2} \mu m_{3}\right)\right) \\
= & \left(\left(n_{1} \gamma n_{2}\right) \mu n_{3}, G\left(n_{1} \gamma n_{2}, \mu, n_{3}\right)+\left(G\left(n_{1}, \gamma, n_{2}\right)\right)_{\mu} p^{n_{3}}+p_{\mu}^{n_{1} \gamma n_{2}}\left(m_{3}\right)\right. \\
& +\left[G\left(n_{1}, \gamma, n_{2}\right)\right]_{\mu}\left(m_{3}\right)+\left(p_{\gamma}^{n_{1}}\left(m_{2}\right)\right)_{\mu} p^{n_{3}}+\left(p_{\gamma}^{n_{1}}\left(m_{2}\right)\right) \mu m_{3} \\
& +\left(\left(m_{1}\right)_{\gamma} p^{n_{2}}\right)_{\mu} p^{n_{3}}+\left(m_{1}\right)_{\gamma} p^{n_{2}} \mu m_{3}+\left(m_{1} \gamma m_{2}\right)_{\mu} p^{n_{3}} \\
& \left.+\left(m_{1} \gamma m_{2}\right) \mu m_{3}\right)(\mathrm{Conditions}(\mathrm{E} 7),(\mathrm{E} 4) \text { and }(\mathrm{E} 2)) \\
= & \left(\left(n_{1} \gamma n_{2}\right) \mu n_{3}, G\left(n_{1} \gamma n_{2}, \mu, n_{3}\right)+p_{\mu}^{n_{1} \gamma n_{2}}\left(m_{3}\right)+\left(G\left(n_{1}, \gamma, n_{2}\right)\right)_{\mu} p^{n_{3}}\right. \\
& +\left(p_{\gamma}^{n_{1}}\left(m_{2}\right)\right)_{\mu} p^{n_{3}}+\left(\left(m_{1}\right)_{\gamma} p^{n_{1}}\right)_{\mu} p^{n_{3}}+\left(m_{1} \gamma m_{2}\right)_{\mu} p^{n_{3}} \\
& +G\left(n_{1}, \gamma, n_{2}\right) \mu m_{3} \\
& +\left(p_{\gamma}^{n_{1}}\left(m_{2}\right)\right) \mu m_{3}+\left(m_{1}\right)_{\gamma} p^{n_{2}} \mu m_{3}+\left(m_{1} \gamma m_{2}\right) \mu m_{3} \\
= & \left(\left(n_{1}, m_{1}\right) \gamma\left(n_{2}, m_{2}\right)\right) \mu\left(n_{3}, m_{3}\right) .
\end{aligned}
$$

Let $I=\{(0, m) \mid m \in M\}$. Then $I \triangleleft M$ and the function $f: M \rightarrow E$ defined by $f(m)=(0, m)$ for all $m \in M$ is a Γ-ring isomorphism from M onto the ideal I of E. Furthermore, $g: E \rightarrow N$ defined by $g(n, m)=n$ for all $(n, m) \in E$ is a surjective Γ-ring homomorphism with $\operatorname{ker}(g)=I$. Thus $E / M \cong N$ and $E(p, F, G)$ is an extension of M by N.

Definition 3.4. Two extensions (f, E, g) and $\left(f^{\prime}, E^{\prime}, g^{\prime}\right)$ of a Γ-ring M by a Γ-ring N are equivalent if there exists a Γ-ring isomorphism $h: E \rightarrow$ E^{\prime} such that the following diagram commutes:

The next construction shows how an E-sum equivalent to a given extension of M by N can be found.

CONSTRUCTION 3.5. Let A be an extension of a Γ-ring M by a Γ-ring N, with $M \triangleleft A$ and $A / M \cong N$. The elements of N will be regarded as cosets determined by M in A. Let $k: N \rightarrow A$ be a function on N with $k(n) \in n$ such that $g \circ k$ is the identity function on N where g is the natural homomorphism of A onto $N=A / M$, subject to $k(0)=0$. Define the following functions:
(i) $p: N \rightarrow \mathscr{E}_{2}(M)$, we write $n \mapsto p^{n}$, by $p_{\gamma}^{n}(m)=k(n) \gamma m$ and $(m)_{\gamma} p^{n}=$ $m \gamma k(n)$ for any $m \in M$ and $\gamma \in \Gamma$. In a sense p^{n} can be regarded as the restriction of $[k(n)]$ to M; hence we sometimes write $p^{n}=[k(n)] \mid M$.
(ii) $F: N \times N \rightarrow M$ by $F\left(n_{1}, n_{2}\right)=k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right)$ for all n_{1}, $n_{2} \in N$.
(iii) $G: N \times \Gamma \times N \rightarrow M$ by $G\left(n_{1}, \gamma, n_{2}\right)=k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right)$ for all $n_{1}, n_{2} \in N, \gamma \in \Gamma$.

Theorem 3.6. The functions p, F and G of Construction 3.5 satisfy the conditions of Construction 3.1 to be an E-sum $E=E(p, F, G)$ of N and M. Furthermore, the extension A is equivalent to the E-sum by the equivalence isomorphism $l: A \rightarrow E$ defined by

$$
l(a)=(g(a), a-k(g(a))) \quad \text { for all } a \in A
$$

Proof. To see that p, F and G are well defined we observe that:
(i) $n \in N \Rightarrow k(n) \in A \Rightarrow[k(n)] \in \mathscr{E}_{2}(A)$ and thus $[k(n)] \mid M \in \mathscr{E}_{2}(M)$, since $M \triangleleft A$.
(ii) $g\left(k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right)\right)=g\left(k\left(n_{1}\right)\right)+g\left(k\left(n_{2}\right)\right)-g\left(k\left(n_{1}+n_{2}\right)\right)$

$$
=n_{1}+n_{2}-\left(n_{1}+n_{2}\right)=0
$$

that is, $k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right) \in \operatorname{ker}(g)=M$ for any $n_{1}, n_{2} \in N$.
(iii) $g\left(k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right)\right)=g\left(k\left(n_{1}\right)\right) \gamma g\left(k\left(n_{2}\right)\right)-g\left(k\left(n_{1} \gamma n_{2}\right)\right)$

$$
=n_{1} \gamma n_{2}-n_{1} \gamma n_{2}=0
$$

that is, $k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right) \in \operatorname{ker}(g)=M$ for any $n_{1}, n_{2} \in N, \gamma \in \Gamma$.
For any $n, n_{1}, n_{2}, n_{3} \in N, \gamma, \mu \in \Gamma, m \in M$, the conditions of Construction 3.1 are satisfied (using the definitions of p, F and G in Construction 3.5):
(E1) Follows directly from the definitions.

$$
\begin{align*}
p_{\gamma}^{n_{1}}\left((m)_{\mu} p^{n_{2}}\right) & =k\left(n_{1}\right) \gamma\left(m \mu k\left(n_{2}\right)\right)=\left(k\left(n_{1}\right) \gamma m\right) \mu k\left(n_{2}\right) \tag{E2}\\
& =\left(p_{\gamma}^{n_{1}}(m)\right)_{\mu} p^{n_{2}}
\end{align*}
$$

(E3) $p^{n_{1}}+p^{n_{2}}-p^{n_{1}+n_{2}}=\left[k\left(n_{1}\right)\right]+\left[k\left(n_{2}\right)\right]-\left[k\left(n_{1}+n_{2}\right)\right]$

$$
=\left[k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right)\right]=\left[F\left(n_{1}, n_{2}\right)\right]
$$

(E4) $\quad p^{n_{1}} \gamma p^{n_{2}}-p^{n_{1} \gamma n_{2}}=\left[k\left(n_{1}\right)\right] \gamma\left[k\left(n_{2}\right)\right]-\left[k\left(n_{1} \gamma n_{2}\right)\right]$

$$
=\left[k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right)\right]=\left[G\left(n_{1}, \gamma, n_{2}\right)\right]
$$

$$
\begin{align*}
F\left(n_{1}, n_{2}\right) & =k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right) \tag{E5}\\
& =k\left(n_{2}\right)+k\left(n_{1}\right)-k\left(n_{2}+n_{1}\right)=F\left(n_{2}, n_{1}\right)
\end{align*}
$$

(E6)

$$
\begin{aligned}
& F\left(n_{1}, n_{2}\right)+F\left(n_{1}+n_{2}, n_{3}\right) \\
& \quad=k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right)+k\left(n_{1}+n_{2}\right)+k\left(n_{3}\right)-k\left(\left(n_{1}+n_{2}\right)+n_{3}\right. \\
& \quad=k\left(n_{1}\right)+k\left(n_{2}+n_{3}\right)-k\left(n_{1}+\left(n_{2}+n_{3}\right)\right)+k\left(n_{2}\right)+k\left(n_{3}\right)-k\left(n_{2}+n_{2}\right) \\
& \quad=F\left(n_{1}, n_{1}+n_{3}\right)+F\left(n_{2}, n_{3}\right)
\end{aligned}
$$

(E7)

$$
\begin{aligned}
G\left(n_{1} \gamma\right. & \left.n_{2}, \mu, n_{3}\right)-G\left(n_{1}, \gamma, n_{2} \mu n_{3}\right. \\
= & k\left(n_{1} \gamma n_{2}\right) \mu k\left(n_{3}\right)-k\left(n_{1}\right) \gamma\left(k\left(n_{2} \gamma n_{3}\right)+k\left(n_{1}\right) \gamma\left(k\left(n_{2}\right) \mu k\left(n_{3}\right)\right)\right. \\
& -\left(k\left(n_{1}\right) \gamma k\left(n_{2}\right)\right) \mu k\left(n_{3}\right) \\
= & k\left(n_{1}\right) \gamma\left(k\left(n_{2}\right) \mu k\left(n_{3}\right)-k\left(n_{2} \mu n_{3}\right)\right)-\left(k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right)\right) \mu k\left(n_{3}\right) \\
= & {\left[k\left(n_{1}\right)\right]_{\gamma}\left(G\left(n_{2}, \mu, n_{3}\right)\right)-\left(G\left(n_{1}, \gamma, n_{2}\right)\right)_{\mu}\left[k\left(n_{3}\right)\right] } \\
= & p_{\gamma}^{n_{1}}\left(G\left(n_{2}, \mu, n_{3}\right)\right)-\left(G\left(n_{1}, \gamma, n_{2}\right)\right)_{\mu} p^{n_{3}}
\end{aligned}
$$

(E8) $G\left(n_{1}, \gamma, n_{3}\right)+G\left(n_{2}, \gamma, n_{3}\right)-G\left(n_{1}+n_{2}, \gamma, n_{3}\right)$

$$
\begin{aligned}
= & \left(k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right)\right) \gamma k\left(n_{3}\right)-\left(k\left(n_{1} \gamma n_{3}\right)+k\left(n_{2} \gamma n_{3}\right)\right. \\
& \left.-k\left(n_{1} \gamma n_{3}+n_{2} \gamma n_{3}\right)\right) \\
= & \left(F\left(n_{1}, n_{2}\right)\right)_{\gamma}\left[k\left(n_{3}\right)\right]-F\left(n_{1} \gamma n_{3}, n_{2} \gamma n_{3}\right) \\
= & \left(F\left(n_{1}, n_{2}\right)\right)_{\gamma} p^{n_{3}}-F\left(n_{1} \gamma n_{3}, n_{2} \gamma n_{3}\right)
\end{aligned}
$$

$$
\begin{align*}
& G\left(n_{1}, \gamma, n_{2}\right)+G\left(n_{1}, \gamma, n_{3}\right)-G\left(n_{1}, \gamma, n_{2}+n_{3}\right) \tag{E9}\\
& \quad=p_{\gamma}^{n_{1}}\left(F\left(n_{2}, n_{3}\right)\right)-F\left(n_{1} \gamma n_{2}, n_{1} \gamma n_{3}\right)
\end{align*}
$$

As in (E8),
(E10) $\left(G\left(n_{1}, \gamma+\mu, n_{2}\right)-G\left(n_{1}, \gamma, n_{2}\right)-G\left(n_{1}, \mu, n_{2}\right)\right.$

$$
\begin{aligned}
= & k\left(n_{1}\right) \gamma k\left(n_{2}\right)+k\left(n_{1}\right) \mu k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}+n_{1} \mu n_{2}\right)-k\left(n_{1}\right) \gamma k\left(n_{2}\right) \\
& +k\left(n_{1} \gamma n_{2}\right)-k\left(n_{1}\right) \mu k\left(n_{2}\right)+k\left(n_{1} \mu n_{2}\right) \\
= & k\left(n_{1} \gamma n_{2}\right)+k\left(n_{1} \mu n_{2}\right)-k\left(n_{1} \gamma n_{2}+n_{1} \mu n_{2}\right)=F\left(n_{1} \gamma n_{2}, n_{1} \mu n_{2}\right) .
\end{aligned}
$$

Thus $E=E(p, F, G)$ is an E-sum of N and M with associated functions $f^{\prime}: M \rightarrow N \times M$ and $g^{\prime}: N \times M \rightarrow N$ with $f^{\prime}(m)=(0, m)$ for all $m \in M$ and $g^{\prime}(n, m)=n$ for all $(n, m) \in N \times M$. From Theorem 3.3, $E(p, F, G)$ is an extension of M by N. The mapping l is a Γ-ring isomorphism: l is well defined since $a \in A \Rightarrow g(a) \in N \Rightarrow k(g(a)) \in A$ and $g(a-k(g(a))=g(a)-g(k(g(a)))=g(a)-g(a)=0$. Thus $a-k(g(a+M)) \in$ $\operatorname{ker}(g)=M$ for any $a \in A$. Let $a_{1}, a_{2} \in E, \gamma \in \Gamma$, then

$$
\begin{aligned}
& l\left(a_{1}\right)+ l\left(a_{2}\right) \\
&=\left(g\left(a_{1}\right)+g\left(a_{2}\right), F\left(g\left(a_{1}\right), g\left(a_{2}\right)\right)+a_{1}-k\left(g\left(a_{1}\right)\right)+a_{2}-k\left(g\left(a_{2}\right)\right)\right) \\
&=\left(g\left(a_{1}+a_{2}\right), k\left(g\left(a_{1}\right)\right)+k\left(g\left(a_{2}\right)\right)-k\left(g\left(a_{1}\right)+g\left(a_{2}\right)\right)\right. \\
&+a_{1}-k\left(g\left(a_{1}\right)\right)+a_{2}-k\left(g\left(a_{2}\right)\right) \\
&=\left(g\left(a_{1}+a_{2}\right)\right), a_{1}+a_{2}-k\left(g\left(a_{1}+a_{2}\right)\right)=l\left(a+a_{2}\right) \text { and } \\
& l\left(a_{1}\right) \gamma l\left(a_{2}\right)=\left(g\left(a_{1}\right) \gamma g\left(a_{2}\right), G\left(g\left(a_{1}\right), \gamma, g\left(a_{2}\right)\right)\right. \\
&+p_{\gamma}^{g\left(a_{1}\right)}\left(a_{2}-k\left(g\left(a_{2}\right)\right)\right)+\left(a_{1}-k\left(g\left(a_{1}\right)\right)\right)_{\gamma} p^{g\left(p_{2}\right)} \\
& \quad+\left(a_{1}-k g\left(a_{1}\right)\right) \gamma\left(a_{2}-k\left(g\left(a_{2}\right)\right)\right) \\
&=\left(g\left(a_{1} \gamma a_{2}\right), k\left(g\left(a_{1}\right)\right) \gamma k\left(g\left(a_{2}\right)\right)-k\left(g\left(a_{1}\right) \gamma g\left(a_{2}\right)+k\left(g\left(a_{1}\right)\right) \gamma a_{2}\right.\right. \\
&-k\left(g\left(a_{1}\right)\right) \gamma k\left(g\left(a_{2}\right)\right)+a_{1} \gamma k\left(g\left(a_{2}\right)\right)-k\left(g\left(a_{1}\right)\right) \gamma k\left(g\left(a_{2}\right)\right) \\
&+a_{1} \gamma a_{2}-a_{1} \gamma k\left(g\left(a_{2}\right)\right)+k\left(g\left(a_{1}\right)\right) \gamma k\left(g\left(a_{2}\right)\right) \\
&=\left(g\left(a_{1} \gamma a_{2}\right), a_{1} \gamma a_{2}-k\left(g\left(a_{1} \gamma a_{2}\right)\right)\right) \\
&= l\left(a_{1} \gamma a_{2}\right) .
\end{aligned}
$$

It is straightforward to verify that l is a bijection. Lastly, consider the diagram

where $i: M \rightarrow A$ is the inclusion. If $m \in M$, then $(l \circ i)(m)=l(m)=$ $(g(m+M), m-k(g(m+M)))=(g(M), m-k(g(M)))=(0, m-k(0))=$ $(0, m)=f^{\prime}(m)$. Thus $l \circ i=f^{\prime}$. If $a \in A$, then $\left(g^{\prime} \circ l\right)(a)=g^{\prime}(l(a))=$ $g^{\prime}(g(a+M), a-k(g(a+M)))=g(a+M)=g(a)$. Thus $g^{\prime} \circ l=g$. Hence the diagram commutes, which shows that the extensions A and $E=E(p, F, G)$ are equivalent.

To conclude this section, we give necessary and sufficient conditions for the equivalence of any two E-sums, thus also for any two extensions of a
Γ-ring M by a Γ-ring N. In fact, we determine all equivalences between two extensions of M by N.

Theorem 3.7. Let $E(p, F, G)$ and $E^{\prime}\left(p^{\prime}, F^{\prime}, G^{\prime}\right)$ be any two E-sums of the Γ-rings N and M. Let $k: N \rightarrow M$ be any function with $k(0)=0$ satisfying the following conditions for any $n, n_{1}, n_{2} \in N, \gamma \in \Gamma$:
(I1) $F^{\prime}\left(n_{1}, n_{2}\right)-F\left(n_{1}, n_{2}\right)=k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right)$;
(I2) $G^{\prime}\left(n_{1}, \gamma, n_{2}\right)-G\left(n_{1}, \gamma, n_{2}\right)=k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right)+p_{\gamma}^{n_{1}}\left(k\left(n_{2}\right)\right)+$ $\left(k\left(n_{1}\right)\right)_{\gamma} p^{n_{2}} ;$
(13) $\left(p^{\prime}\right)^{n}-p^{n}=[k(n)]$.

Then the function $l: E(p, F, G) \rightarrow E^{\prime}\left(p^{\prime}, F^{\prime}, G^{\prime}\right)$ defined by $l(n, m)=$ ($n, m-k(n)$) is an equivalence isomorphism. Conversely, every equivalence isomorphism between two extensions of M by N is of this form for some function k satisfying the conditions (I1) to (I3) above.

Proof. It is clear that l is a bijection. We show l is a homomorphism: If $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right) \in E, \gamma \in \Gamma$, then

$$
\begin{aligned}
l\left(n_{1}, m_{1}\right)+l\left(n_{2}, m_{2}\right) & =\left(n_{1}+n_{2}, F^{\prime}\left(n_{1}, n_{2}\right)+m_{1}-k\left(n_{1}\right)+m_{2}-k\left(n_{2}\right)\right) \\
& =\left(n_{1}+n_{2}, F\left(n_{1}, n_{2}\right)-k\left(n_{1}+n_{2}\right)+m_{1}+m_{2}\right) \\
& =l\left(\left(n_{1}, m_{1}\right)+\left(n_{2}, m_{2}\right)\right) \quad \text { (Condition (I1)) }
\end{aligned}
$$

and

$$
\begin{aligned}
l\left(n_{1}, m_{1}\right) \gamma l\left(n_{2}, m_{2}\right)= & \left(n_{1} \gamma n_{2}, G^{\prime}\left(n_{1}, \gamma, n_{2}\right)+\left(p^{\prime}\right)_{\gamma}^{n_{1}}\left(m_{2}-k\left(n_{2}\right)\right)\right. \\
& +\left(m_{1}-k\left(n_{1}\right)\right)_{\gamma}\left(p^{\prime}\right)^{n_{2}} \\
& \left.+\left(m_{1}-k\left(n_{1}\right)\right) \gamma\left(m_{2}-k\left(n_{2}\right)\right)\right) \\
= & \left(n_{1} \gamma n_{2}, G^{\prime}\left(n_{1}, \gamma, n_{2}\right)+\left(p^{\prime}\right)_{\gamma}^{n}\left(m_{2}\right)-\left(p^{\prime}\right)_{\gamma}^{n_{1}}\left(k\left(n_{2}\right)\right)\right. \\
& +\left(m_{1}\right)_{\gamma}\left(p^{\prime}\right)^{n_{2}}-\left(k\left(n_{1}\right)_{\gamma}\left(p^{\prime}\right)^{n_{2}}\right. \\
& \left.+m_{1} \gamma m_{2}-m_{1} \gamma k\left(n_{2}\right)-k\left(n_{1}\right) \gamma m_{2}+k\left(n_{1}\right) \gamma k\left(n_{2}\right)\right) \\
= & \left(n_{1} \gamma n_{2}, G\left(n_{1}, \gamma, n_{2}\right)+k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right)\right. \\
& +p_{\gamma}^{n_{1}}\left(k\left(n_{2}\right)\right)+\left(k\left(n_{1}\right)\right)_{\gamma} p^{n_{2}}+p_{\gamma}^{n_{1}}\left(m_{2}\right) \\
& +\left[k\left(n_{1}\right)\right]_{\gamma}\left(m_{2}\right)-p_{\gamma}^{n_{1}}\left(k\left(n_{2}\right)\right)-\left[k\left(n_{1}\right)\right]_{\gamma}\left(k\left(n_{2}\right)\right)+\left(m_{1}\right)_{\gamma} p^{n_{2}} \\
& +\left(m_{1}\right)_{\gamma}\left[k\left(n_{2}\right)\right]-\left(k\left(n_{1}\right)\right)_{p} p^{n_{2}} \\
& -\left(k\left(n_{1}\right)\right)_{\gamma}\left[k\left(n_{2}\right)\right]+m_{1} \gamma m_{2}-m_{1} \gamma k\left(n_{2}\right)-k\left(n_{1}\right) \gamma m_{2} \\
& +f\left(n_{1}\right) \gamma f\left(n_{2}\right) \quad(\text { Conditions }(\mathbf{I} 2) \text { and }(\mathbf{I} 3))
\end{aligned}
$$

$$
\begin{aligned}
= & \left(n_{1} \gamma n_{2}, G\left(n_{1}, \gamma, n_{2}\right)-k\left(n_{1} \gamma n_{2}\right)+p_{\gamma}^{n_{1}}\left(m_{2}\right)\right. \\
& \left.+\left(m_{1}\right)_{\gamma} p^{n_{2}}+m_{1} \gamma m_{2}\right) \\
= & l\left(n_{1} \gamma n_{2}, G\left(n_{1}, \gamma, n_{2}\right)+p_{\gamma}^{n_{1}}\left(m_{2}\right)+\left(m_{1}\right)_{\gamma} p^{n_{2}}+m_{1} \gamma m_{2}\right. \\
= & \left.l\left(n_{1}, m_{1}\right) \gamma\left(n_{2}, m_{2}\right)\right) .
\end{aligned}
$$

Consider the diagram

where f, g, f^{\prime} and g^{\prime} are the functions associated with the extensions E and E^{\prime} respectively. If $m \in M$, then $(l \circ f)(m)=l(f(m))=l(0, m)=$ $(0, m-k(0))=(0, m)=f^{\prime}(m)$ and, if $(n, m) \in E$, then $\left(g^{\prime} \circ l\right)(n, m)=$ $g^{\prime}(l(n, m))=g^{\prime}(n, m-k(n))=n=g(n, m)$. Thus the diagram commutes and l is an equivalence isomorphism. Conversely, let $l: E \rightarrow E^{\prime}$ be any equivalence isomorphism between two extensions E and E^{\prime} of M and N. If f, f^{\prime}, g and g^{\prime} are as before, the diagram

will commute. Thus $g^{\prime}(l(n, m))=g(n, m)=n$ for any $(n, m) \in E$. To satisfy this, $l(n, m)$ must be of the form $(n, h(n, m))$ where h is some function from $N \times M$ into M. But $l(f(m))=f^{\prime}(m)$ for any $m \in M$, that is, $l(0, m)=(0, m)$. Thus $l(0, m)=(0, h(0, m))$ so that $h(0, m)=m$. Consequently, we have the existence of a function $h: N \times M \rightarrow M$ satisfying $h(0, m)=m$ for all $m \in M$. Define $k: N \rightarrow M$ by $k(n)=-h(n, 0)$ for all $n \in N$. Then $l(n, m)=l(0+n, F(0, n)+m+0)=l((0, m)+(n, 0))=$ $l(0, m)+l(n, 0)=(0, h(0, m))+(n, h(n, 0))=(0, m)+(n,-k(n))=$ ($n, m-k(n)$). Hence l is of the required form and it remains to be shown that k satisfies conditions (11) to (I3).

$$
\begin{align*}
& l\left(n_{1}, m_{1}\right)+l\left(n_{2}, m_{2}\right)=l\left(\left(n_{1}, m_{1}\right)+\left(n_{2}, m_{2}\right)\right) \tag{I1}\\
& \quad \Rightarrow\left(n_{1}+n_{2}, F^{\prime}\left(n_{1}, n_{2}\right)+m_{1}-k\left(n_{1}\right)+m_{2}-k\left(n_{2}\right)\right) \\
& \quad=\left(n_{1}+n_{2}, F\left(n_{1}, n_{2}\right)+m_{1}+m_{2}-k\left(n_{1}+n_{2}\right)\right) \\
& \quad \Rightarrow F^{\prime}\left(n_{1}, n_{2}\right)-k\left(n_{1}\right)-k\left(n_{2}\right)=F\left(n_{1}, n_{2}\right)-k\left(n_{1}+n_{2}\right) \\
& \quad \Rightarrow F^{\prime}\left(n_{1}, n_{2}\right)-F\left(n_{1}, n_{2}\right)=k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right)
\end{align*}
$$

$$
\begin{align*}
& \left(0, p_{\gamma}^{n}(m)\right)=\left(0, p_{\gamma}^{n}(m)-k(0)\right)=l\left(0, p_{\gamma}^{n}(m)\right) \tag{I3}\\
& \quad=l\left(n \gamma 0, G(n, \gamma, 0)+p_{\gamma}^{n}(m)+(0)_{\gamma} p^{0}+0 \gamma m\right)=l((n, 0) \gamma(0, m)) \\
& \quad=l(n, 0) \gamma l(0, m)=(n, 0-k(n)) \gamma(0, m-k(0))=(n,-k(n)) \gamma(0, m) \\
& \quad=\left(n \gamma 0, G^{\prime}(n, \gamma, 0)+p_{\gamma}^{\prime n}(m)+(-k(n))_{\gamma} p^{\prime 0}-k(n) \gamma m\right) \\
& \quad=\left(0, p_{\gamma}^{\prime n}(m)-[k(n)]_{\gamma}(m)\right) .
\end{align*}
$$

Thus $p_{\gamma}^{n}(m)=p_{\gamma}^{\prime n}(m)-[k(n)]_{\gamma}(m)$, that is, $\left(p^{\prime n}-p^{n}\right)_{\gamma}=[k(n)]_{\gamma}$. Similarly, ${ }_{\gamma}\left(p^{\prime n}-p^{n}\right)={ }_{\gamma}[k(n)]$. Hence $p^{\prime n}-p^{n}=[k(n)]$.
(I2) $l\left(n_{1}, m_{1}\right) \gamma l\left(n_{2}, m_{2}\right)=l\left(\left(n_{1}, m_{1}\right) \gamma\left(n_{2}, m_{2}\right)\right)$

$$
\begin{aligned}
& \Rightarrow\left(n_{1} \gamma n_{2}, G\left(n_{1}, \gamma, n_{2}\right)+p_{\gamma}^{\prime n_{1}}\left(m_{2}-k\left(n_{2}\right)\right)+\left(m_{1}-k\left(n_{1}\right)\right)_{\gamma} p^{\prime n_{2}}\right. \\
&+\left(m_{1}-k\left(n_{1}\right)\right) \gamma\left(m_{2}-k\left(n_{2}\right)\right) \\
& \quad=\left(n_{1} \gamma n_{2}, G\left(n_{1}, \gamma, n_{2}\right)+p_{\gamma}^{n_{1}}\left(m_{2}\right)+\left(m_{1}\right)_{\gamma} p^{n_{1}}\right. \\
& \quad\left.\quad m_{1} \gamma m_{2}-k\left(n_{1} \gamma n_{2}\right)\right) \\
& \Rightarrow\left(n_{1} \gamma n_{2}, G^{\prime}\left(n_{1}, \gamma, n_{2}\right)+p_{\gamma}^{n_{1}}\left(m_{2}\right)+k\left(n_{1}\right) \gamma m_{2}-p_{\gamma}^{n_{1}}\left(k\left(n_{2}\right)\right)\right. \\
&-k\left(n_{1}\right) \gamma k\left(n_{2}\right)+\left(m_{1}\right)_{\gamma} p^{n_{2}} \\
&+m_{1} \gamma k\left(n_{2}\right)-\left(k\left(n_{1}\right)\right)_{\gamma} p^{n_{2}}-k\left(n_{1}\right) \gamma k\left(n_{2}\right)+m_{1} \gamma m_{2}-m_{1} \gamma k\left(n_{2}\right) \\
&\left.-k\left(n_{1}\right) \gamma m_{2}+k\left(n_{1}\right) \gamma k\left(n_{2}\right)\right) \\
& \quad=\left(n_{1} \gamma n_{2}, G\left(n_{1}, \gamma, n_{2}\right)+p_{\gamma}^{n_{1}}\left(m_{2}\right)+\left(m_{1}\right)_{\gamma} p^{n_{2}}\right. \\
&\left.\quad+m_{1} \gamma m_{2}-k\left(n_{1} \gamma n_{2}\right)\right) \quad(\text { using Condition (I3))} \\
& \Rightarrow G^{\prime}\left(n_{1}, \gamma, n_{2}\right)-p_{\gamma}^{n_{1}}\left(k\left(n_{2}\right)\right)-\left(k\left(n_{1}\right)\right)_{\gamma} p^{n_{2}}-k\left(n_{1}\right) \gamma k\left(n_{2}\right) \\
& \quad=G\left(n_{1}, \gamma, n_{2}\right)-k\left(n_{1} \gamma n_{2}\right) \\
& \Rightarrow G^{\prime}\left(n_{1}, \gamma, n_{2}\right)-G\left(n_{1}, \gamma, n_{2}\right)=k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right) \\
& \quad+p_{1}^{n_{1}}\left(k\left(n_{2}\right)\right)+\left(k\left(n_{1}\right)\right)_{\gamma} p^{n_{2}} .
\end{aligned}
$$

Example 3.8. Let M and N be any Γ-rings. Define the functions F, G and p for an extension of M by N by $F\left(n_{1}, n_{2}\right)=G\left(n_{1}, \gamma, n_{2}\right)=0$ and $p^{n}=$ [0] for any $n, n_{1}, n_{2} \in N, \gamma \in \Gamma$. Then the E-sum of N and M defined by these functions is the same as the direct sum $N \oplus M$ of N and M. Therefore, there always exists at least one extension of M by N. From Theorem 3.7 it follows that any extension E of M by N will be equivalent to $N \oplus M$ iff there exists a function $k: N \rightarrow M$ with $k(0)=0$ satisfying for all $n, n_{1}, n_{2} \in N, \gamma \in \Gamma$:
(i) $F^{\prime}\left(n_{1}, n_{2}\right)=k\left(n_{1}\right)+k\left(n_{2}\right)-k\left(n_{1}+n_{2}\right)$;
(ii) $G^{\prime}\left(n_{1}, \gamma, n_{2}\right)=k\left(n_{1}\right) \gamma k\left(n_{2}\right)-k\left(n_{1} \gamma n_{2}\right)$;
(iii) $p^{\prime n}=[k(n)]$.

Definition 3.9. Let M and N be any Γ-rings. An extension of M by N for which $F\left(n_{1}, n_{2}\right)=G\left(n_{1}, \gamma, n_{2}\right)=0$ for all $n_{1}, n_{2} \in N, \gamma \in \Gamma$, is called a factor free extension of M by N and will be denoted by $N \# M$.

4. Double homothetisms of a Г-ring

The double homothetism of a ring (cf. Rédei [7]) is an important tool in the study of rings with identity. It is also of much use in the Γ-ring case.

Definition 4.1. A double homothetism ρ of a Γ-ring M is a bitranslation of M that is amicable with itself.

It is hard not to find double homothetisms of a Γ-ring M : from Theorem 2.8 we have that the set $\mathcal{I}(M)$ of all inner bitranslations of a Γ-ring M is a Γ-ring of amicable double homothetisms of M. For this reason the elements of $\mathscr{F}(M)$ will be called the inner double homothetisms of M.

The proof of the next result is a straightforward application of Zorn's Lemma:

Theorem 4.2. Every set of amicable double homothetisms of a Γ-ring M is contained in a maximal set of amicable double homothetisms of a P-ring M.

Theorem 4.3. The sub Γ-ring of $\mathscr{E}_{2}(M)$ generated by any set of amicable double homothetisms of M is always a Γ-ring of amicable double homothetisms of M.

Proof. Let A be a set of pair wise amicable bitranslations of M, and let B be the sub Γ-ring of $\mathscr{E}_{2}(M)$ generated by A. Then B consists of all sums of the form $\sum a_{i}-\sum b_{i}+\sum c_{i} \gamma_{i} d_{i}, a_{i}, b_{i}, c_{i}, d_{i} \in A$. It can be proved by straightforward calculation that the elements of B are pairwise amicable, and hence are in particular double homothetism.

In view of the above result, any maximal set of amicable double homothetisms of a Γ-ring M must be a Γ-ring and it will be called a maximal Γ-ring of amicable double homothetisms of M.

From Theorem 4.2 it follows that any set of amicable double homothetisms of a P-ring M is contained in at least one maximal Γ-ring of amicable double homothetisms of M.

Theorem 4.4. For any Γ-ring $M, \mathscr{J}(M)$ is contained in every maximal Γ-ring of amicable double homothetisms of M.

Proof. Let p be any double homothetism of $M,[n] \in \mathscr{I}(M), m \in M$ and $\gamma \in \Gamma$. Then

$$
\begin{aligned}
& p_{\gamma}\left((m)_{\mu}[n]\right)=p_{\gamma}(m \mu n)=\left(p_{\gamma}(m)\right) \mu n=\left(p_{\gamma}(m)\right)_{\mu}[n] \text { and } \\
& {[n]_{\gamma}\left((m)_{\mu} p\right)=n \gamma\left((m)_{\mu} p\right)=(n \gamma m)_{\mu} p=\left([n]_{\gamma}(m)\right)_{\mu} p}
\end{aligned}
$$

Thus [n] and p are amicable. Hence if A is a maximal Γ-ring of amicable double homothetism of M, then $A \cup \mathscr{J}(M)$ is a set of amicable double homothetisms of M. Let B be the sub Γ-ring of $\mathscr{E}_{2}(M)$ generated by $A \cup \mathscr{F}(M)$. Then B is a Γ-ring of amicable double homothetisms of M by Theorem 4.3 and $A \subseteq B$. Hence $A=B$, by the maximality of A, whence $\mathscr{F}(M) \subseteq A$, as required.

THEOREM 4.5. If \mathscr{P} is any Γ-ring of amicable double homothetisms of M, define the functions:
(i) $F: \mathscr{P} \times \mathscr{P} \rightarrow M$ by $F\left(p_{1}, p_{2}\right)=0$ for all $p_{1}, p_{2} \in \mathscr{P}$,
(ii) $G: \mathscr{P} \times \Gamma \times \mathscr{P} \rightarrow M$ by $G\left(p_{1}, \gamma, p_{2}\right)=0$ for all $p_{1}, p_{2} \in \mathscr{P}, \gamma \in \Gamma$ and
(iii) $p: \mathscr{P} \rightarrow \mathscr{E}_{2}(M)$ by $p\left(p_{1}\right)=p^{p_{1}}=p_{1}$ for all $p_{1} \in \mathscr{P}$.

Then the triple (p, F, G) defines a factor free extension $\mathscr{P} \# M$ of M by \mathscr{P}.
Proof. Because every amicable double homothetism of M is a bitranslation of M, p is well defined. The conditions of Construction 3.1 are clearly satisfied.

The operations in the Γ-ring $\mathscr{P} \# M$ of Theorem 4.5 are given, for all $\left(p_{1}, m_{1}\right),\left(p_{2}, m_{2}\right) \in \mathscr{P} \times M$ and $\gamma \in \Gamma$ by:

$$
\begin{aligned}
\left(p_{1}, m_{1}\right)+\left(p_{2}, m_{2}\right) & =\left(p_{1}+p_{2}, m_{1}+m_{2}\right) \text { and } \\
\left(p_{1}, m_{1}\right) \gamma\left(p_{2}, m_{2}\right) & =\left(p_{1} \gamma p_{2}, p_{1 \gamma}\left(m_{2}\right)+\left(m_{1}\right)_{\gamma} p_{2}+m_{1} \gamma m_{2}\right)
\end{aligned}
$$

THEOREM 4.6. The inner double homothetisms of all the extensions of a Γ-ring M induce all the double homothetisms of M.

Proof. Let M be a Γ-ring and let E be any extension of M. Let $[a] \in$ $\mathcal{F}(E)$, then $[a]=\left(p^{a}, q^{a}\right)$ where p^{a} and q^{a} is a left and a right translation of E respectively, with $p_{\gamma}^{a}(b)=a \gamma b$ and $(b)_{\gamma} p^{a}=b \gamma a$ for all $b \in E$. Let $m \in M$. Then $p_{\gamma}^{a}(m)=a \gamma m \in M$ and $(m)_{\gamma} q^{a}=m \gamma a \in M$ because $M \triangleleft E$. Hence the restrictions of both p^{a} and q^{a} to M, say $p^{a} \mid M$ and $q^{a} \mid M$, are
left and right translations respectively of M and $p=\left(p^{a}\left|M, q^{a}\right| M\right)$ is a double homothetism of M.

Conversely, let p be any double homothetism of M. We show that p is induced by an inner double homothetism of some extension of M. Because any double homothetism is amicable with itself, $\{p\}$ is a set of amicable double homothetisms. From Theorem 4.2, p is an element of some maximal Γ-ring \mathscr{P} of amicable double homothetisms. Form the factor free extension Γ-ring $\mathscr{P} \# M$. Then $(p, 0) \in \mathscr{P} \# M$; thus $[(p, 0)] \in$ $\mathscr{F}(\mathscr{P} \# M)$ where $[(p, 0)]_{\gamma}(q, m)=(p, 0) \gamma(q, m)$ and $(q, m)_{\gamma}[(p, 0)]=$ $(q, m) \gamma(p, 0)$. Consider $[(p, 0)]_{\gamma} \mid M$ and ${ }_{\gamma}[(p, 0)] \mid M$. We identify M with the subset $\{(0, m) \mid m \in M\}$ of $\mathscr{P} \# M$. Then $[(p, 0)]_{\gamma}(0, m)=$ $(p, 0) \gamma(0, m)=\left(0, p_{\gamma}(m)\right)$ and $(0, m)_{\gamma}[(p, 0)]=(0, m) \gamma(p, 0)=$ $\left(0,(m)_{\gamma} p\right)$. Hence $[(p, 0)]_{\gamma} \mid M=p_{\gamma}$ and ${ }_{\gamma}[(p, 0)] \mid M={ }_{\gamma} p$. Thus p is induced by the inner double homothetism $[(p, 0)]$ of $\mathscr{P} \# M$.

5. The holomorph of a Γ-ring

Definition 5.1. A sub Γ-ring I of a Γ-ring M is called characteristic if it is invariant under any double homothetism of M, that is, if p is any double homothetism of M, then $p_{\gamma}(I) \subseteq I$ and $(\mathrm{I})_{\gamma} p \subseteq I$ for all $\gamma \in \Gamma$.

Theorem 5.2. A sub Γ-ring I of $a \Gamma$-ring M is characteristic iff it is an ideal in every extension of M.

Proof. Use definition 5.1 and Theorem 4.6.

If I is a characteristic sub Γ-ring of $M, i \in I, m \in M, \gamma \in \Gamma$, then $[m] \in \mathscr{I}(M)$, that is, $i \gamma m=(i)_{\gamma}[m] \in I$ and $m \gamma i=[m]_{\gamma}(i) \in I$. Thus $I \triangleleft M$. Also, if I is a characteristic sub Γ-ring of M and p is any double homothetism of M, p will induce a double homothetism of I, since $p_{\gamma}(I) \subseteq$ I and $(I)_{\gamma} p \subseteq I$.

Definition 5.3. A holomorph of a Γ-ring M is a factor free extension $\mathscr{P} \# M$ of M by any maximal Γ-ring \mathscr{P} of amicable double homothetisms of M.

Theorem 5.4. The inner double homothetisms of all the holomorphs of a Γ-ring M induce all the double homothetisms of M.

Proof. As in the proof of Theorem 4.6.

Theorem 5.5. A sub Γ-ring of $a \Gamma$-ring M is characteristic iff it is an ideal in all the homomorphs of M.

Proof. Follows directly from Definition 5.1 and Theorem 5.4.

6. Unities of Γ-rings

Unities in Γ-rings differ from unities in rings in the very important way that they are not necessarily unique. Contrary to the ring case, we will show that not every Γ-ring can be embedded as an ideal in a Γ-ring with unity. A Γ-ring M has a left (right) unity if there exists elements $e_{1}, e_{2}, \ldots, e_{s} \in M$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$ such that $\sum_{i=1}^{s} e_{i} \gamma_{i} m=m\left(\sum_{i=1}^{s} m \gamma_{i} e_{i}=m\right)$ for any $m \in M$. For examples see Kyuno [4]. It is possible for a Γ-ring to have more than one unity.

Definition 6.1. A Γ-ring M has a left (right) double homothetism unity if there exist double homothetisms $p^{1}, p^{2}, \ldots, p^{s}$ of M and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in$ Γ such that

$$
\sum_{i=1}^{s} p_{\gamma_{i}}^{i}(m)=m \quad\left(\sum_{i=1}^{s}(m)_{\gamma_{i}} p^{i}=m\right) \quad \text { for all } m \in M
$$

A ring has a unity iff it has only inner double homothetisms (cf. Réidei [7, p. 197]). The next theorem and the following examples show that this is not the case for Γ-rings.

Theorem 6.2. A Γ-ring has a left and a right unity iff it has a left and right double homothetism unity and only inner double homothetisms.

Proof. Assume M has a left and a right unity, that is, there exist e_{1}, e_{2}, $\ldots, e_{s} \in M, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$ and $a_{1}, a_{2}, \ldots, a_{t} \in M, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{t} \in$ Γ such that

$$
\sum_{i=1}^{s} e_{i} \gamma_{i} m=m \quad \text { and } \quad \sum_{j=1}^{t} m \lambda_{j} a_{j}=m \quad \text { for all } m \in M
$$

For each $i=1,2, \ldots, s,\left[e_{i}\right] \in \mathscr{F}(M)$ and $\sum_{i=1}^{s}\left[e_{i}\right]_{\gamma_{i}}(m)=\sum_{i=1}^{s} e_{i} \gamma_{i} m=$ m for all $m \in M$. Hence the double homothetisms $\left[e_{1}\right],\left[e_{2}\right], \ldots,\left[e_{s}\right]$ of M and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$ form a left double homothetism unity for M. Likewise the double homothetism $\left[a_{1}\right],\left[a_{2}\right], \ldots,\left[a_{t}\right]$ of M and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}$ $\in \Gamma$ form a right double homothetism unity for M. Let p be any double
homothetism of $M, m \in M, \mu \in \Gamma$. Then

$$
\begin{aligned}
p_{\mu}(m) & =\sum_{i=1}^{s} e_{i} \gamma_{i}\left(p_{\mu}(m)\right)=\sum_{i=1}^{s}\left(\left(e_{i}\right)_{\gamma_{i}} p\right) \mu m=\left(\sum_{i=1}^{s}\left(e_{i}\right)_{\gamma_{i}} p\right) \mu m \\
& =\left[\sum_{i=1}^{s}\left(e_{i}\right)_{\gamma_{i}} p\right]_{\mu}(m)
\end{aligned}
$$

Also,

$$
\begin{aligned}
(m)_{\mu} p & =\sum_{j=1}^{t}\left((m)_{\mu} p\right) \lambda_{j} a_{j}=\sum_{j=1}^{t} m \mu\left(p_{\lambda_{j}}\left(a_{j}\right)\right)=m \mu\left(\sum_{j=1}^{t} p_{\lambda_{j}}\left(a_{j}\right)\right) \\
& =(m)_{\mu}\left[\sum_{j=1}^{t} p_{\lambda_{j}}\left(a_{j}\right)\right] .
\end{aligned}
$$

We now show that $\sum_{i=1}^{s}\left(e_{i}\right)_{\lambda_{i}} p=\sum_{j=1}^{t} p_{\lambda_{j}}\left(a_{i}\right)$:

$$
\begin{aligned}
\sum_{i=1}^{s}\left(e_{i}\right)_{\gamma_{i}} p & =\sum_{j=1}^{t}\left(\sum_{i=1}^{s}\left(e_{i}\right)_{\gamma_{i}} p\right) \lambda_{j} a_{j}=\sum_{i=1}^{s} \sum_{j=1}^{t} e_{i} \gamma_{i}\left(p_{\gamma_{j}}\left(a_{j}\right)\right) \\
& =\sum_{i=1}^{s} e_{i} \gamma i\left(\sum_{j=1}^{t} p_{\lambda_{j}}\left(a_{j}\right)\right)=\sum_{j=1}^{t} p_{\lambda_{j}}\left(a_{j}\right)
\end{aligned}
$$

Thus

$$
p_{\mu}=\left[\sum_{i=1}^{s}\left(e_{i}\right)_{\gamma_{i}} p\right]_{\mu}=\left[\sum_{j=1}^{t} p_{\lambda_{j}}\left(a_{j}\right)\right]_{\mu} \text { and }{ }_{\mu} p=\left[\sum_{j=1}^{t} p_{\gamma_{j}}\left(a_{i}\right)\right]=\left[\sum_{i=1}^{s}\left(e_{i_{\gamma_{i}}} p\right] .\right.
$$

Hence p is the inner double homothetism of M induced by $\sum_{i=1}^{s}\left(e_{i}\right)_{\gamma_{i}} p=$ $\sum_{j=1}^{t} p_{\lambda_{j}}\left(a_{j}\right)$. Therefore, M has only inner double homothetisms. Conversely, suppose M has only inner double homothetisms and M has a left and a right double homothetism unity. Let $p^{1}, p^{2}, \ldots, p^{s}$ be the double homothetisms and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$ for which $\sum_{i=1}^{s} p_{\gamma_{i}}^{i}(m)=m$. Because M has only inner double homothetisms, there exists $e_{1}, e_{2}, \ldots, e_{s} \in M$ such that $p^{i}=\left[e_{i}\right]$. Similarly, if $q^{1}, q^{2}, \ldots, q^{t}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t} \in \Gamma$ is a right double homothetism unity of M there exists $a_{1}, a_{2}, \ldots, a_{s} \in M$ such that $q^{j}=\left[a_{j}\right]$. If $m \in M$, then

$$
\begin{aligned}
\sum_{i=1}^{s} e_{i} \gamma_{i} m & =\sum_{i=1}^{s}\left[e_{i}\right]_{\gamma_{i}}(m)=\sum_{i=1}^{s} p_{\gamma_{i}}^{i}(m)=m \quad \text { and } \\
\sum_{j=1}^{t} m \lambda_{j} a_{j} & =\sum_{j=1}^{t}(m)_{\lambda_{j}}\left[a_{j}\right]=\sum_{j=1}^{t}(m)_{\lambda_{j}} p^{j}=m
\end{aligned}
$$

Thus $e_{1}, e_{2}, \ldots, e_{s} \in M$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$ form a left unity of M, while $a_{1}, a_{2}, \ldots, a_{t} \in M$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t} \in \Gamma$ form a right unity of M.

The next two examples will show that the two conditions required in Theorem 6.2 are independent.

EXAMPLE 6.3. Let $M=\mathbb{Z}_{2}=\{0,1\}$ and $\Gamma=\{\gamma\} \cong \mathbb{Z}_{1}=\{0\}$. Define the mapping $(-,-,-): M \times \Gamma \times M \rightarrow M$ by $m_{1} \gamma m_{2}=0$ for all $m_{1}, m_{2} \in$ $M, \gamma \in \Gamma$. Then M is a Γ-ring. $\operatorname{End}\left(M^{+}\right)=\left\{f_{0}, f_{1}\right\}$, where $f_{0}(m)=0$ and $f_{1}(m)=m$ for all $m \in M$. Then $\mathscr{E}(M)=\left\{p_{0}\right\}$ where $p_{0}(\gamma)=f_{0}$ for all $\gamma \in \Gamma$. It follows that M has only one double homothetism p with $p_{\gamma}(m)=(m)_{\gamma} p=0$ for any $m \in M, \gamma \in \Gamma$. Moreover, p is the inner double homothetism induced by both 0 and 1 in M. Thus M has only inner double homothetisms. Since $p_{\gamma}(m)=0$ for any $m \in M, \gamma \in \Gamma$, we have $\sum_{i=1}^{s} p_{\gamma_{i}}^{i}(1)=0 \neq 1$ for any $\gamma_{i} \in \Gamma$ and any double homothetisms p^{i} of M. Hence M does not have a left double homothetism unity. Similarly, it does not have a right double homothetism unity. It is also clear from the definition that M does not have a unity although all its double homothetisms are inner double homothetisms.

The next example shows that the existence of a left and a right double homothetism unity is not sufficient to ensure the existence of a left and a right unity.

Example 6.4. Let $M=\mathbb{Z}_{2}=\{0,1\}$ and $\Gamma=\mathbb{Z}_{2}=\{0,1\}$ and define the mapping $(-,-,-): M \times \Gamma \times M \rightarrow M$ by $m_{1} \gamma m_{2}=0$ for all $m_{1}, m_{2} \in M$, $\gamma \in \Gamma$. Then M is a Γ-ring. $\operatorname{End}\left(M^{+}\right)=\left\{f_{0}, f_{1}\right\}$ with $f_{0}(m)=0$ and $f_{1}(m)=m$ for all $m \in M$. Define a double homothetism p as follows:

$$
\begin{aligned}
& p_{0}(m)=(m)_{0} p=f_{0}(m)=0 \quad \text { and } \\
& p_{1}(m)=(m)_{1} p=f_{1}(m)=m \quad \text { for all } m \in M
\end{aligned}
$$

Simple calculations will verify that p is a double homothetism of M. Since $p_{1}(m)=m$ for any m from M, the double homothetism p with $1 \in \Gamma$ is a left double homothetism unity of M. Similarly, p and $1 \in \Gamma$ is also a right double homothetism unity of M. For any $n \in M,[n]_{1}(1)=0 \neq 1$, while $p_{1}(1)=1$, hence p is not an inner double homothetism of M. As in Example 6.3, this Γ-ring does not have a left nor a right unity.

Theorem 6.5. If M is a Γ-ring that has a left or a right unity, then M is isomorphic to the Γ-ring $\mathscr{I}(M)$ of all inner double homothetisms of M.

Proof. Define the mapping $f: M \rightarrow \mathscr{F}(M)$ by $f(m)=[m]$.
Straightforward calculations will show that f is a surjective Γ-ring homomorphism. f is injective: let $e_{1}, e_{2}, \ldots, e_{s} \in M, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$
be a right unity of M. If $m_{1}, m_{2} \in M$ such that $f\left(m_{1}\right)=f\left(m_{2}\right)$, then $\left[m_{1}\right]=\left[m_{2}\right]$, that is, $\left[m_{1}\right]_{\gamma_{i}}\left(e_{i}\right)=\left[m_{2}\right]_{\gamma_{i}}\left(e_{i}\right)$ for $i=1,2, \ldots, s$. Thus

$$
\begin{aligned}
& \sum_{i=1}^{s}\left[m_{1}\right]_{\gamma_{i}}\left(e_{i}\right)=\sum_{i=1}^{s}\left[m_{2}\right]_{\gamma_{i}}\left(e_{i}\right) \\
& \Rightarrow \sum_{i=1}^{s} m_{1} \gamma_{i}\left(e_{i}\right)=\sum_{i=1}^{s} m_{2} \gamma_{i}\left(e_{i}\right) \\
& \Rightarrow m_{1}=m_{2}
\end{aligned}
$$

Hence f is an isomorphism from M onto $\mathscr{I}(M)$. The result follows similarly if M has a left unity.

Theorem 6.6. $A \Gamma$-ring has a left and right unity iff it has a left and a right double homothetism unity and it is a direct summand in all its extensions.

Proof. If M has a left and right unity, then M has a left and a right double homothetism unity (Theorem 6.2). Let E be any extension of M and let $a \in E$. Then $[a] \in \mathscr{I}(E)$. In view of Theorem 4.6 there exists a double homothetism p of M with $p_{\gamma}(m)=[a]_{\gamma}(m)$ and $(m)_{\gamma} p=(m)_{\gamma}[a]$ for all $m \in M$ and $\gamma \in \Gamma$. Since M has a left and a right unity, it has only inner double homothetisms (Theorem 6.2). Hence there exists an $m \in M$ such that

$$
\begin{gathered}
{[a]_{\lambda}(n)=p_{\lambda}(n)=[m]_{\lambda}(n) \text { and }(n)_{\lambda}[a]=(n)_{\gamma} p=(n)_{\lambda}[m]} \\
\text { for all } n \in M, \lambda \in \Gamma .
\end{gathered}
$$

This m is uniquely determined by a. Indeed, if $m^{\prime} \in M$ with [a] $(n)=$ $\left[m^{\prime}\right]_{\lambda}(n)$ and $(n)_{\lambda}[a]=(n)_{\lambda}\left[m^{\prime}\right]$ for all $n \in M$ and $\lambda \in \Gamma$, then $[m]_{\gamma}(n)=$ $\left[m^{\prime}\right]_{y}(n)$ for all $n \in M, \lambda \in \Gamma$. Thus, if $e_{1}, e_{2}, \ldots, e_{s} \in M$ and γ_{1}, γ_{2}, $\ldots, \gamma_{s} \in \Gamma$ is a right unity of M, then

$$
m=\sum_{i=1}^{s} m \gamma_{i} e_{i}=\sum_{i=1}^{s}[m]_{\gamma_{i}}\left(e_{i}\right)=\sum_{i=1}^{s}\left[m^{\prime}\right]_{\gamma_{i}}\left(e_{i}\right)=\sum_{i=1}^{s} m^{\prime} \gamma_{i} e_{i}=m^{\prime} .
$$

Since $[a]_{\lambda}(n)=[m]_{\lambda}(n)$ and $(n)_{\lambda}[a]=(n)_{\lambda}[m], a \lambda n=m \lambda n$ and $n \lambda a=$ $n \lambda m$ or $(a-m) \lambda n=n \lambda(a-m)=0$ for all $\lambda \in \Gamma, n \in M$. Because m is uniquely determined by a, the element $b=a-m$ of E is uniquely determined by a. Thus b is an element of M for which $b \lambda n=n \lambda b=0$ for all $n \in M$ and $\lambda \in \Gamma$, that is, $b \lambda M=M \lambda b=0$ for all $\lambda \in \Gamma$. Hence $b \in B=\{c \in E \mid c \lambda M=M \lambda c=0$ for all $\lambda \in \Gamma\}$. From the definition of b, we have that $a=b+m$ where both $b \in B$ and $m \in M$ are uniquely determined by a. Since a was an arbitrary element of E, it follows that
every element of E can be written as a unique expression as a sum of an element of B and an element of M. To complete the proof, we show that B is an ideal of E : Let $b, b_{1}, b_{2} \in B, a \in E, \mu \in \Gamma$, then

$$
\begin{aligned}
& \left(b_{1}-b_{2}\right) \lambda M=b_{1} \lambda M-b_{2} \lambda M=0-0=0 \quad \text { and } \\
& M \lambda\left(b_{1}-b_{2}\right)=M \lambda b_{1}-M \lambda b_{2}=0-0=0 \quad \text { for all } \lambda \in \Gamma .
\end{aligned}
$$

Hence $b_{1}-b_{2} \in B$. Also, $(b \mu a) \lambda M=b \mu(a \lambda M) \subseteq b \mu M=0$ and

$$
M \lambda(b \mu a)=(M \lambda b) \mu a=0 \mu a=0 \quad \text { for all } \lambda \in \Gamma .
$$

Hence $b \mu a \in B$. Likewise $a \mu b \in B$ and hence $E=B \oplus M$. Conversely, suppose that M is a direct summand in all its extensions. In particular, it is also a direct summand in any holomorph $\mathscr{P} \# M$ of M. Thus $\mathscr{P} \# M$ is a factor-free E-sum of \mathscr{P} (any maximal set of amicable double homothetisms of M) and M. Let the functions of $\mathscr{P} \# M$ be given by $F^{\prime}: \mathscr{P} \times \mathscr{P} \rightarrow M$ by $F^{\prime}\left(p_{1}, p_{2}\right)=0 \quad$ for all $p_{1}, p_{2} \in \mathscr{P}$,
$G^{\prime}: \mathscr{P} \times \Gamma \times \mathscr{P} \rightarrow M$ by $G^{\prime}\left(p_{1}, \gamma, p_{2}\right)=0$ for all $p_{1}, p_{2} \in \mathscr{P}, \gamma \in \Gamma$ and $p^{\prime}: \mathscr{P} \rightarrow \mathscr{E}_{2}(M)$ by $p^{\prime}\left(p_{1}\right)=p^{p_{1}}=p_{1}$ for all $p_{1} \in \mathscr{P}$.
Because M is a direct summand of $\mathscr{P} \# M, \mathscr{P} \# M$ is equivalent to the direct sum $\mathscr{P} \oplus M$ of \mathscr{P} and M. The latter is an extension of M by \mathscr{P} with respect to the functions defined as follows:
$F: \mathscr{P} \times \mathscr{P} \rightarrow M$ by $F\left(p_{1}, p_{2}\right)=0$ for all $p_{1}, p_{2} \in \mathscr{P}$,
$G: \mathscr{P} \times \Gamma \times \mathscr{P} \rightarrow M$ by $G\left(p_{1}, \gamma, p_{2}\right)=0$ for all $p_{1}, p_{2} \in \mathscr{P}, \gamma \in \Gamma$ and $p: \mathscr{P} \rightarrow \mathscr{E}_{2}(M)$ by $p\left(p_{1}\right)=p^{p_{1}}=0$ for all $p_{1} \in \mathscr{P}$.

Thus Theorem 3.7 shows the existence of a function $f: \mathscr{P} \rightarrow M$ with $f(0)=0$, satisfying the following conditions for all $p_{1}, p_{2} \in \mathscr{P}, \gamma \in \Gamma$:
(i) $F^{\prime}\left(p_{1}, p_{2}\right)-F\left(p_{1}, p_{2}\right)=f\left(p_{1}\right)+f\left(p_{2}\right)-f\left(p_{1}+p_{2}\right)$, that is, $f\left(p_{1}\right)+$ $f\left(p_{2}\right)=f\left(p_{1}+p_{2}\right)$;
(ii) $G^{\prime}\left(p_{1}, \gamma, p_{2}\right)-G\left(p_{1}, \gamma, p_{2}\right)=f\left(p_{1}\right) \gamma f\left(p_{2}\right)-f\left(p_{1} \gamma p_{2}\right)+p_{\gamma}^{p_{1}}\left(f\left(p_{2}\right)\right)+$ $\left(f\left(p_{1}\right)\right)_{\gamma} p^{p_{2}}$, that is, $f\left(p_{1}\right) \gamma f\left(p_{2}\right)=f\left(p_{1} \gamma p_{2}\right)$;
(iii) $p^{p_{1}}-p^{p_{1}}=\left[f\left(p_{1}\right)\right]$, that is, $p_{1}=\left[f\left(p_{1}\right)\right]$. From Condition (iii) above it follows that for any $p \in \mathscr{P}, \gamma \in \Gamma$ and $m \in M$

$$
p_{\gamma}(m)=[f(p)]_{\gamma}(m) \quad \text { and } \quad(m)_{\gamma} p=(m)_{\gamma}[f(p)] .
$$

Hence p is the inner double homothetism of M induced by $f(p)$. Therefore any \mathscr{P} consists of only inner double homothetisms of M. Let p be any double homothetism of M. Then p is amicable with itself. Hence $\{p\}$ is a set of amicable double homothetisms of M. Thus it is contained in some maximal set \mathscr{P}_{0} of amicable double homothetisms of M (Theorem 4.2).

From the previous part of the proof p must be an inner double homothetism of M. Hence M have only inner double homothetisms. Since M has both a left and a right double homothetism unity, it must have both a left and a right unity (Theorem 6.2).

Corollary 6.7. Every Γ-ring that has both a left and a right unity has only one holomorph.

Proof. Let $\mathscr{P}_{1} \# M$ and $\mathscr{P}_{2} \# M$ be two holomorphs of M, where \mathscr{P}_{1} and \mathscr{P}_{2} are maximal sets of amicable double homothetisms of M. Because M has both a left and a right unity, it has only inner double homothetisms (Theorem 6.2). Hence $\mathscr{P}_{1}, \mathscr{P}_{2} \subseteq \mathscr{I}(M)$. But $\mathscr{F}(M) \subseteq \mathscr{P}_{1}$ and $\mathscr{F}(M) \subseteq$ \mathscr{P}_{2} (Theorem 4.4), which yields $\mathscr{P}_{1}=\mathscr{F}(M)=\mathscr{P}_{2}$. Thus $\mathscr{P}_{1} \# M=\mathscr{P}_{2} \# M$ so that M has only one holomorph.

Corollary 6.8. In a Γ-ring that has both a left and a right unity, all ideals are characteristic.

Proof. Let M be a Γ-ring that has both a left and a right unity. Let $I \triangleleft M$. Theorem 6.6 yields that M is a direct summand in all its holomorphs $\mathscr{P} \# M$. Thus $\mathscr{P} \# M=\mathscr{P} \oplus M$. Since $I \triangleleft M,\{0\} \oplus I \triangleleft \mathscr{P} \oplus M=\mathscr{P} \# M$ with $I \cong\{0\} \oplus I$. Thus I is an ideal in every holomorph of M. Hence I is a characteristic sub Γ-ring of M.

Corollaries 6.7 and 6.8 coincide with the corresponding results for rings (cf. Rédei [7]). The next result gives a necessary condition for a Γ-ring to be embedded in an ideal in a Γ-ring with a left or a right unity.

Theorem 6.9. Let M be any Γ-ring. If M can be embedded as an ideal in $a \Gamma$-ring with left (right) unity, then M has a left (right) double homothetism unity.

Proof. Suppose M can be embedded as an ideal in a Γ-ring E that has a left unity. Then there exists $e_{1}, e_{1}, \ldots, e_{s} \in E$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$ such that $\sum_{i=1}^{s} e_{i} \gamma_{i} a=a$ for all $a \in E$. Since $e_{i} \in E$, each $\left[e_{i}\right] \in \mathscr{J}(E)$. Thus there exists for each $i=1,2, \ldots, s$ a double homothetism p^{i} of M such that $p_{\gamma}^{i}(m)=\left[e_{i}\right]_{\gamma}(m)$ for all $m \in M, \gamma \in \Gamma$ (Theorem 4.6). Hence for any $m \in M$ we have that

$$
\sum_{i=1}^{s} p_{\gamma_{i}}^{i}(m)=\sum_{i=1}^{s}\left[e_{i}\right]_{\gamma_{i}}(m)=\sum_{i=1}^{s} e_{i} \gamma_{i} m=m
$$

This shows that the double homothetisms $p_{1}, p_{2}, \ldots, p^{s}$ of M and γ_{1}, γ_{2}, $\ldots, \gamma_{s} \in \Gamma$ form a left double homothetism unity of M. Similar arguments show that if E has a right unity, then M must have a right double homothetism unity.

For the special case where M is a Γ-ring with $m \gamma n=0$ for all $m, n \in M$ and $\gamma \in \Gamma$, we have the converse:

Theorem 6.10. If M is a Γ-ring that has a left (ring) double homothetism unity and $m \gamma n=0$ for all $m, n \in M, \gamma \in \Gamma$, then M can be embedded as an ideal in a Γ-ring with a left (right) unity.

Proof. Suppose M is a Γ-ring that has a left double homothetism unity. Let E, be the direct sum of the groups $\mathscr{E}_{\ell}(M)$ (all left translations of M) and M, that is, $E_{\ell}=\mathscr{E}_{\ell}(M) \oplus M$. Define the mapping $(-,-):, E_{\ell} \times \Gamma \times E_{\ell}$ by

$$
\begin{aligned}
\left(p^{1}, m_{1}\right) \gamma\left(p^{2}, m_{2}\right) & =\left(p^{1} \gamma p^{2}, p_{\gamma}^{1}\left(m_{2}\right)\right) \text { for all }\left(p^{1}, m_{1}\right),\left(p^{2}, m_{2}\right) \\
& \in \mathscr{E}_{\ell}(M) \times M
\end{aligned}
$$

$E_{/}$is a Γ-ring: we only show one of the requirements, the others being easy to verify. Let $\left(p^{1}, m_{1}\right),\left(p^{2}, m_{2}\right),\left(p^{3}, m_{3}\right) \in E_{\ell} \gamma, \mu \in \Gamma$. Then

$$
\begin{aligned}
\left(p^{1}, m_{1}\right) \gamma\left[\left(p^{2}, m_{2}\right) \mu\left(p^{3}, m_{3}\right)\right] & =\left(p^{1}, m_{1}\right) \gamma\left(p^{2} \mu p^{3}, p_{\mu}^{2}\left(m_{3}\right)\right) \\
& =\left(p^{1} \gamma\left(p^{2} \mu p^{3}\right), p_{\gamma}^{1}\left(p_{\mu}^{2}\left(m_{3}\right)\right)\right) \\
& =\left(\left(p^{1} \gamma p^{2}\right) \mu p^{3},\left(p^{1} \gamma p^{2}\right)_{\mu}\left(m_{3}\right)\right) \\
& =\left(p^{1} \gamma p^{2}, p_{\gamma}^{1}\left(m_{2}\right)\right) \mu\left(p^{3}, m_{3}\right) \\
& =\left[\left(p^{1}, m_{1}\right) \gamma\left(p^{2}, m_{2}\right)\right] \mu\left(p^{3}, m_{3}\right)
\end{aligned}
$$

The subset $M^{\prime}=\{(0, m) \mid m \in M\}$ of E_{ℓ} is an ideal of E_{ℓ} and is isomorphic (as a Γ-ring) to M. Let the double homothetisms $p^{1}, p^{2}, \ldots, p^{s}$ of M and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$ form a left double homothetism of M. Define for each $i=1,2, \ldots, s$ an element q^{i} of $\mathscr{E}_{\rho}(M)$ by $q_{\gamma}^{i}=p_{\gamma}^{i}$ for all $\gamma \in \Gamma$. Then for any $p \in E_{\ell}, m \in M$:

$$
\left[\sum_{i=1}^{s} q^{i} \gamma_{i} p\right]_{\lambda}(m)=\sum_{i=1}^{s}\left(q^{i} \gamma_{i} p\right)_{\lambda}(m)=\sum_{i=1}^{s} q_{\gamma_{i}}^{i}\left(p_{\lambda}(m)\right)=p_{\lambda}(m)
$$

Thus, $\sum_{i=1}^{s} q^{i} \gamma_{i} p=p$ for all $p \in \mathscr{E}_{\ell}(M)$. Also, for each $i=1,2 \ldots, s$,
$\left(q^{i}, 0\right) \in E_{\ell}$. If (p, m) is any element of E_{ℓ}, then

$$
\begin{aligned}
\sum_{i=1}^{s}\left(q^{i}, 0\right) \gamma_{i}(p, m) & =\sum_{i=1}^{s}\left(q^{i} \gamma_{i} p, q_{\gamma_{i}}^{i}(m)\right)=\left(\sum_{i=1}^{s} q^{i} \gamma_{i} p, \sum_{i=1}^{s} q_{\gamma_{i}}^{i}(m)\right) \\
& =\left(p, \sum_{i=1}^{s} p_{\gamma_{i}}^{i}(m)\right)=(p, m)
\end{aligned}
$$

Thus, $\left(q^{1}, 0\right),\left(q^{2}, 0\right), \ldots,\left(q^{s}, 0\right) \in E_{\ell}$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \in \Gamma$ form a left unity of E_{l}. Hence M can be embedded as an ideal in a Γ-ring with left unity. Similarly, if M has a right double homothetism unity, then M is isomorphic to an ideal of $E_{r}=M \oplus \mathscr{E}_{r}(M)$, which is a Γ-ring with right unity where \mathscr{E}_{r} is the set of right translations of M.

Corollary 6.11. A Γ-ring that does not have a left (right) double homothetism unity, cannot be embedded as an ideal in a Γ-ring with left or right unity.

Corollary 6.12. If M is any Γ-ring that has only inner double homothetisms and there exists a Γ-ring E with a left (right) unity such that $M \triangleleft E$, then M has a left (right) unity.

The Γ-ring of Example 6.3 is an example of a Γ-ring that does not have a left nor a right double homothetism unity. Consequently it is also an example of a Γ-ring that cannot be embedded as an ideal in a Γ-ring with left or right unity. In the same way it can be shown that any Γ-ring M with $M \neq\{0\}$ and $\Gamma=\{0\}$ has only one double homothetism, namely the inner double homothetism induced by 0 . Thus any such Γ-ring has neither a left nor a right double homothetism unity and cannot, therefore, be embedded as an ideal in a Γ-ring with left or right unity.

Example 6.13. Let $M=\mathbb{Z}_{4}=\{0,1,2,3\}$ and $\Gamma=\left\{\gamma_{0}, \gamma_{1}\right\} \cong \mathbb{Z}_{2}$. Define a mapping $(-,-,-): M \times \Gamma \times M \rightarrow M$ with $m_{1} \gamma m_{2}$ for any $m_{1}, m_{2} \in M, \gamma \in \Gamma$ given by

$$
\begin{aligned}
& m \gamma_{0} n=0 \quad \text { for all } m, n \in M \text { and } \\
& m \gamma_{1} n=\left\{\begin{array}{ll}
2 & \text { if } m, n \in\{1,3\} \\
0 & \text { otherwise }
\end{array}\right\}
\end{aligned}
$$

Then M is a Γ-ring. $\operatorname{End}\left(M^{+}\right)=\left\{f_{0}, f_{1}, f_{2}, f_{3}\right\}$, where

$$
\begin{aligned}
& f_{0}(m)=0 \quad \text { and } \quad f_{1}(m)=m \quad \text { for all } m \in M \\
& f_{2}(0)=0, \quad f_{2}(1)=3, \quad f_{2}(2)=2 \text { and } f_{2}(3)=1 \\
& f_{3}(0)=f_{3}(2)=0 \quad \text { and } \quad f_{3}(1)=f_{3}(3)=2
\end{aligned}
$$

$\mathscr{E}(M)=\left\{p_{0}, p_{1}\right\}$, where

$$
p_{\circ}(\gamma)=f_{\circ} \quad \text { for all } \gamma \in \Gamma, \quad p_{1}\left(\gamma_{0}\right)=f_{0} \quad \text { and } \quad p_{1}\left(\gamma_{1}\right)=f_{3}
$$

Thus, for any double homothetism p of $M, p_{\gamma}(m)$ is either equal to $f_{0}(m)$ or $f_{3}(m)$ for any $m \in M$. Thus $p_{\gamma}(m)=0$ or $p_{\gamma}(m)=2$ for any $m \in M, \gamma \in \Gamma$ and any double homothetism p of M. Hence $p_{\gamma}(1)=0$ or $p_{\gamma}(1)=2$ for any γ and p. Also, any finite sum of elements from the subset $\{0,2\}$ of M is always equal to 0 or 2 . Thus for any double homothetisms $p^{1}, p^{2}, \ldots, p^{s}$ of M and any $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\Gamma} \in \Gamma$

$$
\sum_{i=1}^{s} p_{\gamma_{i}}^{i}(1)=0 \neq 1 \quad \text { or } \quad \sum_{i=1}^{s} p_{\gamma_{i}}^{i}(1)=2 \neq 1
$$

Hence M does not have a left double homothetism unity so that it cannot be embedded as an ideal in a Γ-ring with a left unity. Similarly, M does not have a right double homothetism unity so that M also cannot be embedded as an ideal in a Γ-ring with a right unity.

References

[1] W. E. Barnes, 'On the Г-rings of Nobusawa', Pacific J. Math. 18 (1966), 411-422.
[2] G. L. Booth and N. J. Groenewald, 'On uniformly strongly prime gamma rings', Bull. Austral. Math. Soc. 37 (1988), 437-445.
[3] C. J. Everett, 'An extension theory for rings', Amer. J. Math. 64 (1942), 363-370.
[4] S. Kyuno, 'A gamma ring with the right and left unities', Math. Japon. 24 (1979), 191193.
[5] N. Nobusawa, 'On a generalization of the ring theory', Osaka J. Math. 1 (1964), 81-89.
[6] M. Petrich, 'Ideal extensions of rings', Acta Math. Hungar. 45 (1985), 263-283.
[7] L. Rédei, Algebra, Volume 1 (Pergamon Press, Oxford, 1967).
[8] O. Schreier, 'Über die Erweiterung von Gruppen’, Monatsh. Math. 34 (1926), 165-180.

University of Port Elizabeth
P.O. Box 1600

Port Elizabeth (6000)
Republic of South Africa

[^0]: (c) 1993 Australian Mathematical Society 0263-6115/93 \$A2.00 +0.00

