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1. Introduction. Statement of results. Let A denote the Laplace operator acting on
the space L2(F/H) of automorphic functions with respect to a congruence group T, square
integrable over the fundamental domain F = T/H. It is known that A has a point spectrum

with (Weyl's law)

W\n as

and it has a purely continuous spectrum on [%, °°) of finite multiplicity equal to the number
of inequivalent cusps. The eigenpacket of the continuous spectrum is formed by the
Eisenstein series Ea{z, s) on s = ^+it where a ranges over inequivalent cusps. The
eigenfunctions u,-(z) with positive eigenvalues are Maass cusp forms.

A. Selberg's celebrated conjecture [9] asserts that all positive eigenvalues lie on the
continuous spectrum, i.e.

AiM. (l.D
Selberg [9] succeeded to show that

(1.2)

by using A. Weil's upper bound for Kloosterman sums

|SP(m,n;c)|s(m,n,c)1/2c1/2T(c), (1.3)

and S. S. Gelbart and H. Jacquet [2] have proved the strict inequality A!>3/16 by a
different method (lifting from GL(2) to GL(3)). The conjecture (1.1) is known to be true
for subgroups of small index of the modular group, cf. Huxley [3].

Let us call exceptional the eigenvalues which do not satisfy the Selberg conjecture,
i.e. those with

They play a similar role to the real zeros of Dirichlet's L-series in the multiplicative
number theory. In fact letting

A, = 8,(1-8,)

it turns out that s, are zeros of the Selberg zeta-function; thus the exceptional eigenvalues
correspond to the real zeros in the segment
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100 HENRYK IWANIEC

The remaining zeros s, satisfy the Riemann hypothesis, i.e. they lie on the line

Sj = i+itj, tj real.

Being unable to prove the Selberg eigenvalue conjecture J.-M. Deshouillers and H.
Iwaniec [1] began to establish statistical results showing a rarity of the s, in much the same
form as the density theorems about the zeros of Dirichlet's L-series. Some of their results
proved to be powerful enough to go around the conjecture in a number of important
applications. It is not surprising that the matter has something to do with character sums.
The first transparent connection was pointed out in [6] where the following kind of density
theorems were established

£ \F\A(s>-in)«\F\1+*, (1.4)

the constant implied in « depending on e alone. The larger A is the less often exceptional
eigenvalues of F may occur. J. Szmidt and H. Iwaniec [6] considered the Hecke
congruence group F = F0(q) of level q (for technical reason we assumed q be prime)
showing (1.4) with A = 24/11. Here the point is that A = 24/11 > 2 because the result with
A = 2 follows simply by applying Selberg's trace formula with an appropriate test
function, see M. N. Huxley [4] for example. It is natural to conjecture that (1.4) holds
with A = 4 (density conjecture). This would contain the Selberg lower bound (1.2) for an
individual eigenvalue.

The character sums in question are of the type

!z4'
b

(1.5)

In order to estimate them in [6] we used A. Weil's (see (3.3)) and D. Burgess' bounds for
character sums. The first replaces (1.3) while the second is vital and it yields the desired
saving to effect A > 2. If the Lindelof hypothesis for Dirichlet's L-series was used instead
of Burgess' bound then we could get the density theorem with A = 3.

The problem is also related with the Lindelof hypothesis for the Rankin zeta-
functions. Let us define them. Given a cusp a of F take croeSL(2, U) (once and for all)
such that

CT0OO = Q and v ^ T ^ = T«, (1.6)

where Fo is the stabilizer of a in F. Each cusp form Uj(z), being an eigenfunction of A

has the Fourier expansion at a of type

u,(craz) = Vy" £ pia(n)KSi_V2(2TT \n\ y)e(nx) (1.7)
n # 0

where the numbers pja{n) are called the Fourier coefficients and Kv(y) is the McDonald-
Bessel function. We assume that the cusp forms u, form an orthonormal system

{uu,uh)= uh(z)uh(z) dz = 8hh.
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The Rankin zeta-functions are defined by

Ria(s) = l\pia(n)\2n-\ R e s > l .
i

They possess meromorphic continuation to the whole complex plane and they satisfy a
(vector) functional equation which connects values at s with those at 1 - s. It is reasonable
to expect that

and that the analogue of the Lindelof hypothesis is true

:|)e (1.8)

on Re s =5. This would imply the density theorem with A = 3. What we actually need is a
consequence of (1.8), namely that

A,.(N)= I j p » | 2 » j | j (1.9)

for N>q e . If (1.9) is true for N = qe with O<0<2 then the density theorem holds with
A = 2(2-0). Therefore the density conjecture is a consequence of another conjecture,
that (1.9) is true for all N>qB. It is disappointing that by present means we are able to
show (1.9) only when N»q1+B, compare with Theorem 7.

In this paper we give another treatment of the character sums (1.5) which yields the
following improvement over [6].

THEOREM 1. The density theorem (1.4) holds for groups F0(p) with A = 12/5.

The present method of estimating the relevant character sums does not depend on
the Burgess inequality and is more general.

I benefited a lot from discussions on the subject with H. L. Montgomery to whom I
wish to express my thanks as well as to the Mathematics Department of the University of
Michigan in Ann Arbor for financial support and a nice atmosphere to work.

2. Estimates for character sums. Let 2) be a finite sequence of positive integers (not
necessarily distinct) from the interval [D,AD] with some D > 1 . For any sequence of
complex numbers /3 = (0b)i=sb=sB we consider the sum

de2>

with the aim of showing that

(2.1)
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where b(B, D, Al5 A2) depends at most on B, D and two other parameters A^ A2 defined
by

and

= maxr
1/2 |2>r|

Here 3)r stands for the subsequence of those elements in 2> which are divisible by r and
|2)r| denotes its cardinality. While the first parameter Ai measures how much 2> differs
from the sequence of squares (on which the characters are trivial) the second one A2

controls the multiplicity A(d) of elements d in 21, namely it yields

Our main result in this section is

THEOREM 2. We have (2.1) with

b(B, D, A1; A2) = c(e)(BD)B A?/3{B + A^/6D + Al

where e is any positive number and c(e) depends on e alone.

As a corollary to Theorem 2 we shall deduce

THEOREM 3. For any A, B > 1 and e > 0 we have

+ Al/3D~1I6B}

the constant implied in « depending on e alone.

By Cauchy's inequality Theorem 3 yields

COROLLARY. For any A, B > 1 and e > 0 we have

the constant implied in « depending on e alone.

In the proof of Theorem 2 we shall appeal to the following simpler result.

THEOREM 4. Let 3) be a sequence of squarefree positive integers d < D (not necessarily
distinct). We then have

7 d ^ | 2 <c( e ) (BDr( |2) |D 1 / 2 + |S | 1 / 2 B) | | 7 | | 2 .

For clarity we split up the arguments into several lemmas.
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LEMMA 1 (Polya-Vinogradov). If x is a nonprincipal character (mod q) then

I x(n)«q1/2logq.

LEMMA 2 (Poisson summation formula). Let f(x) be a smooth function on U such that
xf'{x) is bounded. We then have

nsa(modq) M

where e(z) = elmz and /(y) is the Fourier transform of f(x).

LEMMA 3. For q > 1, q = 1 (mod 8), q squarefree, put

G(q,m)= £
a(modq)

We have
G(q,0) = l

and for m j= 0, we have

Proof. This follows immediately from the quadratic reciprocity law and the well
known formula for the Gaussian sum G(q, 1) = Vq.

Combining Lemmas 2 and 3 we infer

LEMMA 4. Let f(x) be a smooth function on U such that xf'(x) is bounded, r > 1, q > 1,
q = 1 (mod 8), q squarefree. We then have

Proof. By Mobius inversion formula our sum is equal to

By Lemma 2 the innermost sum is equal to

I (-) I f(kn) = (kq)-1ZG(q,m)f(mlkq).
a(mod q) ^ ' nao(mod q) m

On applying Lemma 3 we complete the proof.

For the purpose of the proof of Theorem 2 it is convenient to take

(2.3)
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with some JVs 1, so

/(y) = JVexp(-77-(yN)2)

<y-2exp(-(yN)2).

Hence, for Im^r/cqN"1 with some T > 1 to be chosen later, we have
,2

For the remaining m's we want to separate the variables in f(m/kq), so we write f(y) as
the Mellin transform of the gamma function

[
(e)

At this occasion notice that by Stirling's formula

Now gathering together the above results we obtain a truncated form of (2.2).

LEMMA 5. Let q>\, q = l (mod 8) q square free, f(x) be given by (2.3) and Mk^
rkqN'1. We then have (with some |0|^1)

I /(n) -)=40(rq)3/Vexp(-T2)
(n.r)=l

2 m J(2e ) k ] r

By Lemma 5 we immediately obtain

LEMMA 6. Let f{x) be given by (2.4), Q > 1 , Mk = rkQ2^1 and aQ be any complex
numbers supported in one of the four arithmetic progressions q = 1, 3, 5, 7 (mod 8). We then
have (with some |0|^1)

(n,r)
=40T2exp(-r2)r3/2Q4||a

fc|r

(m,c) = l

(e, fc)=l

KehsQ

^-)) ds.

LEMMA 7 (duality principle). The following two statements are equivalent

(i) for all complex numbers am
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(ii) for all complex numbers fln

Z
m

/. Proof of Theorem 4. We have

,3))* Z

105

By Cauchy's inequality and since i-(n)«ne we get

de2>

If d, = d2 then we use the trivial bound Sn « B2 and if d1 f- d2 then dxd2 is not a square, so
by Lemma 1 £„ « D log 2D. Gathering these results together we obtain

The dual form of the above (see Lemma 7) is just the assertion of Theorem 4.

II. Proof of Theorem 1. Every deSU can be factored uniquely as d = uv2 or 2uv2

where u is odd and squarefree. Therefore 2) can be split up into 8 disjoint subsequences
according to the residue class u (mod 8). Clearly it is enough to show (2.1) for each of
such subsequences separately. The case of 4 subsequences of numbers 2uu2 can be
reduced to the case of 4 subsequences of numbers uv2 simply by changing the coefficients

/2 \
0b into lr)0b- In other words we may assume, without loss of generality, that all elements

d in 2) have the squarefree parts odd and congruent (mod 8).
Now, we can write

>) = Z I \c(u,v)\2

where 2)(u) = {u; uv2e3), u squarefree} and

c(u,v)=

Hence by Cauchy's inequality we get

M2((3, 2) )sA 1 Z u ~ 1 / 2 Z lc("> u)l4

v ue3(u)

^ -

l020-i
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By Cauchy's inequality again we obtain

where
1SUS2D ^

(2.4)

5^0,3)= I I J3M I C(M,U)Q|2.

Here we have T3(n)«nBf(n) where f(x) is given by (2.3) with N = B3. Accordingly we

say. Squaring out the innermost sum in 5^(|3, 3)) and changing the order of summation we
get

S^Q3,3)) = Y, Z c(u1,v)c(u2,v)Lf(n){—^—^) + O(B3M((},3))). (2.6)
u U1,u2e23(tj) n \ fl /

Put r = (u1; u2), u1 = rq1, u2=rq2, so K q 1 ;
deduce that

X C(M1; u)c(u2, u) y / ( « '

= Q(r, v) = 4D/rv2. By Lemma 6 we

i, i>)c(rq2,

«r2exp(-T2) I r3/2Q4(r,u) £ |c(rq,i>)|

+ DeB3 X Z ~ Z ~ Z
lsrsD lc|r ̂  lscsD ^ lsmsM

(n,r) =

(2.7)

with
M = M(k/r2v4) = rkr2v~4D2B-3,

H = H(erv2) = 4Dlerv2

and some Ah independent of m such that

For the innermost sum we apply Theorem 4 giving

I ! > „ ( - ) | 2 «D e I \\h\2{\®eni*\H1/2(erv2

m h \ W / I ehreSdiv)

If ehre9(«) then ehrv2e3> so D<ehrv2<4D. This yields

|Ah|2«
ehrea>(v)
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Moreover we have \Sdeni^\^(erv2)~112 A2. Hence we conclude that

( ) | { 2 ^ } £ \c(ehr, v)\2.

Inserting this into (2.7) by (2.6) we infer

Z X I \c(rq,v)\2

v rqe2>(u)

3 + T A2
/2D} I H I |c(ehr, u)

De{A2D"1/2B3+A2
/

by taking T = log AD. Finally combining (2.4)-(2.6) we complete the proof of Theorem 2.

III. Proof of Theorem 3. We apply Theorem 2 for the sequence

2)={a2-4; A<a<2A}.

Therefore D = A2 and it remains to determine the parameters At and A2.
If a2 = 4 (mod r) then there exists a decomposition r = rlr2 such that a = 2 (mod rj)

and a = -2 (mod r2). Hence (r1; r2) | 4 and if r = v2 then ^ = v2 or 2ul and r2 = u | or 2u§.
This yields

a =2(mod ri)
aa-2(mod r2)

A<as2A

l12 I T(a-2)
a B 2(mod rj) r2 aH-2(mod r2)
A < a s:2 A A < a ^ 2 A

:A1+Elog2A.

We also have

Therefore Ax, A2« A1+8 and the rest of the proof follows from Theorem 2.

3. Quadratic congruences. Let a and c ̂  1 be integers and let p(c, a) stand for the
number of incongruent solutions x(modc) of

x2-ax + 1 = 0 (mode). (3.1)

Our aim here is to evaluate p(c, a) on average with respect to a and c. We have

I p(c,a) = <t>(c), (3.2)
a (mod c)
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so trivially

The error term O(c) proves to be too big for our applications in mind. On applying A.
Weil's bounds for character sums (see Lemma 8) we can reduce the error term to
O(C1/2T(C)) which is still not satisfactory. In two papers [5], [6] sharper results were
established on average with respect to c by means of D. Burgess' inequality.

In this section we improve the result (25) of [6] by an appeal to the corollary to
Theorem 3.

THEOREM 5. Let A, C> 1 and q> 1, q squarefree. For any e >0 we have

®(A,C;q)= I
1 <c <C 2<a

c=0(mod q)

«(AC)e{A5/6+q1/4A5/8 + A 1 / 3 C 1 / 6 } - ,
a

the constant implied in « depending on e alone.

Proof. Every c can be uniquely factored as c = kl where k is squarefree, 41 is
squareful and (k,4l)= 1. For notational simplicity in the sequel we do not repeat these
properties of k and /, so the reader should keep them in mind to the end of the proof.
Since p(c,a) is multiplicative in c and k is squarefree and odd we have

p(c, a) = p(l, a)p(k, a) = p(l, a)Y, (—r—)•

For a parameter X to be chosen later we partition p{c, a) = Pi(c, a) + p2(c, a) where

b | k, bl:

and

p2(c, a) = p(l, a) Z
b | k, b! =

The first term p^(c, a) contributes to the main term. We have

£ p1(c,a)= X Z PO2<a<A b | fc 2<a<A
blsx

U

I pd,V I -
b | k \(mod I)

blsX a=\(mod!)
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We evaluate the innermost sum by

LEMMA 8. If b, I > 1, (b, 0 = 1 , b squarefree then

a=X(mod t)

Proof. It follows in a standard way from A. Weil's bounds for character sums,
precisely from (see [8]) ,n_A\ /nu\ I

£ A b I \b 1\

and that for h = 0 the sum is equal to n,(b).

By Lemma 8 and (3.2) we further infer

fa | k
bl-=X

Hence

c=0(mod q)

«(ACT
kl<C

kl=0(modq)

« (AC)eC 1 + (IX)1'2}

Now it remains to estimate

(ACY{ACiaX~r + X1'2} - .

Z Z Pzic,a)
lscsC 2<o<A

(3.4)

Let L > 1 be a parameter to be chosen later. We split up the summation over c into two
sums

Z Z P2(kl,a)

and

IdsQlsL 2<asA
kl=0(modq)

4= Z Z P2(kl,a)
WsC,l>L 2<o<A

kl=0(modq)
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First we estimate 58 4 by essentially elementary means. We have \p2(kl, 0)|
p(l, a)-r(fc) and /• s

I ^ 1

Hence
k=0(modq/(t,q))

4«— I
<? L<l=sC 2<asA

Since / is squareful the smallest n such that 11 n2 satisfies 11/2 ̂  n < P/4. Moreover

C 1 + e
/ 2 I Jn, q)n-413 I (a2-4,n2)1/2

C1+eir1/6A. (3.5)
This bound is admissible for L = A.

Now it remains to estimate 983. Letting v(c) be the sign of the innermost sum we
o b t a i n v ^ ^ ^ /a2-4\

®3= I I v{kl) I p(l,a) I I—r—).
kl£C,!<L 2<a=sA h i t \ 0 I

kl-O(modq)

b |k
b>X/l

Then writing k = br we get by Cauchy's inequality

^3= I I I Pd,a) I ,
rlsC 2<osA X/I<b<C/!r

l<L,r<C/X brlsO(modq)

II Ui) I I v
rls;C

l<L,r<OX
B,<bsB2

where Bx = X(H, q)/Zq, B2 = C(rl, q)/lq and

(3.6)

A(0= I P2(U)<^ I P
2(U).

2<asA ' a(mod 1)

For any c > 1 we have

I p\c, a) = #{x, y(mod c); (xy, c) = 1, (x - y)(xy +1) = 0(mod c)}« c1+e.
a (mod c)

Therefore

By (3.6), (3.7) and Theorem 3 we obtain
(3.7)

r<C/X I

5/4^1/2/U5I4C
l<Lr<OX riq

: (AC)e

iq

(3.8)
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Combining (3.4)-(3.8) we obtain

, C; /6 /2

for any X>0. On putting X = q1/2A5/4+A2/3C1/3 we complete the proof.

By partial summation we infer from Theorem 5 the following

COROLLARY. Let 0<a<l, £&0, q s l , q squarefree and C s l . We then have

l£c=sC |al=sac
c«0(mod q)

« ( l + a | ) | - +(aC)5/6 + q1/4(aC)s/8 + (aC)1/3C1/6 . (3.9)
l\qj J q

REMARK. We included the terms with | a |^2 using trivial bounds p(qco,a)«
Co/2(co, q)1/2(qc0)e for q squarefree.

4. Estimates for sums of Kloosterman sums. In this section we apply the corollary
to Theorem 5 to estimate sums of Kloosterman sums #"(n, n; c) over moduli c = 0 (mod q)
as well as over the coefficients n. It is the latter parameter which yields an extra saving
compared to the Weil upper bound (1.3). By contrast the conjecture of Y. V. Linnik [7]
and A. Selberg [9] predicts a cancellation of terms Ŝ (m, n; c) in sums over the moduli c.
In fact the analogue of the Linnik-Selberg conjecture, namely the following statement

g(-Wm,n;

for a smooth function g(£) compactly supported in R+, and any X> 1 is equivalent to the
eigenvalue conjecture (1.1).

We first prove the following general result.

THEOREM 6. Let /0(£) be a smooth function supported in [ 1, 2], N > 1, C a 4N, q > 1, q
squarefree. Put f(n) = fo(n/N). We then have

C<
c"«0(mod q)

Proof. We have

</>(n,n;c)= £ e[-n)p(c,a).
a (mode) ^ c '

By Poisson's formula

Suppose that |a/c|<^, then

/(h+-)«(WV)-2 if
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c, a)

Now, by (3.9) our sum is equal to

C<c=2C
c— O(modq)

xa s/6 5/8 i rv / 3

1 1
C 1 (CN) \

~Ni\~q j
Here, the innermost sum is equal to

Notice that ^/c<2JV/Cs§ and a^>Ne. Therefore integrating over ^ yields

If/(I) I e( «JV.

Gathering the above results together we complete the proof.

From Theorem 6 it is easy to deduce the following

COROLLARY. Let g(£) be a smooth function supported in [1, -J2]. For q > 1, q squarefree
and X>2q we have

kn
«(X5 / 6+q1 / 4X5 / 8)—,

c»0(modq) '

the constant implied in « depending on g(£) and e at most.

Proof. The partial sum with c^C1 = X413 by Weil's upper bound (1.3) is

esc,

and the partial sum with c > C 2 = qXlogX by the trivial estimate |5^(n, n; c)|<c is

C2 <?OXlogXnX>

e x p ( - n ) « - .

We split the remaining range of summation over c into « log X subintervals of the type
(C, V2C) with Cj<C:sC2. For each of the resulting sums separately Theorem 6 is
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applicable with N = C/4TTX and

giving
v 1 v 1 /X - 1-exp—
^ \ q

c—OCmod q)

v 1 / n\ (Aim \ ,
1-exp— g XMn,n;c)
„ n \ q) \ c I

« f (<z
Wq
(<zy / 2

+ x 5 ' 6 + q i /4 X
5 ' 8 +x i / 3 c i / 6 +—]—.

q) w Ci q
Gathering the above results together we complete the proof.

5. Lower bounds for Fourier coefficients of cusp forms. We shall show a prototype
of (1.9). Our method is so special that it requires q be prime. Thus F0(q) has two
inequivalent cusps °° and 0. Let Uj(z) be a Maass cusp form whose Fourier expansions at
a=0 and a=°° are given by (1.7). Put

and

c,-== = Z - exp(-n) |p,co(n)|2.

THEOREM 7. // A, is an exceptional eigenvalue then

Proof. This result is Lemma 3 of [6]. Let P{Y) stand for the euclidean strip

P(Y) = {z =x + J y ; | x | < i y > Y } .

One can find positive numbers Ya such that

(5.1)

Hence and by the Fourier expansions (1.7) we obtain

l = f |u,(z)|2d2<

= I f k(croz)|2 dz = 2 I £ |Pj,(n)|2 f " Kfti(y) ^

because PjQ(«) = Pia(~»)- We have 0<ifJ-<5, so

https://doi.org/10.1017/S001708950000611X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000611X


114

This yields

HENRYK IWANIEC

£ 1
ia(n)|2>2. (5.2)

0 -1/Vq'
Now notice that am= L „ ) and CTO = ( " x'Vl*) satisfy (1.6) and that Y ^ N / 3 / 2 and

\(J 1/ Wq 0 /
Y0 = V3/2q satisfy (5.1) completing the proof of Theorem 7.

6. Proof of the density theorem. We begin by applying Kuznetsov's formula for the
Hecke group F = ro(q), see [1]. Let {UJ(Z)} be the orthonormal basis of Maass cusp forms
whose Fourier expansions at a cusp a are given by (1.7). Let JEC(Z, S) be the Eisenstein
series associated with the cusp c whose Fourier expansion at a is given by

Et(or0z, s) = constant term + Vy \n\ y)e(nx).

Let {yjk ( z ) } ^ . ^ be an orthonormal basis of the space 3K°(r) of holomorphic cusp forms
of weight k whose Fourier expansion at a is given by

= ;(<ro, z)k 0ic(a, n)e(nz).

Let f(x) be a smooth function supported in (0, °°). Define

2i sh o 2U X "2"

V0(a,n) =

V1(a,n) =

0<X,<l /4 C n •"•']

V fa) ,„ ,_

(a,n) = - l f
7T c J-o

o, n)=
o c

Here ^ ( " J n; c) is the generalized Kloosterman sum. In case of F = T0(q), a = 0 or oo we
have c = 0 (mod q) and the Kloosterman sums S^n, n; c) coincide with the classical ones
!r(n,n;c).
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The sum formula of Kuznetsov says that

tvjLa,n) = y(a,n). (6.1)
i=0

We take f(x) = g(xX) where g(|) is a smooth function whose graph is

1 /2

and X>2q. We have f(k - 1)« k~2 and for real t, f(t)« (t2+ I)"1 logX. This together with
Theorem 2 of Deshouillers and Iwaniec [1] shows that the series Vf(a, n) with i = 1, 2, 3
converges rapidly and that

) i= 1,2,3. (6.2)
\ ql

Hence by (6.1)

(( ) ) (6.3)

Multiply both sides of (6.3) by

- e x p ( - - ) if a = 0
n \ a!

and by

— exp(-n) if Q = <»
n

and sum over n = 1, 2,. . . , and a = 0, °° getting (see Theorem 7)

o<x,<i/4 'ch-Trtj ! n \ q)

+ O(qX°)

the last inequality following from the Corollary to Theorem 6.
On the left hand side the arguments t, of f(tt) are purely imaginary. Using the

power series expansion of the Bessel functions J2itl(x) we deduce that
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Combining this with (6.4) and Theorem 6 we conclude that

£ x2 (^1 / 2 )« (X5/6 + q 1I4X5'8

l/2<Si<l

Putting X = q615 we complete the proof.
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