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Abstract
We prove a relative Lefschetz–Verdier theorem for locally acyclic objects over a Noetherian base scheme. This
is done by studying duals and traces in the symmetric monoidal 2-category of cohomological correspondences.
We show that local acyclicity is equivalent to dualisability and deduce that duality preserves local acyclicity. As
another application of the category of cohomological correspondences, we show that the nearby cycle functor over
a Henselian valuation ring preserves duals, generalising a theorem of Gabber.

Introduction

The notions of dual and trace in symmetric monoidal categories were introduced by Dold and Puppe
[DP]. They have been extended to higher categories and have found important applications in algebraic
geometry and other contexts (see [BZN] by Ben-Zvi and Nadler and the references therein).

The goal of the present article is to record several applications of the formalism of duals and traces
to the symmetric monoidal 2-category of cohomological correspondences in étale cohomology. One of
our main results is the following relative Lefschetz–Verdier theorem.

Theorem 0.1. Let S be a Noetherian scheme and let Λ be a Noetherian commutative ring with 𝑚Λ = 0
for some m invertible on S. Let

𝑋

𝑓

��

𝐶
←−𝑐��

𝑝

��

−→𝑐 �� 𝑌

𝑔

��

𝐷
←−
𝑑��

−→
𝑑 ��

𝑞

��

𝑋

𝑓

��
𝑋 ′ 𝐶 ′�� �� 𝑌 ′ 𝐷 ′�� �� 𝑋 ′

be a commutative diagram of schemes separated of finite type over S, with p and 𝐷 → 𝐷 ′ ×𝑌 ′ 𝑌 proper.
Let 𝐿 ∈ 𝐷𝑐ft (𝑋,Λ) such that L and 𝑓!𝐿 are locally acyclic over S. Let 𝑀 ∈ 𝐷 (𝑌,Λ), 𝑢 : ←−𝑐 ∗𝐿 → −→𝑐 !𝑀 ,
𝑣 :
←−
𝑑 ∗𝑀 →

−→
𝑑 !𝐿. Then 𝑠 : 𝐶 ×𝑋×𝑆𝑌 𝐷 → 𝐶 ′ ×𝑋 ′×𝑆𝑌 ′ 𝐷 ′ is proper and

𝑠∗〈𝑢, 𝑣〉 = 〈( 𝑓 , 𝑝, 𝑔)!𝑢, (𝑔, 𝑞, 𝑓 )!𝑣〉.

Here 𝐷𝑐ft (𝑋,Λ) ⊆ 𝐷 (𝑋,Λ) denotes the full subcategory spanned by objects of finite tor-dimension
and of constructible cohomology sheaves, and 〈𝑢, 𝑣〉 is the relative Lefschetz–Verdier pairing.
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Remark 0.2. In the case where S is the spectrum of a field, local acyclicity is trivial and the theorem
generalises [SGA5, III Corollaire 4.5] and (the scheme case of) [V1, Proposition 1.2.5]. For S smooth
over a perfect field and under additional assumptions of smoothness and transversality, Theorem 0.1
was proved by Yang and Zhao [YZ, Corollary 3.10]. The original proof in [SGA5] and its adaptation in
[YZ] require the verification of a large amount of commutative diagrams. The categorical interpretation
we adopt makes our proof arguably more conceptual.

It was observed by Lurie that Grothendieck’s cohomological operations can be encoded by a (pseudo)
functor ℬ→ 𝒞at, where ℬ denotes the category of correspondences and 𝒞at denotes the 2-category
of categories. Contrary to the situation of [BZN, Definition 2.15], in the context of étale cohomology, the
functor has a right-lax symmetric monoidal structure that is not expected to be symmetric monoidal even
after enhancement to higher categories. Instead, we apply the formalism of traces to the corresponding
cofibred category produced by the Grothendieck construction, which is the category𝒞 of cohomological
correspondences. The relative Lefschetz–Verdier formula follows from the functoriality of traces for
dualisable objects (𝑋, 𝐿) of 𝒞.

To complete the proof, we show that under the assumption 𝐿 ∈ 𝐷𝑐ft (𝑋,Λ), dualisability is equivalent
to local acyclicity (Theorem 2.16). As a byproduct of this equivalence, we deduce immediately that
local acyclicity is preserved by duality (Corollary 2.18). Note that this last statement does not involve
cohomological correspondences.

We also give applications to the nearby cycle functor Ψ over a Henselian valuation ring. The functor
Ψ extends the usual nearby cycle functor over a Henselian discrete valuation ring and was studied by
Huber [H, Section 4.2]. By studying specialisation of cohomological correspondences, we generalise
Gabber’s theorem that Ψ preserves duals and a fixed point theorem of Vidal to Henselian valuation
rings (Corollaries 3.8 and 3.13). We hope that the latter can be used to study ramification over higher-
dimensional bases.

Scholze remarked that our arguments also apply in the étale cohomology of diamonds and imply the
equivalence between dualisability and universal local acyclicity in this situation. This fact and applica-
tions are discussed in his work with Fargues on the geometrisation of the Langlands correspondence
[FS].

Let us briefly mention some other categorical approaches to Lefschetz type theorems. In [DP,
Section 4], the Lefschetz fixed point theorem is deduced from the functoriality of traces by passing to
suspension spectra. In [P], a categorical framework is set up for Lefschetz–Lunts type formulas. In May
2019, as a first draft of this article was being written, Varshavsky informed us that he had a different
strategy to deduce the Lefschetz–Verdier formula, using categorical traces in (∞, 2)-categories.

This article is organised as follows. In Section 1, we review duals and traces in symmetric monoidal
2-categories and the Grothendieck construction. In Section 2, we define the symmetric monoidal
2-category of cohomological correspondences and prove the relative Lefschetz–Verdier theorem. In
Section 3, we discuss applications to the nearby cycle functor over a Henselian valuation ring.

1. Pairings in symmetric monoidal 2-categories

We review duals, traces and pairings in symmetric monoidal 2-categories. We give the definitions in
Subsection 1.1 and discuss the functoriality of pairings in Subsection 1.2. These two subsections are
mostly standard (see [BZN] and [HSS] for generalisations to higher categories). In Subsection 1.3 we
review the Grothendieck construction in the symmetric monoidal context, which will be used to interpret
the category of cohomological correspondences later.

By a 2-category, we mean a weak 2-category (also known as a bicategory in the literature).

1.1. Pairings

Let (𝒞, ⊗, 1𝒞) be a symmetric monoidal 2-category.
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Definition 1.1 (dual). An object X of 𝒞 is dualisable if there exist an object 𝑋∨ of 𝒞, called the dual
of X, and morphisms ev𝑋 : 𝑋∨ ⊗ 𝑋 → 1𝒞 , coev𝑋 : 1𝒞 → 𝑋 ⊗ 𝑋∨, called evaluation and coevaluation,
respectively, such that the composites

𝑋
coev𝑋 ⊗id𝑋
−−−−−−−−→ 𝑋 ⊗ 𝑋∨ ⊗ 𝑋

id𝑋 ⊗ev𝑋
−−−−−−−→ 𝑋, 𝑋∨

id𝑋∨ ⊗coev𝑋
−−−−−−−−−→ 𝑋∨ ⊗ 𝑋 ⊗ 𝑋∨

ev𝑋 ⊗id𝑋∨
−−−−−−−−→ 𝑋∨

are isomorphic to identities.

Remark 1.2. For X dualisable, 𝑋∨ is dualisable of dual X. For X and Y dualisable, 𝑋 ⊗ 𝑌 is dualisable
of dual 𝑋∨ ⊗ 𝑌∨.

For X and Y in 𝒞, we let ℋom(𝑋,𝑌 ) denote the internal mapping object if it exists.

Remark 1.3. Assume that X is dualisable of dual 𝑋∨.

(a) The morphisms coev𝑋 and ev𝑋 exhibit − ⊗ 𝑋∨ as right (and left) adjoint to − ⊗ 𝑋 . Thus, for every
object Y, ℋom(𝑋,𝑌 ) exists and is equivalent to 𝑌 ⊗ 𝑋∨. In particular, ℋom(𝑋, 1𝒞) exists and is
equivalent to 𝑋∨.

(b) If, moreover, ℋom(𝑌, 1𝒞) exists, then we have equivalences

ℋom(𝑋 ⊗ 𝑌, 1𝒞) ℋom(𝑋,ℋom(𝑌, 1𝒞))
(a)
 ℋom(𝑌, 1𝒞) ⊗ℋom(𝑋, 1𝒞),

ℋom(𝑌, 𝑋) ℋom(𝑌,ℋom(𝑋∨, 1𝒞)) ℋom(𝑋∨ ⊗ 𝑌, 1𝒞)
ℋom(𝑌, 1𝒞) ⊗ℋom(𝑋∨, 1𝒞) ℋom(𝑌, 1𝒞) ⊗ 𝑋.

Lemma 1.4. An object X is dualisable if and only if ℋom(𝑋, 1𝒞) and ℋom(𝑋, 𝑋) exist and the
morphism 𝑚 : 𝑋 ⊗ℋom(𝑋, 1𝒞) →ℋom(𝑋, 𝑋) adjoint to

𝑋 ⊗ℋom(𝑋, 1𝒞) ⊗ 𝑋
id𝑋 ⊗ev𝑋
−−−−−−−→ 𝑋

is a split epimorphism. Here ev𝑋 : ℋom(𝑋, 1𝒞) ⊗ 𝑋 → 1𝒞 denotes the co-unit.

Proof. The ‘only if’ part is a special case of Remark 1.3. For the ‘if’ part, we define coev𝑋 : 1𝒞 →
𝑋 ⊗ ℋom(𝑋, 1𝒞) to be the composite of a section of m and the morphism 1𝒞 → ℋom(𝑋, 𝑋)
corresponding to id𝑋 . It is easy to see that ev𝑋 and coev𝑋 exhibit ℋom(𝑋, 1𝒞) as a dual of X. �

For X and Y dualisable, the dual of a morphism 𝑢 : 𝑋 → 𝑌 is the composite

𝑢∨ : 𝑌∨
id𝑌∨ ⊗coev𝑋
−−−−−−−−−→ 𝑌∨ ⊗ 𝑋 ⊗ 𝑋∨

id𝑌∨ ⊗𝑢⊗id𝑋∨
−−−−−−−−−−−→ 𝑌∨ ⊗ 𝑌 ⊗ 𝑋∨

ev𝑌 ⊗id𝑋∨
−−−−−−−−→ 𝑋∨.

This construction gives rise to a functor Hom𝒞 (𝑋,𝑌 ) → Hom𝒞 (𝑌
∨, 𝑋∨). We have commutative squares

with invertible 2-morphisms

1𝒞
coev𝑋 ��

coev𝑌
��

𝑋 ⊗ 𝑋∨

𝑢⊗id
��

𝑋 ⊗ 𝑌∨
𝑢⊗id ��

id⊗𝑢∨

��

𝑌 ⊗ 𝑌∨

ev𝑌
��

𝑌 ⊗ 𝑌∨
id⊗𝑢∨ �� 𝑌 ⊗ 𝑋∨ 𝑋 ⊗ 𝑋∨

ev𝑋 �� 1𝒞 .

(1.1)

Moreover, for 𝑋
𝑢
−→ 𝑌

𝑣
−→ 𝑍 with X, Y, Z dualisable, we have (𝑣𝑢)∨  𝑢∨𝑣∨.

Notation 1.5. We let Ω𝒞 denote the category End(1𝒞).
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Construction 1.6 (dimension, trace and pairing). Let X be a dualisable object of 𝒞 and let 𝑒 : 𝑋 → 𝑋
be an endomorphism. We define the trace tr(𝑒) to be the object of Ω𝒞 given by the composite

1𝒞
coev𝑋
−−−−→ 𝑋 ⊗ 𝑋∨

𝑒⊗id𝑋∨
−−−−−−→ 𝑋 ⊗ 𝑋∨

ev𝑋
−−−→ 1𝒞 ,

where in the last arrow we used the commutativity constraint.
Let 𝑢 : 𝑋 → 𝑌 and 𝑣 : 𝑌 → 𝑋 be morphisms with X dualisable. We define the pairing by 〈𝑢, 𝑣〉 =

tr(𝑣 ◦ 𝑢).
We define the dimension of a dualisable object X to be dim(𝑋) := 〈id𝑋 , id𝑋 〉, which is the composite

1𝒞
coev𝑋
−−−−→ 𝑋 ⊗ 𝑋∨

ev𝑋
−−−→ 1𝒞 .

If X and Y are both dualisable, then 〈𝑢, 𝑣〉 is isomorphic to the composite

1𝒞
coev𝑋
−−−−→ 𝑋 ⊗ 𝑋∨

𝑢⊗𝑣∨

−−−−→ 𝑌 ⊗ 𝑌∨
ev𝑌
−−−→ 1𝒞 .

In this case, we have an isomorphism 〈𝑢, 𝑣〉  〈𝑣, 𝑢〉. In fact, by (1.1), we have commutative squares
with invertible 2-morphisms

𝑋 ⊗ 𝑋∨

𝑢⊗id

����
���

���
��

𝑌 ⊗ 𝑌∨

ev𝑌

���
��

��
��

��

1𝒞

coev𝑋
�����������

coev𝑌 ���
��

��
��

��
𝑌 ⊗ 𝑋∨

𝑣⊗id ����
���

���
��

id⊗𝑣∨
������������

1𝒞 .

𝑌 ⊗ 𝑌∨
id⊗𝑢∨

������������
𝑋 ⊗ 𝑋∨

ev𝑋

����������

The definition and construction above hold in particular for symmetric monoidal 1-categories. In the
next subsection, 2-morphisms will play an important role.

1.2. Functoriality of pairings

A morphism 𝑓 : 𝑋 → 𝑋 ′ in a 2-category is said to be right adjointable if there exist a morphism
𝑓 ! : 𝑋 ′ → 𝑋 , called the right adjoint of f, and 2-morphisms 𝜂 : id𝑋 → 𝑓 ! ◦ 𝑓 and 𝜖 : 𝑓 ◦ 𝑓 ! → id𝑋 ′ such
that the composites

𝑓
id◦𝜂
−−−→ 𝑓 ◦ 𝑓 ! ◦ 𝑓

𝜖 ◦id
−−−→ 𝑓 , 𝑓 ! 𝜂◦id

−−−→ 𝑓 ! ◦ 𝑓 ◦ 𝑓 ! id◦𝜖
−−−→ 𝑓 !

are identities.
Let (𝒞, ⊗, 1𝒞) be a symmetric monoidal 2-category.

Construction 1.7. Consider a diagram in 𝒞

𝑋
𝑢 ��

𝑓

��

𝑌
𝑣 ��

𝑔

��

𝑋

𝑓

��
𝑋 ′

𝑢′ �� 𝑌 ′
𝑣′ ��

����		 𝛼

𝑋 ′

����		 𝛽

(1.2)

with X and 𝑋 ′ dualisable and f right adjointable. We will construct a morphism 〈𝑢, 𝑣〉 → 〈𝑢′, 𝑣′〉 in Ω𝒞.
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In the case where Y and 𝑌 ′ are also dualisable and g is also right adjointable, we define 〈𝑢, 𝑣〉 →
〈𝑢′, 𝑣′〉 by the diagram

1𝒞
coev𝑋��

coev𝑋′ ���
��

��
��

��
				



𝑋 ⊗ 𝑋∨
𝑢⊗𝑣∨ ��

𝑓 ⊗ 𝑓 !∨

��




��

𝛼⊗𝛽!∨

𝑌 ⊗ 𝑌∨

ev𝑌

���
��

��
��

��
�

𝑔⊗𝑔!∨

��
������

𝑋 ′ ⊗ 𝑋 ′∨
𝑢′ ⊗𝑣′∨ �� 𝑌 ′ ⊗ 𝑌 ′∨

ev𝑌 ′ �� 1𝒞

where 𝛽! is the composite

𝑣 ◦ 𝑔! 𝜂 𝑓
−−→ 𝑓 ! ◦ 𝑓 ◦ 𝑣 ◦ 𝑔! id◦𝛽◦id

−−−−−→ 𝑓 ! ◦ 𝑣′ ◦ 𝑔 ◦ 𝑔! 𝜖𝑔
−−→ 𝑓 ! ◦ 𝑣′

and the 2-morphisms in the triangles are

( 𝑓 ⊗ 𝑓 !∨) ◦ coev𝑋  (( 𝑓 ◦ 𝑓 !) ⊗ id) ◦ coev𝑋 ′
𝜖 𝑓
−−→ coev𝑋 ′ , (1.3)

ev𝑌

𝜂𝑔
−−→ ev𝑌 ◦((𝑔

! ◦ 𝑔) ⊗ id)  ev𝑌 ′ ◦ (𝑔 ⊗ 𝑔!∨). (1.4)

In particular, a morphism tr(𝑒) → tr(𝑒′) is defined for every diagram in 𝒞 of the form

𝑋
𝑒 ��

𝑓

��

𝑋

𝑓

��
𝑋 ′

𝑒′ �� 𝑋 ′

����		

(1.5)

with X and 𝑋 ′ dualisable and f right adjointable.
In general, we define 〈𝑢, 𝑣〉 → 〈𝑢′, 𝑣′〉 as the morphism tr(𝑣 ◦ 𝑢) → tr(𝑣′ ◦ 𝑢′) associated to the

composite down-square of (1.2).

Trace can be made into a functor End(𝒞) → Ω𝒞, where End(𝒞) is a (2, 1)-category whose objects
are pairs (𝑋, 𝑒 : 𝑋 → 𝑋) with X dualisable and morphisms are diagrams (1.5) with f right adjointable
[HSS, Section 2.1]. Composition in End(𝒞) is given by vertical composition of diagrams.

For the case of Theorem 0.1 where f is not proper, we will need to relax the adjointability condition
in Construction 1.7 as follows. In a 2-category, a down-square equipped with a splitting is a diagram

𝑋
𝑢

⇓
��

𝑓

��

𝑌

𝑔

��
𝑋 ′

𝑢′

⇓ ��

𝑤���

����

𝑌 ′.

(1.6)

Note that the composition of (1.6) with a down-square on the left or on the right is a down-square
equipped with a splitting. Moreover, a down-square with one vertical arrow f right adjointable is
equipped with a splitting induced by the diagram

𝑋

𝑓

��

𝜂⇓
𝑋

𝑓

��
𝑋 ′

⇓𝜖

𝑓 !




𝑋 ′.
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Construction 1.8. Consider a diagram in 𝒞

𝑋
𝑢

𝛾⇓
��

𝑓

��

𝑌
𝑣 ��

𝑔

��

𝑋

𝑓

��
𝑋 ′

𝑢′

⇓𝛿 ��

𝑤���

������

𝑌 ′
𝑣′

�� 𝑋 ′

����		 𝛽

(1.7)

with X and 𝑋 ′ dualisable. We will construct a morphism 〈𝑢, 𝑣〉 → 〈𝑢′, 𝑣′〉 in Ω𝒞.
In the case where Y is also dualisable, we decompose (1.7) into

𝑋
𝑢 ��

𝑓

��

𝑌
𝑣 �� 𝑋

𝑓

��
𝑋 ′

𝑤 �� 𝑌

𝑔

��

𝑓 𝑣 ��

����		 𝛾

𝑋 ′

=

𝑋 ′
𝑢′

�� 𝑌 ′
𝑣′

��

������ 𝛿

𝑋 ′

������ 𝛽

and take the composite

〈𝑢, 𝑣〉  〈𝑣, 𝑢〉 → 〈 𝑓 𝑣, 𝑤〉  〈𝑤, 𝑓 𝑣〉 → 〈𝑢′, 𝑣′〉.

Here the two arrows are given by the case 𝑓 = id of Construction 1.7. In particular, a morphism
tr(𝑒) → tr(𝑒′) is defined for every diagram in 𝒞 of the form

𝑋
𝑒

⇓
��

𝑓

��

𝑋

𝑓

��
𝑋 ′

𝑒′

⇓ ��

����������
𝑋 ′

with X and 𝑋 ′ dualisable.
In general, we define 〈𝑢, 𝑣〉 → 〈𝑢′, 𝑣′〉 as the morphism tr(𝑣 ◦ 𝑢) → tr(𝑣′ ◦ 𝑢′) associated to the

horizontal composition of (1.7).

Remark 1.9. Let 𝒞 and 𝒟 be symmetric monoidal 2-categories and let 𝐹 : 𝒞 → 𝒟 be a symmetric
monoidal functor. Then F preserves duals, pairings and functoriality of pairings.

1.3. The Grothendieck construction

Given a category B and a (pseudo) functor 𝐹 : 𝐵→ 𝒞at, Grothendieck constructed a category cofibred
over B whose strict fibre at an object X of B is 𝐹 (𝑋) [SGA1, Exposé VI]. We review Grothendieck’s
construction in the context of symmetric monoidal 2-categories. Our convention on 2-morphisms is
made with applications to categorical correspondences in mind.

Let (ℬ, ⊗, 1ℬ) be a symmetric monoidal 2-category. We consider the symmetric monoidal 2-
category (𝒞atco,×, ∗), where 𝒞atco denotes the 2-category obtained from the 2-category 𝒞at of
categories by reversing the 2-morphisms, × denotes the strict product and ∗ denotes the category with
a unique object and a unique morphism.

Construction 1.10. Let 𝐹 : (ℬ, ⊗, 1ℬ) → (𝒞atco,×, ∗) be a right-lax symmetric monoidal functor.
We have an object 𝑒𝐹 of 𝐹 (1ℬ) and functors 𝐹 (𝑋) × 𝐹 (𝑋 ′)

�
−→ 𝐹 (𝑋 ⊗ 𝑋 ′) for objects X and 𝑋 ′ of ℬ.
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Given morphisms 𝑐 : 𝑋 → 𝑌 and 𝑐′ : 𝑋 ′ → 𝑌 ′ in ℬ, we have a natural transformation

𝐹 (𝑋) × 𝐹 (𝑋 ′)
� ��

𝐹 (𝑐)×𝐹 (𝑐′)

��
������

𝐹𝑐,𝑐′

𝐹 (𝑋 ⊗ 𝑋 ′)

𝐹 (𝑐⊗𝑐′)

��
𝐹 (𝑌 ) × 𝐹 (𝑌 ′)

� �� 𝐹 (𝑌 ⊗ 𝑌 ′).

(1.8)

The Grothendieck construction provides a symmetric monoidal 2-category (𝒞, ⊗, 1𝒞) as follows.
An object of 𝒞 = 𝒞𝐹 is a pair (𝑋, 𝐿), where 𝑋 ∈ ℬ and 𝐿 ∈ 𝐹 (𝑋). A morphism (𝑋, 𝐿) → (𝑌, 𝑀)

in 𝒞 is a pair (𝑐, 𝑢), where 𝑐 : 𝑋 → 𝑌 is a morphism in ℬ and 𝑢 : 𝐹 (𝑐) (𝐿) → 𝑀 is a morphism in 𝐹 (𝑌 ).
A 2-morphism (𝑐, 𝑢) → (𝑑, 𝑣) is a 2-morphism 𝑝 : 𝑐 → 𝑑 such that the following diagram commutes:

𝐹 (𝑐) (𝐿)
𝑢 �� 𝑀.

𝐹 (𝑑) (𝐿)

𝐹 (𝑝) (𝐿)

��

𝑣

�����������

We take 1𝒞 = (1ℬ, 𝑒𝐹 ). We put (𝑋, 𝐿) ⊗ (𝑋 ′, 𝐿 ′) := (𝑋 ⊗ 𝑋 ′, 𝐿�𝐿 ′). For morphisms (𝑐, 𝑢) : (𝑋, 𝐿) →
(𝑌, 𝑀) and (𝑐′, 𝑢′) : (𝑋 ′, 𝐿 ′) → (𝑌 ′, 𝑀 ′), we put (𝑐, 𝑢) ⊗ (𝑐′, 𝑢′) := (𝑐 ⊗ 𝑐′, 𝑣), where

𝑣 : 𝐹 (𝑐 ⊗ 𝑐′) (𝐿 � 𝐿 ′)
𝐹𝑐,𝑐′

−−−−→ 𝐹 (𝑐)𝐿 � 𝐹 (𝑐′)𝐿 ′
𝑢�𝑢′
−−−−→ 𝑀 � 𝑀 ′.

In applications in later sections, 𝐹𝑐,𝑐′ will be a natural isomorphism.
Given a morphism 𝑓 : 𝑋 → 𝑋 ′ in ℬ and an object L of 𝐹 (𝑋), we write 𝑓♮ = ( 𝑓 , id𝐹 ( 𝑓 )𝐿) : (𝑋, 𝐿) →

(𝑋 ′, 𝐹 ( 𝑓 )𝐿).

Lemma 1.11. Given a 2-morphism

𝑋
𝑐 ��

𝑓

��

𝑌

𝑔

��
𝑋 ′

𝑐′ �� 𝑌 ′

����		 𝑝

(1.9)

in ℬ and a morphism (𝑐, 𝑢) : (𝑋, 𝐿) → (𝑌, 𝑀) in 𝒞 above c, there exists a unique morphism
(𝑐′, 𝑢′) : (𝑋 ′, 𝐹 ( 𝑓 )𝐿) → (𝑌 ′, 𝐹 (𝑔)𝑀) in 𝒞 above 𝑐′ such that p defines a 2-morphism in 𝒞:

(𝑋, 𝐿)
(𝑐,𝑢) ��

𝑓♮

��

(𝑌, 𝑀)

𝑔♮

��
(𝑋 ′, 𝐹 ( 𝑓 )𝐿)

(𝑐′,𝑢′) �� (𝑌 ′, 𝐹 (𝑔)𝑀).

������ 𝑝

Proof. By definition, 𝑢′ is the morphism 𝐹 (𝑐′)𝐹 ( 𝑓 )𝐿  𝐹 (𝑐′ 𝑓 )𝐿
𝐹 (𝑝)
−−−−→ 𝐹 (𝑔𝑐)𝐿  𝐹 (𝑔)𝐹 (𝑐)𝐿

𝑢
−→

𝐹 (𝑔)𝑀 . �

Remark 1.12. Let 𝑓 : 𝑋 → 𝑋 ′ be a morphism in ℬ admitting a right adjoint 𝑓 ! : 𝑋 ′ → 𝑋 . Let
𝜂 : id𝑋 → 𝑓 ! ◦ 𝑓 and 𝜖 : 𝑓 ◦ 𝑓 ! → id𝑋 ′ denote the unit and the co-unit. Let L be an object of 𝐹 (𝑋).

(a) 𝑓♮ : (𝑋, 𝐿) → (𝑋 ′, 𝐹 ( 𝑓 )𝐿) admits the right adjoint

𝑓 ♮ = ( 𝑓 !, 𝐹 (𝜂) (𝐿)) : (𝑋 ′, 𝐹 ( 𝑓 )𝐿) → (𝑋, 𝐿),

with unit and co-unit given by 𝜂 and 𝜖 .
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(b) Assume that 𝐹𝑐,𝑐′ is an isomorphism for all c and 𝑐′, (𝑋, 𝐿) is dualisable in 𝒞 of dual (𝑋∨, 𝐿∨) and
𝑋 ′ is dualisable inℬ of dual 𝑋 ′∨. Then (𝑋 ′, 𝐹 ( 𝑓 ) (𝐿)) is dualisable in𝒞 of dual (𝑋 ′∨, 𝐹 ( 𝑓 !∨)(𝐿∨)).
The coevaluation and evaluation are given by

𝐹 (coev𝑋 ′ ) (𝑒𝐹 )
𝐹 (𝜖 )
−−−−→ 𝐹 ( 𝑓 ⊗ 𝑓 !∨)𝐹 (coev𝑋 ) (𝑒𝐹 )

coev𝐿
−−−−→ 𝐹 ( 𝑓 ⊗ 𝑓 !∨)(𝐿 � 𝐿∨)

𝐹
𝑓 , 𝑓 !∨

−−−−−→ 𝐹 ( 𝑓 ) (𝐿) � 𝐹 ( 𝑓 !∨)(𝐿∨),

𝐹 (ev𝑋 ′ ) (𝐹 ( 𝑓
!∨)(𝐿∨) � 𝐹 ( 𝑓 ) (𝐿))

𝐹−1
𝑓 !∨ , 𝑓
−−−−−→ 𝐹 (ev𝑋 ′ )𝐹 ( 𝑓

!∨ ⊗ 𝑓 ) (𝐿∨ � 𝐿)

𝐹 ( �̄�)
−−−−→ 𝐹 (ev𝑋 ) (𝐿

∨ � 𝐿)
ev𝐿
−−−→ 𝑒𝐹 ,

where 𝜖 is (1.3), 𝜂 is (1.4) (with 𝑔 = 𝑓 ) and coev𝐿 and ev𝐿 denote the second components of
coev(𝑋,𝐿) and ev(𝑋,𝐿) , respectively.

Construction 1.13. Let 𝐹, 𝐺 : (ℬ, ⊗, 1ℬ) → (𝒞atco,×, ∗) be right-lax symmetric monoidal functors.
Let 𝛼 : 𝐹 → 𝐺 be a right-lax symmetric monoidal natural transformation, which consists of the
following data:

◦ for every object X of ℬ, a functor 𝛼𝑋 : 𝐹 (𝑋) → 𝐺 (𝑋);
◦ for every morphism 𝑐 : 𝑋 → 𝑌 , a natural transformation

𝐹 (𝑋)
𝐹 (𝑐) ��

𝛼𝑋

��
				
��𝛼𝑐

𝐹 (𝑌 )

𝛼𝑌

��
𝐺 (𝑋)

𝐺 (𝑐) �� 𝐺 (𝑌 );

◦ a morphism 𝑒𝛼 : 𝑒𝐺 → 𝛼1ℬ (𝑒𝐹 ) in 𝐹 (1ℬ);
◦ for objects X and 𝑋 ′ of ℬ, a natural transformation

𝐹 (𝑋) × 𝐹 (𝑋 ′)
� ��

𝛼𝑋×𝛼𝑋′

��
����
��𝛼𝑋,𝑋′

𝐹 (𝑋 ⊗ 𝑋 ′)

𝛼𝑋⊗𝑋′

��
𝐺 (𝑋) × 𝐺 (𝑋 ′)

� �� 𝐺 (𝑋 ⊗ 𝑋 ′)

subject to various compatibilities. We construct a right-lax symmetric monoidal functor
𝜓 : (𝒞𝐹 , ⊗, 1) → (𝒞𝐺 , ⊗, 1) as follows.

We take 𝜓(𝑋, 𝐿) = (𝑋, 𝛼𝑋 (𝐿)) and 𝜓(𝑐, 𝑢) = (𝑐, 𝜓𝑢), where

𝜓𝑢 : 𝐺 (𝑐) (𝛼𝑋 (𝐿))
𝛼𝑐
−−→ 𝛼𝑌 (𝐹 (𝑐)𝐿)

𝑢
−→ 𝛼𝑌 (𝑀)

for (𝑐, 𝑢) : (𝑋, 𝐿) → (𝑌, 𝑀). We let 𝜓 send every 2-morphism p to p. The right-lax symmetric monoidal
structure on 𝜓 is given by
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(id, 𝑒𝛼) : (1ℬ, 𝑒𝐺) → (1ℬ, 𝛼1ℬ (𝑒𝐹 )) = 𝜓(1ℬ, 𝑒𝐹 ),

𝜓(𝑋, 𝐿) ⊗ 𝜓(𝑋 ′, 𝐿 ′) = (𝑋 ⊗ 𝑋 ′, 𝛼𝑋 (𝐿) � 𝛼𝑋 ′ (𝐿
′))

(id,𝛼𝑋,𝑋′ )
−−−−−−−−→ (𝑋 ⊗ 𝑋 ′, 𝛼𝑋 ⊗𝑋 ′ (𝐿 � 𝐿 ′)) = 𝜓((𝑋, 𝐿) ⊗ (𝑋 ′, 𝐿 ′)),

𝜓(𝑋, 𝐿) ⊗ 𝜓(𝑋 ′, 𝐿 ′)
(id,𝛼𝑋,𝑋′ )��

𝜓 (𝑐,𝑢) ⊗𝜓 (𝑐′,𝑢′)

��

=

𝜓((𝑋, 𝐿) ⊗ (𝑋 ′, 𝐿 ′))

𝜓 ( (𝑐,𝑢) ⊗(𝑐′,𝑢′))

��
𝜓(𝑌, 𝑀) ⊗ 𝜓(𝑌 ′, 𝑀 ′)

(id,𝛼𝑌 ,𝑌 ′ )�� 𝜓((𝑌, 𝑀) ⊗ (𝑌 ′, 𝑀 ′)).

This is a symmetric monoidal structure if 𝑒𝛼 and 𝛼𝑋,𝑋 ′ are isomorphisms (which will be the case in
our applications).

Lemma 1.14. Consider a 2-morphism (1.9) in ℬ and a morphism (𝑐, 𝑢) : (𝑋, 𝐿) → (𝑌, 𝑀) in 𝒞

above c. Let (𝑐′, 𝑢′) : (𝑋 ′, 𝐹 ( 𝑓 )𝐿) → (𝑌 ′, 𝐺 (𝑔)𝑀) be the morphism associated to (𝑐, 𝑢) and let
(𝑐′, (𝜓𝑢)′) : (𝑋 ′, 𝐺 ( 𝑓 )𝛼𝑋 𝐿) → (𝑌 ′, 𝐺 (𝑔)𝛼𝑌 𝑀) be the morphism associated to (𝑐, 𝜓𝑢). Then the
following square commutes:

𝐺 (𝑐′)𝐺 ( 𝑓 )𝛼𝑋 𝐿

𝛼 𝑓

��

(𝜓𝑢)′ �� 𝐺 (𝑔)𝛼𝑌 𝑀

𝛼𝑔

��
𝐺 (𝑐′)𝛼𝑋 ′𝐹 ( 𝑓 )𝐿

𝜓𝑢′ �� 𝛼𝑌 𝐹 (𝑔)𝑀.

Proof. The square decomposes into

𝐺 (𝑐′)𝐺 ( 𝑓 )𝛼𝑋 𝐿
𝐺 (𝑝) ��

𝛼 𝑓

��

𝐺 (𝑔)𝐺 (𝑐)𝛼𝑋 𝐿

𝛼𝑐

��
𝐺 (𝑐′)𝛼𝑋 ′𝐹 ( 𝑓 )𝐿

𝛼𝑐′

��

𝐺 (𝑔)𝛼𝑌 𝐹 (𝑐)𝐿
𝑢 ��

𝛼𝑔

��

𝐺 (𝑔)𝛼𝑌 𝑀

𝛼𝑔

��
𝛼𝑌 ′𝐹 (𝑐

′)𝐹 ( 𝑓 )𝐿
𝐹 (𝑝) �� 𝛼𝑌 ′𝐹 (𝑔)𝐹 (𝑐)𝐿

𝑢 �� 𝛼𝑌 𝐹 (𝑔)𝑀

where the inner cells commute. �

Construction 1.15. Let (ℬ, ⊗, 1ℬ)
𝐻
−→ (ℬ′, ⊗, 1ℬ′ )

𝐺
−→ (𝒞atco,×, ∗) be right-lax symmetric

monoidal functors. Then we have an obvious right-lax symmetric monoidal functor 𝒞𝐺𝐻 → 𝒞𝐺 send-
ing (𝑋, 𝐿) to (𝐻𝑋, 𝐿), (𝑐, 𝑢) to (𝐻𝑐, 𝑢) and every 2-morphism p to 𝐻𝑝. This is a symmetric monoidal
functor if H is.

Construction 1.16. Let

(ℬ, ⊗, 1ℬ)
𝐹

����
���

���
���

�

𝐻

��
������ 𝛼

(ℬ′, ⊗, 1ℬ′ )
𝐺

�� (𝒞atco,×, ∗)

be a diagram of right-lax symmetric monoidal functors and right-lax symmetric monoidal transfor-
mation. Combining the two preceding constructions, we obtain right-lax symmetric monoidal functors
𝒞𝐹 → 𝒞𝐺𝐻 → 𝒞𝐺 .
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2. A relative Lefschetz–Verdier formula

We apply the formalism of duals and pairings to the symmetric monoidal 2-category of cohomological
correspondences, which we define in Subsection 2.2. We prove relative Künneth formulas in Subsection
2.1 and use them to show the equivalence of dualisability and local acyclicity (Theorem 2.16) in
Subsection 2.3. We prove the relative Lefschetz–Verdier theorem for dualisable objects (Theorem 2.21)
in Subsection 2.4. Together, the two theorems imply Theorem 0.1. In Subsection 2.5, we prove that base
change preserves duals (Proposition 2.26).

We will often drop the letters L and R from the notation of derived functors.

2.1. Relative Künneth formulas

We extend some Künneth formulas over fields [SGA5, III 1.6, Proposition 1.7.4, (3.1.1)] to Noetherian
base schemes under the assumption of universal local acyclicity. Some special cases over a smooth
scheme over a perfect field were previously known [YZ, Corollary 3.3, Proposition 3.5].

Let S be a coherent scheme and let Λ be a torsion commutative ring. Let X be a scheme over S. We
let 𝐷 (𝑋,Λ) denote the unbounded derived category of the category of étale sheaves of Λ-modules on
X. Following [D, Th. finitude, Définition 2.12], we say that 𝐿 ∈ 𝐷 (𝑋,Λ) is locally acyclic over S if
the canonical map 𝐿𝑥 → 𝑅Γ(𝑋(𝑥)𝑡 , 𝐿) is an isomorphism for every geometric point 𝑥 → 𝑋 and every
algebraic geometric point 𝑡 → 𝑆 (𝑥) . Here 𝑋(𝑥)𝑡 := 𝑋(𝑥) ×𝑆(𝑥) 𝑡 denotes the Milnor fibre. For X of finite
type over S, local acyclicity coincides with strong local acyclicity [LZ, Lemma 4.7].

Notation 2.1. For 𝑎𝑋 : 𝑋 → 𝑆 separated of finite type, we write 𝐾𝑋/𝑆 = 𝑎!
𝑋Λ𝑆 and 𝐷𝑋/𝑆 =

𝑅ℋom(−, 𝐾𝑋 ). Note that 𝐾𝑆/𝑆 = Λ𝑆 is in general not an (absolute) dualising complex.

Assume in the rest of Subsection 2.1 that S and Λ are Noetherian. We let 𝐷ft (𝑋,Λ) denote the full
subcategory of 𝐷 (𝑋,Λ) consisting of complexes of finite tor-amplitude.

Proposition 2.2. Let 𝑋 ′, 𝑋,𝑌 be schemes of finite type over S and let 𝑓 : 𝑋 → 𝑋 ′ be a morphism over
S. Let 𝑀 ∈ 𝐷ft (𝑌,Λ) universally locally acyclic over S, 𝐿 ∈ 𝐷+(𝑋,Λ). Then the canonical morphism
𝑓∗𝐿 �𝑆 𝑀 → ( 𝑓 ×𝑆 id𝑌 )∗(𝐿 �𝑆 𝑀) is an isomorphism.

This follows from [F, Theorem 7.6.9]. We recall the proof for completeness.

Proof. By cohomological descent for a Zariski open cover, we may assume f separated. By Nagata
compactification, we are reduced to two cases: either f is proper, in which case we apply proper base
change, or f is an open immersion, in which case we apply [D, Th. finitude, App., Proposition 2.10]
(with 𝑖 = id𝑋 ′). �

In the rest of Subsection 2.1, assume that 𝑚Λ = 0 for some integer m invertible on S.

Proposition 2.3. Let 𝑋 ′, 𝑋,𝑌 be schemes of finite type over S and let 𝑓 : 𝑋 → 𝑋 ′ be a separated
morphism over S. Let 𝑀 ∈ 𝐷ft (𝑌,Λ) universally locally acyclic over S, 𝐿 ∈ 𝐷+(𝑋 ′,Λ). Then the
canonical morphism 𝑓 !𝐿 �𝑆 𝑀 → ( 𝑓 ×𝑆 id𝑌 )

!(𝐿 �𝑆 𝑀) is an isomorphism.

The morphism is adjoint to

( 𝑓 ×𝑆 id𝑌 )!( 𝑓
!𝐿 �𝑆 𝑀)  𝑓! 𝑓 !𝐿 �𝑆 𝑀

adj�𝑆 id𝑀
−−−−−−−→ 𝐿 �𝑆 𝑀,

where adj : 𝑓! 𝑓 !𝐿 → 𝐿 denotes the adjunction.

Proof. We may assume that f is smooth or a closed immersion. For f smooth of dimension d,
𝑓 ∗(𝑑) [2𝑑]  𝑓 ! and the assertion is clear. Assume that f is a closed immersion and let j be the
complementary open immersion. Let 𝑓𝑌 = 𝑓 ×𝑆 id𝑌 and 𝑗𝑌 = 𝑗 ×𝑆 id𝑌 . Then we have a morphism of
distinguished triangles
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𝑓 !𝐿 �𝑆 𝑀 ��

𝛼

��

𝑓 ∗𝐿 �𝑆 𝑀 ��



��

𝑓 ∗ 𝑗∗ 𝑗
∗𝐿 �𝑆 𝑀

𝛽

��

��

𝑓 !
𝑌 (𝐿 �𝑆 𝑀) �� 𝑓 ∗𝑌 (𝐿 �𝑆 𝑀) �� 𝑓 ∗𝑌 𝑗𝑌 ∗ 𝑗

∗
𝑌 (𝐿 �𝑆 𝑀) �� ,

where 𝛽 is an isomorphism by Proposition 2.2. It follows that 𝛼 is an isomorphism. �

The following is a variant of [S, Corollary 8.10] and [LZ, Theorem 6.8]. Here we do not require
smoothness or regularity.

Corollary 2.4. Let X and Y be schemes of finite type over S, with X separated over S. Let 𝑀 ∈ 𝐷ft (𝑌,Λ)
universally locally acyclic over S. Then the canonical morphism 𝐾𝑋/𝑆�𝑆 𝑀 → 𝑝!

𝑌 𝑀 is an isomorphism,
where 𝑝𝑌 : 𝑋 ×𝑆 𝑌 → 𝑌 is the projection.

Proof. This is Proposition 2.3 applied to 𝑋 ′ = 𝑆 and 𝐿 = Λ𝑆 . �

Proposition 2.5. Let X and Y be schemes of finite type over S, with X separated over S. Let 𝑀 ∈ 𝐷ft (𝑌,Λ)
universally locally acyclic over S, 𝐿 ∈ 𝐷−𝑐 (𝑋,Λ). Then the canonical morphism 𝐷𝑋/𝑆 𝐿 �𝑆 𝑀 →

𝑅ℋom(𝑝∗𝑋 𝐿, 𝑝!
𝑌 𝑀) is an isomorphism. Here 𝑝𝑋 : 𝑋 ×𝑆 𝑌 → 𝑋 and 𝑝𝑌 : 𝑋 ×𝑆 𝑌 → 𝑌 are the

projections.

The morphism is adjoint to (𝐷𝑋/𝑆 𝐿 ⊗ 𝐿) �𝑆 𝑀 → 𝐾𝑋/𝑆 �𝑆 𝑀 → 𝑝!
𝑌 𝑀 .

Proof. By [SGA4, IX Proposition 2.7], we may assume 𝐿 = 𝑗!Λ for 𝑗 : 𝑈 → 𝑋 étale with U affine.
Then the morphism can be identified with

𝑗∗𝐷𝑈/𝑆Λ𝑈 �𝑆 𝑀 → 𝑗𝑌 ∗(𝐷𝑈/𝑆Λ𝑈 � 𝑀) → 𝑗𝑌 ∗𝑅ℋom(Λ𝑈×𝑆𝑌 , 𝑗 !
𝑌 𝑝!

𝑌 𝑀)

 𝑅ℋom( 𝑗𝑌 !Λ𝑈×𝑆𝑌 , 𝑝!
𝑌 𝑀),

where 𝑗𝑌 = 𝑗 ×𝑆 id𝑌 : 𝑈 ×𝑆 𝑌 → 𝑋 ×𝑆 𝑌 . The first arrow is an isomorphism by Proposition 2.2. The
second arrow is an isomorphism by Corollary 2.4. �

2.2. The category of cohomological correspondences

Let S be a coherent scheme and let Λ be a torsion commutative ring.

Construction 2.6. We define the 2-category of cohomological correspondences 𝒞 = 𝒞𝑆,Λ as follows.
An object of 𝒞 is a pair (𝑋, 𝐿), where X is a scheme separated of finite type over S and 𝐿 ∈ 𝐷 (𝑋,Λ).

A correspondence over S is a pair of morphisms 𝑋
←−𝑐
←− 𝐶

−→𝑐
−→ 𝑌 of schemes over S, where X, Y and

C are separated and of finite type over S. A morphism (𝑋, 𝐿) → (𝑌, 𝑀) in 𝒞 is a cohomological
correspondence over S, namely, a pair (𝑐, 𝑢), where 𝑐 = (←−𝑐 ,−→𝑐 ) is a correspondence over S and
𝑢 : ←−𝑐 ∗𝐿 → −→𝑐 !𝑀 is a morphism in 𝐷 (𝐶,Λ). Given cohomological correspondences (𝑋, 𝐿)

(𝑐,𝑢)
−−−−→

(𝑌, 𝑀)
(𝑑,𝑣)
−−−−→ (𝑍, 𝑁), the composite is (𝑒, 𝑤), where e is the composite correspondence given by the

diagram

𝐶 ×𝑌 𝐷
−→𝑐 ′

���
��

��
��

��←−
𝑑 ′

����
��
��
��
�

𝐶
←−𝑐

����
��
��
�� −→𝑐

���
��

��
��

��
� 𝐷

←−
𝑑

����
��
��
��
�� −→

𝑑

���
��

��
��

�

𝑋 𝑌 𝑍,

(2.1)
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and w is given by the composite

←−
𝑑 ′ ∗ ←−𝑐 ∗𝐿

𝑢
−→
←−
𝑑 ′ ∗ −→𝑐 !𝑀

𝛼
−→ −→𝑐 ′!

←−
𝑑 ∗𝑀

𝑣
−→ −→𝑐 ′!

−→
𝑑 !𝑁,

where 𝛼 is adjoint to the base change isomorphism −→𝑐 ′!
←−
𝑑 ′∗ 

←−
𝑑 ∗−→𝑐 !. Given (𝑐, 𝑢) and (𝑑, 𝑣) from

(𝑋, 𝐿) to (𝑌, 𝑀), a 2-morphism (𝑐, 𝑢) → (𝑑, 𝑣) is a proper morphism of schemes 𝑝 : 𝐶 → 𝐷 satisfying
←−
𝑑 𝑝 =←−𝑐 and

−→
𝑑 𝑝 = −→𝑐 and such that v is equal to

←−
𝑑 ∗𝐿

adj
−−→ 𝑝∗𝑝

∗←−𝑑 ∗𝐿  𝑝!
←−𝑐 ∗𝐿

𝑢
−→ 𝑝!

−→𝑐 !𝑀  𝑝! 𝑝
!−→𝑑 !𝑀

adj
−−→
−→
𝑑 !𝑀.

Here we used the canonical isomorphism 𝑝!  𝑝∗. Composition of 2-morphisms is given by composition
of morphisms of schemes.

The 2-category admits a symmetric monoidal structure. We put

(𝑋, 𝐿) ⊗ (𝑋 ′, 𝐿 ′) := (𝑋 ×𝑆 𝑋 ′, 𝐿 �𝑆 𝐿 ′).

Given (𝑐, 𝑢) : (𝑋, 𝐿) → (𝑌, 𝑀) and (𝑐′, 𝑢′) : (𝑋 ′, 𝐿 ′) → (𝑌 ′, 𝑀 ′), we define (𝑐, 𝑢) ⊗ (𝑐′, 𝑢′) to be
(𝑑, 𝑣), where 𝑑 = (←−𝑐 ×𝑆

←−
𝑐′,−→𝑐 ×𝑆

−→
𝑐′) and v is the composite

←−
𝑑 ∗(𝐿 �𝑆 𝐿 ′)  ←−𝑐 ∗𝐿 �𝑆

←−
𝑐′∗𝐿 ′

𝑢�𝑆𝑢′

−−−−−→ −→𝑐 !𝑀 �𝑆
−→
𝑐′!𝑀 ′

𝛼
−→
−→
𝑑 !(𝑀 �𝑆 𝑀 ′),

where 𝛼 is adjoint to the Künneth formula
−→
𝑑 ! (−�𝑆 −) 

−→𝑐 ! −�𝑆
−→
𝑐′!−. Tensor product of 2-morphisms

is given by product of morphisms of schemes over S. The monoidal unit of 𝒞 is (𝑆,Λ𝑆).

Remark 2.7. Let ℬ𝑆 be the symmetric monoidal 2-category of correspondences obtained by omitting
L from the above construction. The symmetric monoidal structure on ℬ𝑆 is given by fibre product
of schemes over S (which is not the product in ℬ𝑆 for S nonempty). Consider the functor 𝐹 : ℬ𝑆 →

𝒞atco carrying X to 𝐷 (𝑋,Λ) and 𝑐 = (←−𝑐 ,−→𝑐 ) to −→𝑐 !
←−𝑐 ∗ and a 2-morphism 𝑝 : 𝑐 → 𝑑 to the natural

transformation
−→
𝑑 !
←−
𝑑 ∗

adj
−−→
−→
𝑑 ! 𝑝∗𝑝

∗←−𝑑 ∗  −→𝑐 !
←−𝑐 ∗. The compatibility of F with composition (2.1) is given

by the base change isomorphism
←−
𝑑 ∗−→𝑐 ! 

−→𝑐 ′!
←−
𝑑 ′∗. The functor F admits a right-lax symmetric monoidal

structure given by 𝑒𝐹 = Λ𝑆 and �𝑆 , with Künneth formula for !-pushforward providing a natural
isomorphism 𝐹𝑐,𝑐′ (1.8). The Grothendieck construction (Construction 1.10) then produces 𝒞𝑆,Λ.

The category Ω𝒞 consists of pairs (𝑋, 𝛼), where X is a scheme separated of finite type over S and
𝛼 ∈ 𝐻0(𝑋, 𝐾𝑋/𝑆). A morphism (𝑋, 𝛼) → (𝑌, 𝛽) is a proper morphism 𝑋 → 𝑌 of schemes over S such
that 𝛽 = 𝑝∗𝛼, where

𝑝∗ : 𝐻0(𝑋, 𝐾𝑋/𝑆) → 𝐻0(𝑌, 𝐾𝑌 /𝑆) (2.2)

is given by adjunction 𝑝∗𝑝
!  𝑝! 𝑝

! → id.

Lemma 2.8. The symmetric monoidal structure ⊗ on 𝒞 is closed, with internal mapping object
ℋom((𝑋, 𝐿), (𝑌, 𝑀)) = (𝑋 ×𝑆 𝑌, 𝑅ℋom(𝑝∗𝑋 𝐿, 𝑝!

𝑌 𝑀)).

Proof. We construct an isomorphism of categories

𝐹 : Hom((𝑋, 𝐿) ⊗ (𝑌, 𝑀), (𝑍, 𝑁))  Hom((𝑋, 𝐿),ℋom((𝑌, 𝑀), (𝑍, 𝑁)))

as follows. An object of the source (respectively target) is a pair (𝐶 𝑐
−→ 𝑋 ×𝑆 𝑌 ×𝑆 𝑍, 𝑢), where u belongs

to 𝐻0 (𝐶, 𝑐!−) applied to the left-hand (respectively right-hand) side of the isomorphism

𝛼 : 𝑅ℋom(𝑝∗𝑋 𝐿 ⊗ 𝑝∗𝑌 𝑀, 𝑝!
𝑍 𝑁)  𝑅ℋom(𝑝∗𝑋 𝐿, 𝑅ℋom(𝑝∗𝑌 𝑀, 𝑝!

𝑍 𝑁)).
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Here 𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍 denote the projections from 𝑋 ×𝑆 𝑌 ×𝑆 𝑍 . We define F by 𝐹 (𝑐, 𝑢) = (𝑐, 𝑢′), where 𝑢′ is
the image of u under the map induced by 𝛼 and 𝐹 (𝑝) = 𝑝 for every morphism p in the source of F. �

For an object (𝑋, 𝐿) of 𝒞 and a morphism 𝑓 : 𝑋 → 𝑋 ′ of schemes separated of finite type over S,
we let

𝑓♮ = (id𝑋 , 𝑓 )♮ = ((id𝑋 , 𝑓 ), 𝐿
adj
−−→ 𝑓 ! 𝑓!𝐿) : (𝑋, 𝐿) → (𝑋 ′, 𝑓!𝐿).

Lemma 2.9. Let (𝑋, 𝐿) be an object of 𝒞 and let 𝑓 : 𝑋 → 𝑋 ′ be a proper morphism of schemes
separated of finite type over S. Then 𝑓♮ : (𝑋, 𝐿) → (𝑋 ′, 𝑓∗𝐿) admits the right adjoint

𝑓 ♮ = (( 𝑓 , id𝑋 ), 𝑓 ∗ 𝑓∗𝐿
adj
−−→ 𝐿) : (𝑋 ′, 𝑓∗𝐿) → (𝑋, 𝐿).

Proof. The co-unit 𝑓♮ 𝑓 ♮ → id(𝑋 ′, 𝑓∗𝐿) is given by f and the unit id(𝑋,𝐿) → 𝑓 ♮ 𝑓♮ is given by the diagonal
𝑋 → 𝑋 ×𝑋 ′ 𝑋 . (This is an example of Remark 1.12 (a).) �

Construction 2.10 (!-pushforward). Consider a commutative diagram of schemes separated of finite
type over S

𝑋

𝑓

��

𝐶
←−𝑐��

𝑝

��

−→𝑐 �� 𝑌

𝑔

��
𝑋 ′ 𝐶 ′

←−
𝑐′��

−→
𝑐′ �� 𝑌 ′

(2.3)

such that 𝑞 : 𝐶 → 𝑋 ×𝑋 ′ 𝐶 ′ is proper. Let (𝑐, 𝑢) : (𝑋, 𝐿) → (𝑌, 𝑀) be a cohomological correspon-
dence above c. Let 𝑝♯ = ( 𝑓 , 𝑝, 𝑔). By Lemma 1.11, we have a unique cohomological correspondence
(𝑐′, 𝑝♯

! 𝑢) : (𝑋 ′, 𝑓!𝐿
′) → (𝑌 ′, 𝑔!𝑀

′) above 𝑐′ such that q defines a 2-morphism in 𝒞:

(𝑋, 𝐿)
(𝑐,𝑢) ��

𝑓♮

��

(𝑌, 𝑀)

𝑔♮

��
(𝑋 ′, 𝑓!𝐿)

(𝑐′, 𝑝
♯
! 𝑢)
�� (𝑌 ′, 𝑔!𝑀).

������ 𝑞

For a more explicit construction of 𝑝♯
! 𝑢, see [Z, Construction 7.16]. We will often be interested in the

case where f, g and p are proper. In this case, we write 𝑝♯
∗𝑢 for 𝑝♯

! 𝑢.
This construction is compatible with horizontal and vertical compositions.

2.3. Dualisable objects

Let S and Λ be as in Subsection 2.2. Next we study dualisable objects of 𝒞 = 𝒞𝑆,Λ.

Proposition 2.11. Let (𝑋, 𝐿) be a dualisable object of 𝒞.

(a) The dual of (𝑋, 𝐿) is (𝑋, 𝐷𝑋/𝑆 𝐿) and the biduality morphism 𝐿 → 𝐷𝑋/𝑆𝐷𝑋/𝑆 𝐿 is an isomorphism.
Moreover, for any object (𝑌, 𝑀) of 𝒞, the canonical morphisms

𝐷𝑋/𝑆 𝐿 �𝑆 𝑀 → 𝑅ℋom(𝑝∗𝑋 𝐿, 𝑝!
𝑌 𝑀), (2.4)

𝐿 �𝑆 𝐷𝑌 /𝑆 𝑀 → 𝑅ℋom(𝑝∗𝑌 𝑀, 𝑝!
𝑋 𝐿),

𝐷𝑋/𝑆 𝐿 �𝑆 𝐷𝑌 /𝑆 𝑀 → 𝐷𝑋×𝑆𝑌 /𝑆 (𝐿 �𝑆 𝑀)

are isomorphisms. Here 𝑝𝑋 : 𝑋 ×𝑋 𝑌 → 𝑋 and 𝑝𝑌 : 𝑋 ×𝑆 𝑌 → 𝑌 are the projections.
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(b) For every morphism of schemes 𝑔 : 𝑌 → 𝑌 ′ separated of finite type over S and all 𝑀 ∈ 𝐷 (𝑌,Λ),
𝑀 ′ ∈ 𝐷 (𝑌 ′,Λ), the canonical morphisms

𝐿 �𝑆 𝑔∗𝑀 → (id𝑋 ×𝑆 𝑔)∗(𝐿 �𝑆 𝑀),

𝐿 �𝑆 𝑔!𝑀 ′ → (id𝑋 ×𝑆 𝑔)!(𝐿 �𝑆 𝑀 ′)

are isomorphisms. Moreover, for morphisms of schemes 𝑓 : 𝑋 → 𝑋 ′ and 𝑓 ′ : 𝑋 ′′ → 𝑋 separated of
finite type over S such that (𝑋 ′, 𝑓!𝐷𝑋/𝑆 𝐿) and (𝑋 ′′, 𝑓 ′ ∗𝐷𝑋/𝑆 𝐿) are dualisable and 𝑀 ∈ 𝐷 (𝑌,Λ),
the canonical morphisms

𝑓∗𝐿 �𝑆 𝑀 → ( 𝑓 ×𝑆 id𝑌 )∗(𝐿 �𝑆 𝑀),

𝑓 ′!𝐿 �𝑆 𝑀 → ( 𝑓 ′ ×𝑆 id𝑌 )
!(𝐿 �𝑆 𝑀)

are isomorphisms.
(c) If 𝐿 ∈ 𝐷+(𝑋,Λ), then L is locally acyclic over S.
(d) If 𝑅Δ ! commutes with small direct sums and U has finite Λ-cohomological dimension for every

affine scheme U étale over X, then L is c-perfect. Here Δ : 𝑋 → 𝑋 ×𝑆 𝑋 is the diagonal.

Following [ILO, XVII Définition 7.7.1] we say 𝐿 ∈ 𝐷 (𝑋,Λ) is c-perfect if there exists a finite
stratification (𝑋𝑖) of X by constructible subschemes such that for each i, 𝐿 |𝑋𝑖 ∈ 𝐷 (𝑋𝑖 ,Λ) is locally
constant of perfect values. For Λ Noetherian, ‘c-perfect’ is equivalent to ‘∈ 𝐷𝑐ft’.

The condition that 𝑅Δ ! commutes with small direct sums is satisfied if
(*) S is Noetherian finite-dimensional and 𝑚Λ = 0 with m invertible on S,
by Lemma 2.13 and [ILO, XVIIIA Corollary 1.4]. Moreover, the proof below shows that the assump-

tion 𝐿 ∈ 𝐷+(𝑋,Λ) in (c) can be removed under condition (*).

Proof. (a) follows from Remarks 1.2, 1.3 and the identification of internal mapping objects (Lemma
2.8). Via biduality and (2.4), the morphisms in (b) can be identified with the isomorphisms

𝑅ℋom(𝑝′∗𝑋 𝐿∨, 𝑝!
𝑌 ′𝑔∗𝑀)  𝑅ℋom(𝑝′∗𝑋 𝐿∨, 𝑔𝑋∗𝑝

!
𝑌 𝑀)  𝑔𝑋∗𝑅ℋom(𝑝∗𝑋 𝐿∨, 𝑝!

𝑌 𝑀),

𝑅ℋom(𝑝∗𝑋 𝐿∨, 𝑝!
𝑌 𝑔!𝑀 ′)  𝑅ℋom(𝑔∗𝑋 𝑝′∗𝑋 𝐿∨, 𝑔!

𝑋 𝑝!
𝑌 ′𝑀

′)  𝑔!
𝑋 𝑅ℋom(𝑝′∗𝑋 𝐿∨, 𝑝!

𝑌 ′𝑀
′),

𝑅ℋom(𝑝∗𝑋 ′ 𝑓!𝐿
∨, 𝑝′!𝑌 𝑀)  𝑅ℋom( 𝑓𝑌 ! 𝑝

∗
𝑋 𝐿∨, 𝑝′!𝑌 𝑀)  𝑓𝑌 ∗𝑅ℋom(𝑝∗𝑋 𝐿∨, 𝑝!

𝑌 𝑀),

𝑅ℋom(𝑝∗𝑋 ′′ 𝑓
′∗𝐿∨, 𝑝′′!𝑌 𝑀 ′)  𝑅ℋom( 𝑓 ′∗𝑌 𝑝∗𝑋 𝐿∨, 𝑓 ′!𝑌 𝑝!

𝑌 𝑀)  𝑓 ′!𝑌 𝑅ℋom(𝑝∗𝑋 𝐿∨, 𝑝!
𝑌 𝑀),

where 𝐿∨ = 𝐷𝑋/𝑆 𝐿, 𝑔𝑋 = id𝑋 ×𝑆 𝑔, 𝑓𝑌 = 𝑓 ×𝑆 id𝑌 , 𝑓 ′𝑌 = 𝑓 ′ ×𝑆 id𝑌 and 𝑝′𝑋 : 𝑋 ×𝑆 𝑌 ′ → 𝑋 ,
𝑝′𝑌 : 𝑋 ′ ×𝑆 𝑌 → 𝑋 ′, 𝑝′′𝑌 : 𝑋 ′′ ×𝑆 𝑌 → 𝑋 ′′ are the projection. (c) follows from the first isomorphism in
(b) and Lemma 2.12. For (d), note that for 𝑀 ∈ 𝐷 (𝑋,Λ), Hom(Λ𝑋 ,Δ ! (𝐷𝑋/𝑆 𝐿 �𝑆 𝑀))  Hom(𝐿, 𝑀)
by (2.4). Since Δ ! commutes with small direct sums and Λ𝑋 is a compact object of 𝐷 (𝑋,Λ), it follows
that L is a compact object, which is equivalent to being c-perfect by [BS, Proposition 6.4.8]. �

The following is a variant of [F, Theorem 7.6.9] and [S, Proposition 8.11].

Lemma 2.12. Let 𝑋 → 𝑆 be a morphism of coherent schemes and let 𝐿 ∈ 𝐷 (𝑋,Λ). Assume that for
every quasi-finite morphism 𝑔 : 𝑌 → 𝑌 ′ of affine schemes with 𝑌 ′ étale over S, the canonical morphism
𝐿�𝑆 𝑔∗Λ𝑌 → (id𝑋 ×𝑆 𝑔)∗(𝐿�𝑆Λ𝑌 ) is an isomorphism. Assume either 𝐿 ∈ 𝐷+(𝑋,Λ) or that (id𝑋 ×𝑆 𝑔)∗
has bounded Λ-cohomological dimension. Then L is locally acyclic over S.

https://doi.org/10.1017/fms.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.2


Forum of Mathematics, Sigma 15

Proof. Let 𝑠 → 𝑆 be a geometric point and let 𝑔 : 𝑡 → 𝑆 (𝑠) be an algebraic geometric point. Consider
the diagram

𝑋𝑡
𝑔𝑋 ��

��

𝑋(𝑠)

��

𝑋𝑠
𝑖𝑋��

��
𝑡

𝑔 �� 𝑆 (𝑠) 𝑠
𝑖��

obtained by base change. By the assumption and passing to the limit, the morphism 𝐿 |𝑋𝑠 → 𝑖∗𝑋 𝑔𝑋∗(𝐿 |𝑋𝑡 )

can be identified with 𝐿 �𝑆 − applied to Λ𝑠 → 𝑖∗𝑔∗Λ𝑡 , which is an isomorphism. �

Lemma 2.13. Let 𝑖 : 𝑌 → 𝑋 be a closed immersion of finite presentation. Assume that 𝑖! has finite
Λ-cohomological dimension; then 𝑅𝑖! commutes with small direct sums.

Proof. Let j be the complementary open immersion. It suffices to show that 𝑅 𝑗∗ commutes with small
direct sums under the condition that 𝑗∗ has finite Λ-cohomological dimension. This is standard. See, for
example, [LZ, Lemma 1.10]. �

Lemma 2.14. An object (𝑋, 𝐿) of 𝒞 is dualisable if and only if the canonical morphism 𝐿�𝑆 𝐷𝑋/𝑆 𝐿 →
𝑅ℋom(𝑝∗2𝐿, 𝑝!

1𝐿) is an isomorphism. Here 𝑝1 and 𝑝2 are the projections 𝑋 ×𝑆 𝑋 → 𝑋 .

Proof. The ‘only if’ part is a special case of Proposition 2.11 (a). The ‘if’ part follows from Lemma 1.4
and the identification of the internal mapping objects (Lemma 2.8). �

Remark 2.15. The evaluation and coevaluation maps for a dualisable object (𝑋, 𝐿) of 𝒞 can be given
explicitly as follows. The evaluation map (𝑋×𝑆 𝑋, 𝐷𝑋/𝑆 𝐿�𝑆 𝐿) → (𝑆,Λ) is given by 𝑋×𝑆 𝑋

Δ
←− 𝑋 → 𝑆

and the usual evaluation map

Δ∗(𝐷𝑋/𝑆 𝐿 �𝑆 𝐿)  𝐷𝑋/𝑆 𝐿 ⊗ 𝐿 → 𝐾𝑋/𝑆 ,

where Δ denotes the diagonal. The coevaluation map (𝑆,Λ) → (𝑋 ×𝑆 𝑋, 𝐿 �𝑆 𝐷𝑋/𝑆 𝐿) is given by
𝑆 ← 𝑋

Δ
−→ 𝑋 ×𝑆 𝑋 and id𝐿 considered as a morphism

Λ𝑋 → 𝑅ℋom(𝐿, 𝐿)  Δ !𝑅ℋom(𝑝∗2𝐿, 𝑝!
1𝐿)  Δ ! (𝐿 �𝑆 𝐷𝑋/𝑆 𝐿).

We can identify dualisable objects of 𝒞 under mild assumptions.

Theorem 2.16. Let S be a Noetherian scheme and Λ a Noetherian commutative ring with 𝑚Λ = 0 for
m invertible on S. Let X be a scheme separated of finite type over S, 𝐿 ∈ 𝐷𝑐ft (𝑋,Λ). Then (𝑋, 𝐿) is
a dualisable object of 𝒞 if and only if L is locally acyclic over S. In this case, the dual of (𝑋, 𝐿) is
(𝑋, 𝐷𝑋/𝑆 𝐿).

We will use Gabber’s theorem that for X of finite type over S, 𝐿 ∈ 𝐷𝑏
𝑐 (𝑋,Λ) is locally acyclic if and

only if it is universally locally acyclic [LZ, Corollary 6.6].

Proof. We have already seen the last assertion and the ‘only if’ part of the first assertion in Parts (a)
and (c) of Proposition 2.11. The ‘if’ part of the first assertion follows from Lemma 2.14, Proposition
2.5 and Gabber’s theorem. �

Remark 2.17. Without invoking Gabber’s theorem, our proof and Proposition 2.26 show that for
𝐿 ∈ 𝐷𝑐ft (𝑋, 𝐿), (𝑋, 𝐿) is dualisable if and only if L is universally locally acyclic over S.
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Corollary 2.18. For S, Λ and X as in Theorem 2.16 and 𝐿 ∈ 𝐷𝑐ft (𝑋,Λ) locally acyclic over S, 𝐷𝑋/𝑆 𝐿
is locally acyclic over S.

This was known under the additional assumption that S is regular (and excellent) [LZ, Corollary
5.13] (see also [BG, Section B.6 2)] for S smooth over a field). Our proof here is different from the one
in [LZ]. In fact, without invoking Gabber’s theorem, our proof here shows that 𝐷𝑋/𝑆 preserves universal
local acyclicity and makes no use of oriented topoi.

Proof. By Theorem 2.16 and Remark 1.2, (𝑋, 𝐷𝑋/𝑆 𝐿) is dualisable. We conclude by Proposition 2.11
(c). �

Corollary 2.19. Let S be an Artinian scheme, Λ and X as in Theorem 2.16, and 𝐿 ∈ 𝐷 (𝑋,Λ). Then
(𝑋, 𝐿) is a dualisable object of 𝒞 if and only if 𝐿 ∈ 𝐷𝑐ft (𝑋,Λ).

Proof. For 𝐿 ∈ 𝐷𝑐ft (𝑋,Λ), L is locally acyclic over S by [D, Th. finitude, Corollaire 2.16] and thus
(𝑋, 𝐿) is dualisable by the theorem. (Alternatively, one can apply Lemma 2.14 and [SGA5, III Formule
(3.1.1)].) For the converse, we may assume that S is the spectrum of a separably closed field by
Proposition 2.26. In this case, Proposition 2.11 (d) applies. �

2.4. The relative Lefschetz–Verdier pairing

Let S be a coherent scheme and Λ a torsion commutative ring.

Notation 2.20. For objects (𝑋, 𝐿) and (𝑌, 𝑀) of 𝒞 with (𝑋, 𝐿) dualisable and morphisms
(𝑐, 𝑢) : (𝑋, 𝐿) → (𝑌, 𝑀) and (𝑑, 𝑣) : (𝑌, 𝑀) → (𝑋, 𝐿), we write the pairing 〈(𝑐, 𝑢), (𝑑, 𝑣)〉 ∈ Ω𝒞
in Construction 1.6 as (𝐹, 〈𝑢, 𝑣〉), where 𝐹 = 𝐶 ×𝑋×𝑆𝑌 𝐷. We call 〈𝑢, 𝑣〉 ∈ 𝐻0 (𝐹, 𝐾𝐹/𝑆) the rela-
tive Lefschetz–Verdier pairing. The pairing is symmetric: 〈𝑢, 𝑣〉 can be identified with 〈𝑣, 𝑢〉 via the
canonical isomorphism 〈𝑐, 𝑑〉  〈𝑑, 𝑐〉.

For an endomorphism (𝑒, 𝑤) of a dualisable object (𝑋, 𝐿) of 𝒞, we write tr(𝑒, 𝑤) = (𝑋𝑒, tr(𝑤)),
where 𝑋𝑒 = 𝐸 ×𝑒,𝑋×𝑆𝑋,Δ 𝑋 and tr(𝑤) = 〈𝑤, id𝐿〉 ∈ 𝐻0(𝑋𝑒, 𝐾𝑋𝑒/𝑆). We define the characteristic class
cc𝑋/𝑆 (𝐿) to be tr(id𝐿) = 〈id𝐿 , id𝐿〉 ∈ 𝐻0 (𝑋, 𝐾𝑋/𝑆). In other words, dim(𝑋, 𝐿) = (𝑋, cc𝑋/𝑆 (𝐿)).

Theorem 2.21 (Relative Lefschetz–Verdier). Let

𝑋

𝑓

��

𝐶
←−𝑐��

𝑝

��

−→𝑐 �� 𝑌

𝑔

��

𝐷
←−
𝑑��

−→
𝑑 ��

𝑞

��

𝑋

𝑓

��
𝑋 ′ 𝐶 ′

←−
𝑐′��

−→
𝑐′ �� 𝑌 ′ 𝐷 ′

←−
𝑑′��

−→
𝑑′ �� 𝑋 ′

(2.5)

be a commutative diagram of schemes separated of finite type over S, with p and 𝐷 → 𝐷 ′ ×𝑌 ′ 𝑌
proper. Let 𝐿 ∈ 𝐷 (𝑋,Λ) such that (𝑋, 𝐿) and (𝑋 ′, 𝑓!𝐿) are dualisable objects of 𝒞. Let 𝑀 ∈ 𝐷 (𝑌,Λ),
𝑢 : ←−𝑐 ∗𝐿 → −→𝑐 !𝑀 , 𝑣 :

←−
𝑑 ∗𝑀 →

−→
𝑑 !𝐿. Then 𝑠 : 𝐶 ×𝑋×𝑆𝑌 𝐷 → 𝐶 ′ ×𝑋 ′×𝑆𝑌 ′ 𝐷 ′ is proper and

𝑠∗〈𝑢, 𝑣〉 = 〈𝑝♯
! 𝑢, 𝑞♯

! 𝑣〉.

Combining this with Theorem 2.16, we obtain Theorem 0.1.

Proof. By Construction 2.10 applied to the right half of (2.5) and to the decomposition (which was
used in the proof of [Z, Proposition 8.11])
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𝑋

𝑓

��

𝐶
←−𝑐��

−→𝑐 �� 𝑌

𝑋 ′ 𝐶
𝑓 ←−𝑐��

𝑝

��

−→𝑐 �� 𝑌

𝑔

��
𝑋 ′ 𝐶 ′

←−
𝑐′��

−→
𝑐′ �� 𝑌 ′

of the left half of (2.5), we get a diagram in 𝒞

(𝑋, 𝐿)
(𝑐,𝑢)

⇓
��

𝑓♮

��

(𝑌, 𝑀)

𝑔♮

��

(𝑑,𝑣) �� (𝑋, 𝐿)

𝑓♮

��
(𝑋 ′, 𝑓!𝐿)

(𝑐′, 𝑝
♯
! 𝑢)

⇓ ��

(𝑒,𝑤)����

������

(𝑌 ′, 𝑔!𝑀)
(𝑑′,𝑞

♯
! 𝑣)

�� (𝑋 ′, 𝑓!𝐿)

������

where 𝑒 = ( 𝑓←−𝑐 ,−→𝑐 ) and 𝑤 = ( 𝑓 , id𝐶 , id𝑌 )!𝑢. By Construction 1.8, we then get a morphism (𝐹, 〈𝑢, 𝑣〉) →

(𝐹 ′, 〈𝑝♯
! 𝑢, 𝑞♯

! 𝑣〉) in Ω𝒞 given by 𝑠 : 𝐹 → 𝐹 ′. �

In the case where f is proper, the dualisability of (𝑋 ′, 𝑓∗𝐿) follows from that of (𝑋, 𝐿) by Proposition
2.23. Moreover, in this case, by Lemma 2.9, 𝑓♮ is right adjointable and it suffices in the above proof to
apply the more direct Construction 1.7 in place of Construction 1.8.

Corollary 2.22. Let 𝑓 : 𝑋 → 𝑋 ′ be a proper morphism of schemes separated of finite type over S and
let 𝐿 ∈ 𝐷 (𝑋,Λ) such that (𝑋, 𝐿) is a dualisable object of 𝒞. Then 𝑓∗cc𝑋/𝑆 (𝐿) = cc𝑋 ′/𝑆 ( 𝑓∗𝐿).

Proof. This follows from Theorem 2.21 applied to 𝑐 = 𝑑 = (id𝑋 , id𝑋 ), 𝑐′ = 𝑑 ′ = (id𝑋 ′ , id𝑋 ′ ) and
𝑢 = 𝑣 = id𝐿 . �

Proposition 2.23. Let 𝑓 : 𝑋 → 𝑌 be a proper morphism of schemes separated of finite type over S. Let
(𝑋, 𝐿) be a dualisable object of 𝒞. Then (𝑌, 𝑓∗𝐿) is dualisable.

Proof. This follows formally from Remark 1.12 (b). We can also argue using internal mapping objects
as follows. By Proposition 2.11 and Lemma 2.14, the canonical morphism

𝛼 : 𝐷𝑋/𝑆 𝐿 �𝑆 𝑀 → 𝑅ℋom(𝑝∗𝑋 𝐿, 𝑝!
𝑍 𝑀)

is an isomorphism for every object (𝑍, 𝑀) of 𝒞, and it suffices to show that the canonical morphism

𝛽 : 𝐷𝑌 /𝑆 𝑓∗𝐿 �𝑆 𝑀 → 𝑅ℋom(𝑞∗𝑌 𝑓∗𝐿, 𝑞!
𝑍 𝑀)

is an isomorphism. Here 𝑝𝑋 , 𝑝𝑍 , 𝑞𝑌 , 𝑞𝑍 are the projections as shown in the commutative diagram

𝑋

𝑓

��

𝑋 ×𝑆 𝑍

𝑓 ×𝑆 id𝑍
��

𝑝𝑋��

𝑝𝑍

���
��

��
��

��

𝑌 𝑌 ×𝑆 𝑍
𝑞𝑍 ��𝑞𝑌�� 𝑍.

Via the isomorphisms 𝐷𝑌 /𝑆 𝑓∗𝐿 �𝑆 𝑀  ( 𝑓 ×𝑆 id𝑍 )∗(𝐷𝑋/𝑆 𝐿 �𝑆 𝑀) and

𝑅ℋom(𝑞∗𝑌 𝑓∗𝐿, 𝑞!
𝑍 𝑀)  𝑅ℋom(( 𝑓 ×𝑆 id𝑍 )∗𝑝

∗
𝑋 𝐿, 𝑞!

𝑍 𝑀)  ( 𝑓 ×𝑆 id𝑍 )∗𝑅ℋom(𝑝∗𝑋 𝐿, 𝑝!
𝑍 𝑀),

𝛽 can be identified with ( 𝑓 ×𝑆 id𝑍 )∗𝛼. �
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Remark 2.24. The relative Lefschetz–Verdier formula and the proof given above hold for Artin stacks
of finite type over an Artin stack S, with proper morphisms replaced by a suitable class of morphisms
equipped with canonical isomorphisms 𝑓!  𝑓∗ (such as proper representable morphisms). The charac-
teristic class lives in 𝐻0(𝐼𝑋/𝑆 , 𝐾𝐼𝑋/𝑆/𝑆), where 𝐼𝑋/𝑆 = 𝑋 ×Δ ,𝑋×𝑆𝑋,Δ 𝑋 is the inertia stack of X over S.

Theorem 2.21 does not cover the twisted Lefschetz–Verdier formula in [XZ, Section A.2.19].

Remark 2.25. Scholze remarked that arguments of this article also apply in the étale cohomology of
diamonds and imply the equivalence between dualisability and universal local acyclicity in this situation.
This fact and applications are discussed in his work with Fargues on the geometrisation of the Langlands
correspondence [FS]. In [HKW, Section 4], Hansen, Kaletha and Weinstein adapt our formalism and
prove a Lefschetz–Verdier formula for diamonds and v-stacks.

2.5. Base change and duals

We conclude this section with a result on the preservation of duals by base change.
Let 𝑔 : 𝑆 → 𝑇 be a morphism of coherent schemes and let Λ be a torsion commutative ring.

Proposition 2.26. Let (𝑌, 𝑀) be a dualisable object of 𝒞𝑇 ,Λ. Then (𝑌𝑆 , 𝑔∗𝑌 𝑀) is a dualisable object
of 𝒞𝑆,Λ and the canonical morphism 𝑔∗𝑌 𝐷𝑌 /𝑇 𝑀 → 𝐷𝑌𝑆/𝑆𝑔∗𝑌 𝑀 is an isomorphism. Here 𝑌𝑆 = 𝑌 ×𝑇 𝑆
and 𝑔𝑌 : 𝑌𝑆 → 𝑌 is the projection.

We prove the proposition by constructing a symmetric monoidal functor 𝑔∗ : 𝒞𝑇 ,Λ → 𝒞𝑆,Λ as
follows. We take 𝑔∗(𝑌, 𝑀) = (𝑌𝑆 , 𝑔∗𝑌 𝑀). For (𝑑, 𝑣) : (𝑌, 𝑀) → (𝑍, 𝑁), we take 𝑔∗(𝑑, 𝑣) = (𝑑𝑆 , 𝑣𝑆),
where 𝑑𝑆 is the base change of d by g and 𝑣𝑆 is the composite

←−
𝑑 ∗𝑆𝑔∗𝑌 𝑀  𝑔∗𝐷

←−
𝑑 ∗𝑀

𝑔∗𝐷 𝑣
−−−→ 𝑔∗𝐷

−→
𝑑 !𝑀 →

−→
𝑑 !

𝑆𝑔∗𝑍 𝑀,

where D is the source of
←−
𝑑 and

−→
𝑑 , 𝑔𝐷 and 𝑔𝑍 are defined similar to 𝑔𝑌 . For every 2-morphism p of

𝒞𝑇 ,Λ, we take 𝑔∗(𝑝) = 𝑝 ×𝑇 𝑆. The symmetric monoidal structure on 𝑔∗ is obvious. Proposition 2.26
then follows from the fact that 𝑔∗ : 𝒞𝑇 ,Λ → 𝒞𝑆,Λ preserves duals (Remark 1.9).

The construction above is a special case of Construction 1.16 (applied to 𝐻 : ℬ𝑇 → ℬ𝑆 given by
base change by g and 𝛼𝑌 given by 𝑔∗𝑌 ).

Corollary 2.27. Let 𝑔 : 𝑆 → 𝑇 be a morphism of coherent schemes with T Noetherian and let Λ be a
Noetherian commutative ring with 𝑚Λ = 0 for m invertible on T. Then for any scheme Y separated of
finite type over T and any 𝑀 ∈ 𝐷𝑐ft (𝑌,Λ) locally acyclic over T, the canonical morphism 𝑔∗𝑌 𝐷𝑌 /𝑇 𝑀 →
𝐷𝑌𝑆/𝑆𝑔∗𝑌 𝑀 is an isomorphism. Here 𝑌𝑆 = 𝑌 ×𝑇 𝑆 and 𝑔𝑌 : 𝑌𝑆 → 𝑌 is the projection.

Note that the statement does not involve cohomological correspondences.

Proof. This follows from Proposition 2.26 and Theorem 2.16. �

3. Nearby cycles over Henselian valuation rings

Let R be a Henselian valuation ring and let 𝑆 = Spec(𝑅). We do not assume that the valuation is discrete.
In other words, we do not assume S Noetherian. Let 𝜂 be the generic point and let s be the closed point.
Let X be a scheme of finite type over S. Let 𝑋𝜂 = 𝑋 ×𝑆 𝜂, 𝑋𝑠 = 𝑋 ×𝑆 𝑠. We consider the morphisms of
topoi

𝑋𝜂

←−
Ψ𝑋
−−−→ 𝑋

←
×𝑆 𝜂

𝑖𝑋
←−− 𝑋𝑠

←
×𝑆 𝜂  𝑋𝑠 ×̄𝑠 𝜂,

where
←
× denotes the oriented product of topoi [ILO, Exposé XI] and ×̄ denotes the fibre product of

topoi. Let Λ be a commutative ring such that 𝑚Λ = 0 for some m invertible on S. We will study the
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composite functor

Ψ𝑋 : 𝐷 (𝑋𝜂 ,Λ)
←−
Ψ𝑋
−−−→ 𝐷 (𝑋

←
×𝑆 𝜂,Λ)

𝑖∗𝑋
−−→ 𝐷 (𝑋𝑠 ×̄𝑠 𝜂,Λ).

Let 𝑠 be an algebraic geometric point above s and let 𝜂→ 𝑆 (𝑠) be an algebraic geometric point above
𝜂. The restriction of Ψ𝑋 𝐿 to 𝑋𝑠  𝑋𝑠 ×̄𝑠 𝜂 can be identified with ( 𝑗∗𝐿) |𝑋�̄� , where 𝑗 : 𝑋�̄� → 𝑋(𝑠) and
was studied by Huber [H, Section 4.2]. We do not need Huber’s results in this article.

In Subsection 3.1, we study the symmetric monoidal functor given by Ψ and cohomological corre-
spondences. We deduce that Ψ commutes with duals (Corollary 3.8), generalising a theorem of Gabber.
We also obtain a new proof of the theorems of Deligne and Huber that Ψ preserves constructibility
(Corollary 3.9). In Subsection 3.2, extending results of Vidal, we use the compatibility of specialisation
with proper pushforward to deduce a fixed point result.

3.1. Künneth formulas and duals

Proposition 3.1 (Künneth formulas). Let X and Y be schemes of finite type over S and let 𝐿 ∈ 𝐷 (𝑋𝜂 ,Λ),
𝑀 ∈ 𝐷 (𝑌𝜂 ,Λ); then the canonical morphisms

←−
Ψ𝑋 𝐿 �

←−
Ψ𝑌 𝑀 →

←−
Ψ𝑋×𝑆𝑌 (𝐿 � 𝑀), Ψ𝑋 𝐿 � Ψ𝑌 𝑀 → Ψ𝑋×𝑆𝑌 (𝐿 � 𝑀),

are isomorphisms.

The Künneth formula for Ψ over a Henselian discrete valuation ring is a theorem of Gabber ([I1,
Théorème 4.7], [BB, Lemma 5.1.1]).

Proof. It suffices to show that the first morphism is an isomorphism. By passing to the limit and
the finiteness of cohomological dimensions, it suffices to show that Ψ𝑋,𝑈/𝑆 : 𝑋𝑈 → 𝑋

←
×𝑆 𝑈 satisfies

Künneth formula for each open subscheme 𝑈 ⊆ 𝑆. We then reduce to the case 𝑈 = 𝑆, where the Künneth
formula is [I2, Theorem A.3]. The Ψ-goodness is satisfied by Orgogozo’s theorem ([O, Théorème 2.1],
[LZ, Example 4.26 (2)]). �

Construction 3.2. Let 𝑓 : 𝑋 → 𝑌 be a separated morphism of schemes of finite type over S. Then we
have canonical natural transformations

𝑓 ∗𝑠 Ψ𝑌 → Ψ𝑋 𝑓 ∗𝜂 , (3.1)

Ψ𝑌 𝑓𝜂∗ → 𝑓𝑠∗Ψ𝑋 , (3.2)

𝑓𝑠!Ψ𝑋 → Ψ𝑌 𝑓𝜂!, (3.3)

Ψ𝑌 𝑓 !
𝜂 → 𝑓 !

𝑠Ψ𝑌 . (3.4)

Here we denoted 𝑓𝑠 ×̄𝑠 𝜂 by 𝑓𝑠 . (3.1) is the base change

𝑓 ∗𝑠 𝑖∗𝑌
←−
Ψ𝑌  𝑖∗𝑋 ( 𝑓

←
×𝑆 id𝜂)

∗←−Ψ𝑌 → 𝑖∗𝑋
←−
Ψ𝑋 𝑓 ∗𝜂

and (3.4) is defined similar to [LZ, Formula (4.9)] as

𝑖∗𝑋
←−
Ψ𝑋 𝑓 !

𝜂  𝑖∗𝑋 ( 𝑓
←
×𝑆 id𝜂)

!←−Ψ𝑌 → 𝑓 !
𝑠 𝑖∗𝑌
←−
Ψ𝑌 .

(3.1) and (3.2) correspond to each other by adjunction. The same holds for (3.3) and (3.4). For f proper,
(3.2) and (3.3) are inverse to each other.
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Construction 3.3. We construct symmetric monoidal 2-categories𝒞1 and𝒞2 and a symmetric monoidal
functor 𝜓 : 𝒞1 → 𝒞2 as follows.

The construction of 𝒞1 is identical to that of 𝒞𝑆,Λ (Construction 2.6) except that we replace the
derived category 𝐷 (−,Λ) by 𝐷 ((−)𝜂 ,Λ). Thus, an object of 𝒞1 is a pair (𝑋, 𝐿), where X is a scheme
separated of finite type over S and 𝐿 ∈ 𝐷 (𝑋𝜂 ,Λ). A morphism (𝑋, 𝐿) → (𝑌, 𝑀) is a pair (𝑐, 𝑢), where
𝑐 : 𝑋 → 𝑌 is a correspondence over S and (𝑐𝜂 , 𝑢) is a cohomological correspondence over 𝜂. A 2-
morphism (𝑐, 𝑢) → (𝑑, 𝑣) is a 2-morphism 𝑝 : 𝑐→ 𝑑 such that 𝑝𝜂 is a 2-morphism (𝑐𝜂 , 𝑢) → (𝑑𝜂 , 𝑣).
We have (𝑋, 𝐿) � (𝑌, 𝑀) = (𝑋 ×𝑆 𝑌, 𝐿 �𝜂 𝑀). The monoidal unit is (𝑆,Λ𝜂).

The construction of𝒞2 is identical to that of𝒞𝑠,Λ except that we replace the derived category 𝐷 (−,Λ)
by 𝐷 ((−) ×̄𝑠 𝜂,Λ). Thus, an object of 𝒞2 is a pair (𝑋, 𝐿), where X is a scheme separated of finite type
over s and 𝐿 ∈ 𝐷 (𝑋 ×̄𝑠 𝜂,Λ). The monoidal unit is (𝑠,Λ𝜂).

We define 𝜓 by 𝜓(𝑋, 𝐿) = (𝑋𝑠 ,Ψ𝑋 𝐿), 𝜓(𝑐, 𝑢) = (𝑐𝑠 , 𝜓𝑢), where 𝜓𝑢 is specialisation of u defined
as the composite

←−𝑐 ∗𝑠Ψ𝑋 𝐿
(3.1)
−−−−→ Ψ𝐶

←−𝑐 ∗𝜂 𝐿
Ψ𝐶 (𝑢)
−−−−−→ Ψ𝐶

−→𝑐 !
𝜂 𝑀

(3.4)
−−−−→ −→𝑐 !

𝑠Ψ𝑌 𝑀.

For every 2-morphism p, 𝜓𝑝 = 𝑝𝑠 . The symmetric monoidal structure is given by the Künneth formula
(Proposition 3.1) and the canonical isomorphism Ψ𝑆Λ𝑆  Λ𝜂 .

Remark 3.4. The symmetric monoidal 2-category𝒞1 (respectively𝒞2) is obtained via the Grothendieck
construction (Construction 1.10) from the right-lax symmetric monoidal functor ℬ𝑆 → 𝒞atco (respec-
tively ℬ𝑠 → 𝒞atco) carrying X to 𝐷 (𝑋𝜂 ,Λ) (respectively 𝐷 (𝑋 ×̄𝑠 𝜂,Λ)). The symmetric monoidal
functor 𝜓 is a special case of Construction 1.16 (with 𝐻 : ℬ𝑆 → ℬ𝑠 given by taking special fibre).
More explicitly, if𝒞′2 denotes the symmetric monoidal 2-category obtained from the right-lax symmetric

monoidal functorℬ𝑆 → 𝒞atco carrying X to 𝐷 (𝑋𝑠 ×̄𝑠𝜂,Λ), then 𝜓 decomposes into𝒞1
𝜓1
−−→ 𝒞′2

𝜓2
−−→ 𝒞2,

where 𝜓1 carries (𝑋, 𝐿) to (𝑋,Ψ𝑋 𝐿) and 𝜓2 carries (𝑋, 𝐿) to (𝑋𝑠 , 𝐿).

The proof of the following lemma is identical to that of Lemma 2.8.

Lemma 3.5. The symmetric monoidal structures ⊗ on 𝒞1 (respectively 𝒞2) are closed, with mapping
object

ℋom((𝑋, 𝐿), (𝑌, 𝑀)) = (𝑋 ×𝑆 𝑌, 𝑅ℋom(𝑝∗𝑋𝜂
𝐿, 𝑝!

𝑌𝜂
𝑀))

(respectively ℋom((𝑋, 𝐿), (𝑌, 𝑀)) = (𝑋 ×𝑠 𝑌, 𝑅ℋom(𝑝∗𝑋 𝐿, 𝑝!
𝑌 𝑀))).

Remark 3.6. It follows from Remark 1.3 and Lemma 3.5 that the dual of a dualisable object (𝑋, 𝐿) in
𝒞1 (respectively 𝒞2) is (𝑋, 𝐷𝑋𝜂 𝐿) (respectively (𝑋, 𝐷𝑋 ×̄𝑠 𝜂 𝐿)). Here, for 𝑎 : 𝑈 → 𝜂 and 𝑏 : 𝑉 → 𝑠

separated of finite type, we write 𝐾𝑈 = 𝐾𝑈/𝜂 , 𝐷𝑈 = 𝐷𝑈/𝜂 and 𝐾𝑉 ×̄𝑠 𝜂 = (𝑏 ×̄𝑠 𝜂)!Λ𝜂 , 𝐷𝑉 ×̄𝑠 𝜂 =
𝑅ℋom(−, 𝐾𝑉 ×̄𝑠 𝜂).

In the rest of Subsection 3.1, we assume that Λ is Noetherian.

Proposition 3.7. An object (𝑋, 𝐿) in 𝒞1 or 𝒞2 is dualisable if and only if 𝐿 ∈ 𝐷𝑐ft.

Proof. By Lemma 1.4 and the identification of internal mapping objects (Lemmas 2.8 and 3.5), (𝑋, 𝐿)
in 𝒞1 is dualisable if and only if (𝑋𝜂 , 𝐿) in 𝒞𝜂 is dualisable. The latter condition is equivalent to
𝐿 ∈ 𝐷𝑐ft by Corollary 2.19.

Similarly, (𝑋, 𝐿) in 𝒞2 is dualisable if and only if (𝑋𝑠 , 𝐿 |𝑋�̄� ) in 𝒞𝑠 is dualisable, by [LZ, Lemma
1.29]. The latter condition is equivalent to 𝐿 |𝑋�̄� ∈ 𝐷𝑐ft, which is in turn equivalent to 𝐿 ∈ 𝐷𝑐ft. �

Corollary 3.8. Let X be a scheme separated of finite type over S and let 𝐿 ∈ 𝐷−𝑐 (𝑋𝜂 ,Λ). The canonical
morphism Ψ𝑋 𝐷𝑋𝜂 𝐿 → 𝐷𝑋𝑠×̄𝑠 𝜂Ψ𝑋 𝐿 is an isomorphism in 𝐷 (𝑋𝑠 ×̄𝑠 𝜂,Λ).
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This generalises a theorem of Gabber for Henselian discrete valuation rings [I1, Théorème 4.2]. Our
proof here is different from that of Gabber. One can also deduce Corollary 3.8 from the commutation
of duality with sliced nearby cycles over general bases [LZ, Theorem 0.1].

Proof. The cohomological dimension of Ψ𝑋 is bounded by dim(𝑋𝜂). Thus, we may assume that L is
of the form 𝑢!Λ𝑈 , where 𝑢 : 𝑈 → 𝑋𝜂 is an étale morphism of finite type. In particular, we may assume
𝐿 ∈ 𝐷𝑐ft (𝑋𝜂 ,Λ). In this case, (𝑋, 𝐿) is dualisable by Proposition 3.7. We conclude by the fact that 𝜓
preserve duals (Remark 1.9) and the identification of duals (Remark 3.6). �

We also deduce a new proof of the following finiteness theorem of Deligne (for Henselian discrete
valuation rings) [D, Th. finitude, Théorème 3.2] and Huber [H, Proposition 4.2.5]. Our proof relies on
Deligne’s theorem on local acyclicity over a field [D, Th. finitude, Corollaire 2.16].

Corollary 3.9. Let X be a scheme of finite type over S. Then Ψ𝑋 preserves 𝐷𝑏
𝑐 and 𝐷𝑐ft.

Proof. We may assume that X is separated. As in the proof of Corollary 3.8, we are reduced to the case
of 𝐷𝑐ft. This case follows from Proposition 3.7 and the fact that 𝜓 preserves dualisable objects (Remark
1.9). �

By Remark 1.9, 𝜓 also preserves pairings, and we obtain the following generalisation of [V1,
Proposition 1.3.5].

Corollary 3.10. Consider morphisms of schemes separated of finite type over S:

𝑋 𝐶
←−𝑐��

−→𝑐 �� 𝑌 𝐷
←−
𝑑��

−→
𝑑 �� 𝑋.

Let 𝐿 ∈ 𝐷𝑐ft (𝑋𝜂 ,Λ), 𝑀 ∈ 𝐷 (𝑌𝜂 ,Λ), 𝑢 : ←−𝑐 ∗𝜂 𝐿 → −→𝑐 !
𝜂 𝑀 , 𝑣 :

←−
𝑑 ∗𝜂 𝑀 →

−→
𝑑 !

𝜂 𝐿. Then sp〈𝑢, 𝑣〉 = 〈𝜓𝑢, 𝜓𝑣〉,
where sp is the composition

𝐻0 (𝐹𝜂 , 𝐾𝐹𝜂 ) → 𝐻0 (𝐹𝑠 ×̄𝑠 𝜂,Ψ𝐹 𝐾𝐹𝜂 ) → 𝐻0(𝐹𝑠 ×̄𝑠 𝜂, 𝐾𝐹𝑠×̄𝑠 𝜂)

and 𝐹 = 𝐶 ×𝑋×𝑌 𝐷.

3.2. Pushforward and fixed points

Construction 3.11 (!-Pushforward in 𝒞2). Consider a commutative diagram (2.3) in ℬ𝑠 such that
𝑞 : 𝐶 → 𝑋 ×𝑋 ′ 𝐶 ′ is proper. Let (𝑐, 𝑢) : (𝑋, 𝐿) → (𝑌, 𝑀) be a morphism in 𝒞2 above c. By Lemma
1.11, we have a unique morphism (𝑐′, 𝑝♯

! 𝑢) : (𝑋 ′, 𝑓!𝐿
′) → (𝑌 ′, 𝑔!𝑀

′) in 𝒞2 above 𝑐′ such that q defines
a 2-morphism in 𝒞2:

(𝑋, 𝐿)
(𝑐,𝑢) ��

𝑓♮

��

(𝑌, 𝑀)

𝑔♮

��
(𝑋 ′, 𝑓!𝐿)

(𝑐′, 𝑝
♯
! 𝑢)
�� (𝑌 ′, 𝑔!𝑀).

������ 𝑞

For f, g, p proper, we write 𝑝♯
∗𝑢 for 𝑝♯

! 𝑢.

Applying Lemma 1.14 to the functor 𝜓1 in Remark 3.4, we obtain the following.
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Proposition 3.12. Consider a commutative diagram of schemes separated of finite type over S

𝑋

𝑓

��

𝐶
←−𝑐��

𝑝

��

−→𝑐 �� 𝑌

𝑔

��
𝑋 ′ 𝐶 ′

←−
𝑐′��

−→
𝑐′ �� 𝑌 ′

such that 𝐶 → 𝑋 ×𝑋 ′ 𝐶 ′ is proper. Let 𝐿 ∈ 𝐷 (𝑋𝜂 ,Λ), 𝑀 ∈ 𝐷 (𝑌𝜂 ,Λ), 𝑢 : ←−𝑐 ∗𝜂 𝐿 → −→𝑐 !
𝜂 𝑀 . Then the

square

←−
𝑐′∗𝑠 𝑓𝑠!Ψ𝑋 𝐿

𝑝
♯
𝑠! 𝜓𝑢

��

��

−→
𝑐′!𝑠𝑔𝑠!Ψ𝑌 𝑀

��
←−
𝑐′∗𝑠Ψ𝑋 ′ 𝑓𝜂!𝐿

𝜓𝑝
♯
𝜂!𝑢 �� −→𝑐′!𝑠Ψ𝑌 ′𝑔𝜂!𝑀

commutes. Here the vertical arrows are given by (3.3). In particular, in the case where f, g, p are proper,
𝑝♯

𝑠∗𝜓𝑢 can be identified with 𝜓𝑝♯
𝜂∗𝑢 via the isomorphisms 𝑓𝑠∗Ψ𝑋  Ψ𝑋 ′ 𝑓𝜂∗ and 𝑔𝑠∗Ψ𝑌  Ψ𝑌 ′𝑔𝜂∗.

This generalises a result of Vidal [V2, Théorème 7.5.1] for certain Henselian valuation rings of rank
1. As in [V2, Sections 7.5, 7.6], Proposition 3.12 implies the following fixed point result, generalising
[V2, Proposition 5.1, Corollaire 7.5.3].

Corollary 3.13. Assume that 𝜂 is separably closed. Consider a commutative diagram of schemes

𝑋
𝑓 ��

𝑔

��

𝑆

𝜎 

��
𝑋

𝑓 �� 𝑆

with f proper and 𝜎 fixing s. Assume that 𝑔𝑠 does not fix any point of 𝑋𝑠 . Then tr(𝑔, 𝑅Γ(𝑋𝜂 ,Λ)) = 0.
If, moreover, g is an isomorphism and 𝑈 ⊆ 𝑋𝜂 is an open subscheme such that 𝑔(𝑈) = 𝑈, then
tr(𝑔, 𝑅Γ𝑐 (𝑈,Λ)) = 0.

Proof. For completeness, we recall the arguments of [V2, Corollaire 7.5.2]. We may assume Λ = Z/𝑚Z.
We decompose the commutative diagram into

𝑋
𝛾 ��

𝑔
���

��
��

��
� 𝜎∗𝑋 ��

𝜎

��

𝑆

𝜎

��
𝑋

𝑓 �� 𝑆.

Consider the cohomological correspondences ((id𝑋𝑠 , id𝑋𝑠 ), 𝜎) : (𝑋𝑠 ,Ψ𝑋Λ) → (𝑋𝑠 ,Ψ𝜎∗𝑋Λ) and
(𝑐𝜂 , 𝑢) : (𝜎∗𝑋𝜂 ,Λ) → (𝑋𝜂 ,Λ), where 𝑐 = (𝛾, id𝑋 ) and 𝑢 = idΛ𝑋𝜂

. We have a commutative diagram

𝑅Γ(𝑋𝜂 ,Λ)
𝜎 ��



��

𝑅Γ(𝜎∗𝑋𝜂 ,Λ)



��

𝑓
♯
𝜂∗𝑢 �� 𝑅Γ(𝑋𝜂 ,Λ)



��
𝑅Γ(𝑋𝑠 ,Ψ𝑋Λ)

𝜎 �� 𝑅Γ(𝑋𝑠 ,Ψ𝜎∗𝑋Λ)
𝑓
♯

𝑠∗𝜓𝑢 �� 𝑅Γ(𝑋𝑠 ,Ψ𝑋Λ)
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where the square on the right commutes by Proposition 3.12. The composite of the upper horizontal
arrows is the action of g. Thus, by the Lefschetz–Verdier formula over s, we have

tr(𝑔, 𝑅Γ(𝑋𝜂 ,Λ)) =
∫

𝑋
𝑔𝑠
𝑠

〈𝜎, 𝜓𝑢〉 = 0,

where
∫
𝐹

: 𝐻0 (𝐹, 𝐾𝐹 ) → Λ denotes the trace map. For the last assertion of the corollary, it suffices to
note that

tr(𝑔, 𝑅Γ𝑐 (𝑈,Λ)) = tr(𝑔, 𝑅Γ(𝑋𝜂 ,Λ)) − tr(𝑔, 𝑅Γ(𝑍𝜂 ,Λ)) = 0,

where Z is the closure of 𝑋𝜂\𝑈 in X, equipped with the reduced subscheme structure. �
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