THE STABLE AND UNSTABLE TYPES OF CLASSIFYING SPACES

HYANG-SOOK LEE

Abstract

The main purpose of this paper is to study groups G_{1}, G_{2} such that $H^{*}\left(B G_{1}, \mathbf{Z} / p\right)$ is isomorphic to $H^{*}\left(B G_{2}, \mathbf{Z} / p\right)$ in \mathcal{U}, the category of unstable modules over the Steenrod algebra \mathcal{A}, but not isomorphic as graded algebras over \mathbf{Z} / p.

0. Introduction. Let G be a finite group. A classification of the stable homotopy type of $B G$ is given by Martino and Priddy's paper [4] in purely algebraic terms. It is known that the stable type of $B G$ does not determine G up to isomorphism; however [4] shows that for each prime p, the local stable type of $B G$ depends on the conjugacy classes of homomorphisms from p-groups Q into G. One application to the classification theorem in [4] is the case G_{1}, G_{2} are finite groups with normal Sylow p-subgroups P_{1}, P_{2}. Then $B G_{1}$ and $B G_{2}$ have the same stable homotopy type, localized at p, if and only if $P_{1} \cong P_{2}$ (say P) and $W_{G_{1}}(P)$ is pointwise conjugate to $W_{G_{2}}(P)$ in $\operatorname{Out}(P)$. The paper [4] gives the example of groups G_{1}, G_{2} illustrating this theorem. For these groups $H^{*}\left(B G_{1}, \mathbf{Z} / p\right)$ and $H^{*}\left(B G_{2}, \mathbf{Z} / p\right)$ are isomorphic in \mathcal{U}, the category of unstable modules over the Steenrod algebra \mathcal{A}, but are not isomorphic in \mathcal{K}, the category of unstable algebras over \mathcal{A}. The goal of this note is to exhibit groups G_{1}, G_{2} such that $H^{*}\left(B G_{1}, \mathbf{Z} / p\right)$ and $H^{*}\left(B G_{2}, \mathbf{Z} / p\right)$ are isomorphic in \mathcal{U}, but are not even isomorphic even as graded algebras over \mathbf{Z} / p. These algebras have the added advantage of a much smaller Krull dimension than those of [4].

Section One gives some information on the classification of the p-local stable homotopy type of $B G$. This includes the main classification theorem and its application in case of finite groups with normal Sylow p-subgroups. We give an example of two finite groups with stably homotopy equivalent classifying spaces localized at $p>2$. Then in Section Two, we demonstrate the cohomology of these classifying spaces which are necessarily isomorphic in \mathcal{U}, are not isomorphic as graded algebras over \mathbf{Z} / p. To show this, we calculate the invariant elements of their cohomology groups in dimension 3 and 6 , and then we compare cup products in dimension 6 so that we obtain the result that two cohomology rings have different algebra structures.

1. A classification of the stable type of $B G$. Let G be a finite group. We denote $B G$ a classifying space of G, which has a contractible universal principal G bundle $E G$. With G. Carlsson's solution of the Segal conjecture it has become possible to determine the complete p-local stable decomposition $B G \simeq X_{1} \vee X_{2} \vee \cdots \vee X_{n}$. The suspension

Received by the editors April 18. 1996.
AMS subject classification: Primary: 55R35; secondary: 20 J06.
(c)Canadian Mathematical Society 1997.
spectrum of $B G$ and its wedge summands have played an important role in homotopy theory. In paper [5], the authors give a characterization of the indecomposable summands of $B G$ in terms of modular representation theory of $\operatorname{Out}(Q)$ modules for $Q<P$ the Sylow p-subgroup of G. This is the characterization which is used to study the stable type of $B G$ in [4]. It is known that the stable type of $B G$ does not determine G up to isomorphism. A simple example [due to N . Minami] is given by $Q_{4 p} \times Z / 2$ and $D_{2 p} \times Z / 4$ where p is an odd prime, $Q_{4 p}$ is the generalized quaternion group of order $4 p$ and $D_{2 p}$ is the dihedral group of order $2 p$. It is even worse for p-local classifying spaces since $B G$ and $B G / O_{p^{\prime}}(G)$ have isomorphic $\bmod p$ homology and hence equivalent stable types. Here $O_{p^{\prime}}(G)$ is the maximal normal subgroup of G of order prime to p. But there is a good result in this direction by Nishida.

THEOREM 1.1 [6]. Let G_{1}, G_{2} be finite groups with Sylow p-subgroups P_{1}, P_{2}. If $B G_{1}$ and $B G_{2}$ are stably equivalent localized at p, then $P_{1} \cong P_{2}$.

However the following classification theorem which is established by J. Martino and S. Priddy gives us a necessary and sufficient condition.

THEOREM 1.2 [4]. For two finite groups G_{1}, G_{2}, the following are equivalent.
(1) Localized at $p, B G_{1}$ and $B G_{2}$ are stably equivalent.
(2) For every p-group $Q, F_{p} \operatorname{Rep}\left(Q, G_{1}\right) \cong F_{p} \operatorname{Rep}\left(Q, G_{2}\right)$ as $\operatorname{Out}(Q)$ modules. $\operatorname{Rep}(Q, G)=\operatorname{Hom}(Q, G) / G$ with G acting by conjugation.
(3) For every p-group $Q, F_{p} \operatorname{Inj}\left(Q, G_{1}\right) \cong F_{p} \operatorname{Inj}\left(Q, G_{2}\right)$ as $\operatorname{Out}(Q)$ modules.
$\operatorname{Inj}(Q, G)<\operatorname{Rep}(Q, G)$ consists of conjugacy classes of injective homomorphisms.
This classification simplifies if G has a normal Sylow p-subgroup. Then the stable homotopy type depends on the Weyl group of the Sylow p-subgroup.

DEFINITION 1.3. Two subgroups $H, K<G$ are called pointwise conjugate in G if there is a bijection of sets $H \xrightarrow{\alpha} K$ such that $\alpha(h)=g_{h}^{-1} h g_{h}$ for $g_{h} \in G$ depending on $h \in H$.

Alternately it is easy to see that an equivalent condition is $|H \cap(g)|=|K \cap(g)|$ for all $g \in G$, where (g) denotes the conjugacy class of g. We assume G has a normal Sylow p-subgroup P. We set $G=P \rtimes H$ for p^{\prime}-group H by Zassenhaus's theorem, and $G=P \cdot H$, $H \cap P=\{1\}$. Let $W_{G}(P)$ denote the Weyl group of $P<G$ i.e. $W_{G}(P)=N_{G}(P) / P \cdot C_{G}(P)$ where $N_{G}(P)$ is the normalizer and $C_{G}(P)$ is the centralizer of P in G. Then $W_{G}(P) \leq$ $\operatorname{Out}(P)$.

ThEOREM 1.4 [4]. Suppose G_{1} and G_{2} are finite groups with normal Sylow psubgroups P_{1} and P_{2}. Then $B G_{1}$ and $B G_{2}$ have the same stable homotopy type, localized at p, if and only if $P_{1} \cong P_{2}(\approx P$ say $)$ and $W_{G_{1}}(P)$ is pointwise conjugate to $W_{G_{2}}(P)$ in $\operatorname{Out}(P)$.

To see the relation between Theorem 1.2 and 1.4 refer to the paper [4].
Let us give G_{1}, G_{2} such that $B G_{1}$ is stably equivalent to $B G_{2}$ localized at $p>2$.

EXAMPLE 1.5. Let p, l be different odd primes such that $p \equiv 1(\bmod l)$. We set P be an elementary abelian p-group of $\operatorname{rank} l^{2}$, i.e. $P=(\mathbf{Z} / p)^{l^{2}}$. Then Out $P=\mathrm{GL}_{l^{2}}\left(\mathbf{F}_{p}\right)$. Let $H_{1}^{\prime}=(\mathbf{Z} / l)^{3}$ and $H_{2}^{\prime}=U_{3}\left(\mathbf{F}_{l}\right)$ so that H_{1}^{\prime} is not isomorphic to H_{2}^{\prime} where $U_{3}\left(\mathbf{F}_{l}\right)$ is 3×3 upper triangular matrices over \mathbf{F}_{l}. Let Q_{1}, Q_{2} be the subgroups of $H_{1}^{\prime}, H_{2}^{\prime}$ given by

$$
\begin{gathered}
Q_{1}=\langle(1,0,0)\rangle \\
Q_{2}=\left\langle\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\rangle .
\end{gathered}
$$

Then up to isomorphism $Q_{i} \cong Q(=\mathbf{Z} / l)(i=1,2)$. Thus the inclusion $\rho: Q \hookrightarrow \mathrm{GL}_{1}\left(\mathbf{F}_{p}\right)=$ \mathbf{F}_{p}^{*} is a 1-dimensional representation where \mathbf{F}_{p}^{*} is a cyclic group of order $p-1$ which has a generator ζ. (In fact this is a primitive $p-1$-th root of unity.) Now $l \mid p-1$, hence we set $l \cdot k=p-1$ for some k. Then $\zeta^{\frac{p-1}{l}}=\zeta^{k}=\omega$ is a primitive l-th root of unity. We define $\rho(q)=$ ω where q is the generator of Q. Then ρ induces representations $f_{1}=\operatorname{Ind}_{Q_{1}}^{H_{1}^{\prime}}(\rho): H_{1}^{\prime} \rightarrow$ $\operatorname{GL}_{l^{2}}\left(\mathbf{F}_{p}\right)$ and $f_{2}=\operatorname{Ind}_{Q_{2}}^{H_{2}^{\prime}}(\rho): H_{2}^{\prime} \rightarrow \operatorname{GL}_{l^{2}}\left(\mathbf{F}_{p}\right)$. These induced representations are defined by the following composition maps.

$$
\begin{align*}
& f_{i}= \operatorname{Ind}_{Q}^{H_{i}^{\prime}}(\rho): H_{i}^{\prime} \tag{*}\\
& \\
& h \xrightarrow{\alpha} Q^{l^{2}} \rtimes \Sigma_{l^{2}} \xrightarrow{\rho^{l^{2}} \times 1} \mathrm{GL}_{1}\left(\mathbf{F}_{p}, \ldots, q_{l^{2}}, \sigma\right) \xrightarrow{l^{2}} \rtimes \Sigma_{l^{2}} \longrightarrow \mathrm{GL}_{l^{2}}\left(\mathbf{F}_{p}\right) \\
& \rho^{l^{2} \times 1} \\
&\left(\rho\left(q_{1}\right), \ldots, \rho\left(q_{l^{2}}\right), \sigma\right) \longrightarrow \mathbf{T}_{\bar{\sigma}}
\end{align*}
$$

where for fixed $i=1,2$ we define $q_{k} \in Q$ and $\sigma \in \Sigma_{l^{2}}$ by choosing coset representatives $\left\{s_{k} \mid k=1, \ldots, l^{2}\right\}$ for H_{i}^{\prime} / Q and then setting $h s_{k}=s_{\sigma(k)} q_{k}$. $\mathbf{T}_{\bar{\sigma}}$ is the $l^{2} \times l^{2}$ matrix with the $\rho\left(q_{i}\right)^{\prime}$ s replacing the ones of the permutation matrix $\bar{\sigma}$ in $\mathrm{GL}_{l^{2}}\left(\mathbf{F}_{p}\right)$.

For $h \in H_{i}^{\prime}, h s_{k} \in s_{j} Q$ for some $s_{j} \in \mathbb{R}_{i}\left(1 \leq i \leq 2,1 \leq j, k \leq l^{2}\right)$ where \mathbb{R}_{i} is a set of coset representatives of H_{i}^{\prime} / Q, hence there exists σ such that $\sigma(k)=j$ and $h s_{k}=s_{\sigma(k)} q_{k}$ for some $q_{k} \in Q$. Here $s_{\sigma(k)}$ and q_{k} are uniquely determined. Thus α is injective. Therefore the induced representations $f_{i}(i=1,2)$ are injective. Now we set $f_{1}\left(H_{1}^{\prime}\right)=H_{1}$ and $f_{2}\left(H_{2}^{\prime}\right)=H_{2}$. These groups H_{1} and H_{2} act on P. It follows that $G_{i}=P \rtimes H_{i}(i=1,2)$ are not isomorphic and satisfy $O_{p^{\prime}}\left(G_{i}\right)=1$. This implies $H_{i} \cap C_{G_{i}}(P)=\{1\}$. Thus $W_{G_{i}}(P)=P \cdot H_{i} / P \cdot C_{G_{i}}(P) \cong H_{i} / H_{i} \cap C_{G_{i}}(P)=H_{i}$. Now we need to show that H_{1} is pointwise conjugate to H_{2} in $\mathrm{GL}_{l^{2}}\left(\mathbf{F}_{p}\right)$.

If M is an $m_{1} \times n_{1}$ matrix and N is an $m_{2} \times n_{2}$ matrix, then we note that the tensor product of M and N is a matrix of size $m_{1} m_{2} \times n_{1} n_{2}$. For a given matrix M, we denote ωM by M_{ω} for some $\omega \in \mathbf{F}_{p}$.

Let $h_{1}^{\prime}=(1,0,0), h_{2}^{\prime}=(0,1,0)$ and $h_{3}^{\prime}=(0,0,1)$ be the generators of H_{1}^{\prime}. Then by the representation map $(*)$, we get the generators $f_{1}\left(h_{1}^{\prime}\right)=I \otimes I_{\omega}, f_{1}\left(h_{2}^{\prime}\right)=I \otimes M$, $f_{1}\left(h_{3}^{\prime}\right)=M \otimes I$, where I is an $l \times l$ identity matrix and M is the $l \times l$ permutation matrix of $(12 \cdots l)$. We set the images of the generators h_{1}, h_{2}, h_{3}. Therefore H_{1} is generated by $\left\langle h_{1}, h_{2}, h_{3}\right\rangle$.

Let

$$
\bar{h}_{1}^{\prime}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \bar{h}_{2}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \bar{h}_{3}^{\prime}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

be generators of H_{2}^{\prime}. Here $\bar{h}_{1}^{\prime}=\left[\bar{h}_{2}^{\prime}, \bar{h}_{3}^{\prime}\right]$. Then, similarly, we obtain the generators $\bar{h}_{1}=I \otimes I_{\omega}, \bar{h}_{2}=D \otimes M, \bar{h}_{3}=M \otimes I$, where D is an $l \times l$ diagonal matrix with $\omega, \omega^{2}, \ldots, \omega^{J-1}, 1$ on the diagonal. We also have $\bar{h}_{1}=\left[\bar{h}_{2}, \bar{h}_{3}\right]$. Thus H_{2} is generated by $\left\langle\bar{h}_{1}, \bar{h}_{2}, \bar{h}_{3}\right\rangle$.

We claim H_{1} is pointwise conjugate to H_{2} in $\mathrm{GL}_{l^{2}}\left(\mathbf{F}_{p}\right)$. First we notice $h_{1}=\bar{h}_{1}$, $h_{3}=\bar{h}_{3}$. Let J be a subgroup generated by $\left\langle h_{1}, h_{3}\right\rangle$ in H_{1}. Then for any $h \in J,(I \otimes$ $I)^{-1} h(I \otimes I)=h \in H_{2}$. Now we consider the elements in $H_{1}-J$ and $H_{2}-J$. For the element $h \in H_{1}-J, h$ is of the form $\omega^{k}\left(I \otimes M^{i}\right)\left(M^{j} \otimes I\right)=\omega^{k}\left(M^{j} \otimes M^{i}\right)$ for some $1 \leq i \leq l-1,1 \leq j, k \leq l$. Also for the element $\bar{h} \in H_{2}-J, \bar{h}$ is of the form $\omega^{k}(D \otimes M)^{i}\left(M^{j} \otimes I\right)=\omega^{k}\left(D^{i} \otimes M^{i}\right)\left(M^{j} \otimes I\right)=\omega^{k}\left(D^{i} M^{j} \otimes M^{i}\right)$ for some $1 \leq i \leq l-1$, $1 \leq j, k \leq l$.

We show that $M^{j} \otimes M^{i}$ is similar to $D^{i} M^{j} \otimes M^{i}$ for each i, j. First it is enough to show that M^{j} is similar to $D^{i} M^{j}$. Here M^{j} is also a permutation matrix and $D^{i} M^{j}$ is a matrix replacing ones of M^{j} by $\omega^{i}, \omega^{2 i}, \ldots, \omega^{(l-1) i}, 1$. Then both M^{j} and $D^{i} M^{j}$ have the same characteristic polynomial $f(t)=t^{l}-1=0$. To see this, let $\lambda \in \mathbf{F}_{p}$ be an eigenvalue of M^{j}. Since M^{j} is a cyclic permutation matrix of order $l, \lambda^{l}=1$ and λ is an l th root of unity. (i.e. λ is a root of $t^{l}-1=0$.) Similarly, we can see $\left(D^{i} M^{j}\right)^{l}=I_{l \times l}$, since

$$
\begin{aligned}
\left(D^{i} M^{j}\right)^{l} & =D^{i} M^{j} D^{i} M^{j} \cdots D^{i} M^{j} \\
& =D^{i}\left(M^{j} D^{i} M^{-j}\right)\left(M^{2 j} D^{i} M^{-2 j}\right) \cdots\left(M^{(l-1) j} D^{i} M^{-(l-1) j}\right) M^{l j} \\
& =D^{i} \prod_{k=1}^{l-1}\left(M^{k j} D^{i} M^{-k j}\right)\left(M^{l}\right)^{j} \\
& =D^{i} \prod_{k=1}^{l-1} \tau_{0}^{k j}\left(D^{i}\right) \quad \text { since } M^{l}=I \\
& =\prod_{k=1}^{l} \tau_{0}^{k j}\left(D^{i}\right) \\
& =\left(\prod_{k=1}^{l} \tau_{0}^{k j}(D)\right)^{i} \\
& =I \quad \text { since each diagonal entry is } \prod_{i=1}^{l} \omega^{i}=1, \text { for odd prime } l .
\end{aligned}
$$

Hence each eigenvalue of $D^{i} M^{j}$ is also a root of $t^{l}-1=0$. We chose ω as a primitive l th root of unity. Then they have l distinct eigenvalues $\omega, \omega^{2}, \ldots, \omega^{l-1}, 1$ in \mathbf{F}_{p}, and hence they are diagonalizable. Thus there exist $P, Q \in \mathrm{GL}_{l}\left(\mathbf{F}_{p}\right)$ such that $P^{-1} M^{j} P=D, Q^{-1} D^{i} M^{j} Q=D$, and hence $Q P^{-1} M^{j} P Q^{-1}=\left(P Q^{-1}\right)^{-1} M^{j}\left(P Q^{-1}\right)=$ $D^{i} M^{j}$. Thus M^{j} is similar to $D^{i} M^{j}$. Now we choose $P Q^{-1} \otimes I \in \mathrm{GL}_{l^{2}}\left(\mathbf{F}_{p}\right)$ such that
$\left(P Q^{-1} \otimes I\right)^{-1}\left(M^{j} \otimes M^{i}\right)\left(P Q^{-1} \otimes I\right)=\left(P Q^{-1}\right)^{-1} M^{j}\left(P Q^{-1}\right) \otimes I^{-1} M^{i} I=D^{i} M^{j} \otimes M^{i}$. Therefore $M^{j} \otimes M^{i}$ is similar to $D^{i} M^{j} \otimes M^{i}, 1 \leq i \leq l-1,1 \leq j \leq l$. Obviously $\omega^{k}\left(M^{j} \otimes M^{i}\right)$ is similar to $\omega^{k}\left(D^{i} M^{j} \otimes M^{i}\right)$ where $1 \leq k \leq l$. This completes our claim. Therefore by Theorem 1.4, $B G_{1}$ is stably equivalent to $B G_{2}$ at $p>2$.

Thus we conclude $H^{*}\left(B G_{1}, \mathbf{Z} / p\right)$ is isomorphic to $H^{*}\left(B G_{2}, \mathbf{Z} / p\right)$ in \mathcal{U}, the category of unstable modules over \mathcal{A}. Now $H^{*}\left(B G_{i}, \mathbf{Z} / p\right)=H^{*}\left(B P \rtimes H_{i}, \mathbf{Z} / p\right)=H^{*}(B P, \mathbf{Z} / p)^{H_{i}}$. But we have $H^{*}(B P, \mathbf{Z} / p)=H^{*}\left(B(\mathbf{Z} / p)^{l^{2}}, \mathbf{Z} / p\right)=\mathbf{Z} / p\left[y_{1}, \ldots, y_{l^{2}}\right] \otimes E\left[x_{1}, \ldots, x_{l^{2}}\right]$ where $\left|x_{i}\right|=1,\left|y_{i}\right|=2, y_{i}=\beta x_{i}$ and β is the Bockstein homomorphism. Thus $H^{*}\left(B G_{i}, \mathbf{Z} / p\right)=$ $\left(\mathbf{Z} / p\left[y_{1}, \ldots, y_{l^{2}}: 2\right] \otimes E\left[x_{1}, \ldots, x_{l^{2}}: 1\right]\right)^{H_{i}}(i=1,2)$.
2. Unstable homotopy type of $B G$. In this section, we demonstrate two groups such that $H^{*}\left(B G_{1}\right)$ is isomorphic to $H^{*}\left(B G_{2}\right)$ in \mathcal{U}, but not isomorphic as graded algebras over \mathbf{Z} / p. From now on we consider the case $l=3, p=7$ in Example 1.8. Then $G_{1}=P \rtimes H_{1}$, $G_{2}=P \rtimes H_{2}$ where $P=(\mathbf{Z} / 7)^{9}, H_{1} \cong(\mathbf{Z} / 3)^{3}, H_{2} \cong U_{3}\left(\mathbf{F}_{3}\right)$ and $H_{1}, H_{2} \leq \operatorname{GL}_{9}\left(\mathbf{F}_{7}\right)$. According to the Theorem 1.4, $B G_{1}$ is stably homotopy equivalent to $B G_{2}$, localized at $p=$ 7. However, we shall show that $H^{*}\left(B G_{1}, \mathbf{Z} / 7\right)$ is not even isomorphic to $H^{*}\left(B G_{2}, \mathbf{Z} / 7\right)$ as graded algebras over $\mathbf{Z} / 7$. Note $H^{*}\left(B G_{i}, \mathbf{Z} / 7\right)=H^{*}(B P, \mathbf{Z} / 7)^{H_{i}}=\left(\mathbf{Z} / 7\left[y_{1}, \ldots, y_{9}\right.\right.$: 2] $\left.\otimes E\left[x_{1}, \ldots, x_{9}: 1\right]\right)^{H_{i}}$ for $i=1,2$. By using the representation map (*) constructed in Section 1, we obtain the generators $h_{1}=I \otimes 2 I, h_{2}=I \otimes M, h_{3}=M \otimes I$ in H_{1} and $\bar{h}_{1}=I \otimes 2 I, \bar{h}_{2}=D \otimes M, \bar{h}_{3}=I \otimes M$ in H_{2}, where I is an 3×3 identity matrix, M is the permutation matrix of (123) and D is an 3×3 diagonal matrix with $2,4,1$ on the diagonal.

First we give the straightforward calculation of the invariants of the action of H_{1} and H_{2} on $H^{*}(B P, Z / 7)$ in dimension 3 and 6. (Here we give the invariants in dimension 6 relating to cup products.)
(1) Invariants in $H^{*}(B P, \mathbf{Z} / 7)^{H_{1}}$
(i) dimension 3

$$
\begin{aligned}
& a_{1}=x_{1} x_{3} x_{2}+x_{4} x_{6} x_{5}+x_{7} x_{9} x_{8} \\
& a_{2}=x_{1} x_{7} x_{4}+x_{2} x_{8} x_{5}+x_{3} x_{9} x_{6} \\
& a_{3}=x_{1} x_{5} x_{9}+x_{2} x_{6} x_{7}+x_{3} x_{4} x_{8} \\
& a_{4}=x_{1} x_{8} x_{6}+x_{2} x_{9} x_{4}+x_{3} x_{7} x_{5} \\
& a_{5}=x_{1} x_{3} x_{5}+x_{2} x_{1} x_{6}+x_{3} x_{2} x_{4}+x_{7} x_{9} x_{2}+x_{8} x_{7} x_{3}+x_{9} x_{8} x_{1}+x_{4} x_{6} x_{8} \\
& +x_{5} x_{4} x_{9}+x_{6} x_{5} x_{7} \\
& a_{6}=x_{1} x_{3} x_{8}+x_{2} x_{1} x_{9}+x_{3} x_{2} x_{7}+x_{4} x_{6} x_{2}+x_{5} x_{4} x_{3}+x_{6} x_{5} x_{1}+x_{7} x_{9} x_{5} \\
& +x_{8} x_{7} x_{6}+x_{9} x_{8} x_{4} \\
& a_{7}=x_{1} x_{3} x_{4}+x_{2} x_{1} x_{5}+x_{3} x_{2} x_{6}+x_{7} x_{9} x_{1}+x_{8} x_{7} x_{2}+x_{9} x_{8} x_{3}+x_{4} x_{6} x_{7} \\
& +x_{5} x_{4} x_{8}+x_{6} x_{5} x_{9} \\
& a_{8}=x_{1} x_{3} x_{7}+x_{2} x_{1} x_{8}+x_{3} x_{2} x_{9}+x_{7} x_{9} x_{4}+x_{8} x_{7} x_{5}+x_{9} x_{8} x_{6}+x_{4} x_{6} x_{1} \\
& +x_{5} x_{4} x_{2}+x_{6} x_{5} x_{3}
\end{aligned}
$$

$$
\begin{aligned}
a_{9}= & x_{1} x_{3} x_{6}+x_{2} x_{1} x_{4}+x_{3} x_{2} x_{5}+x_{7} x_{9} x_{3}+x_{8} x_{7} x_{1}+x_{9} x_{8} x_{2}+x_{4} x_{6} x_{9} \\
& +x_{5} x_{4} x_{7}+x_{6} x_{5} x_{8} \\
a_{10}= & x_{1} x_{3} x_{9}+x_{2} x_{1} x_{7}+x_{3} x_{2} x_{8}+x_{7} x_{9} x_{6}+x_{8} x_{7} x_{4}+x_{9} x_{8} x_{5}+x_{4} x_{6} x_{3} \\
& +x_{5} x_{4} x_{1}+x_{6} x_{5} x_{2} \\
a_{11}= & x_{1} x_{4} x_{9}+x_{2} x_{5} x_{7}+x_{3} x_{6} x_{8}+x_{7} x_{1} x_{6}+x_{8} x_{2} x_{4}+x_{9} x_{3} x_{5}+x_{4} x_{7} x_{3} \\
& +x_{5} x_{8} x_{1}+x_{6} x_{9} x_{2} \\
a_{12}= & x_{1} x_{4} x_{8}+x_{2} x_{5} x_{9}+x_{3} x_{6} x_{7}+x_{7} x_{1} x_{5}+x_{8} x_{2} x_{6}+x_{9} x_{3} x_{4}+x_{4} x_{7} x_{2} \\
& +x_{5} x_{8} x_{3}+x_{6} x_{9} x_{1}
\end{aligned}
$$

(ii) dimension 6

$$
\begin{aligned}
& e_{1}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{9}+x_{2} x_{3} x_{1} x_{5} x_{6} x_{7}+x_{3} x_{1} x_{2} x_{6} x_{4} x_{8}+x_{4} x_{5} x_{6} x_{7} x_{8} x_{3} \\
& +x_{5} x_{6} x_{4} x_{8} x_{9} x_{1}+x_{6} x_{4} x_{5} x_{9} x_{7} x_{2}+x_{7} x_{8} x_{9} x_{1} x_{2} x_{6}+x_{8} x_{9} x_{7} x_{2} x_{3} x_{4} \\
& +x_{9} x_{7} x_{8} x_{3} x_{1} x_{5} \\
& e_{2}=x_{1} x_{2} x_{3} x_{4} x_{8} x_{9}+x_{2} x_{3} x_{1} x_{5} x_{9} x_{7}+x_{3} x_{1} x_{2} x_{6} x_{7} x_{8}+x_{4} x_{5} x_{6} x_{7} x_{2} x_{3} \\
& +x_{5} x_{6} x_{4} x_{8} x_{3} x_{1}+x_{6} x_{4} x_{5} x_{9} x_{1} x_{2}+x_{7} x_{8} x_{9} x_{1} x_{5} x_{6}+x_{8} x_{9} x_{7} x_{2} x_{6} x_{4} \\
& +x_{9} x_{7} x_{8} x_{3} x_{4} x_{5} \\
& e_{3}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{8}+x_{2} x_{3} x_{1} x_{5} x_{6} x_{9}+x_{3} x_{1} x_{2} x_{6} x_{4} x_{7}+x_{4} x_{5} x_{6} x_{7} x_{8} x_{2} \\
& +x_{5} x_{6} x_{4} x_{8} x_{9} x_{3}+x_{6} x_{4} x_{5} x_{9} x_{7} x_{1}+x_{7} x_{8} x_{9} x_{1} x_{2} x_{5}+x_{8} x_{9} x_{7} x_{2} x_{3} x_{6} \\
& +x_{9} x_{7} x_{8} x_{3} x_{1} x_{4} \\
& e_{4}=x_{1} x_{2} x_{3} x_{5} x_{7} x_{8}+x_{2} x_{3} x_{1} x_{6} x_{8} x_{9}+x_{3} x_{1} x_{2} x_{4} x_{9} x_{7}+x_{4} x_{5} x_{6} x_{8} x_{1} x_{2} \\
& +x_{5} x_{6} x_{4} x_{9} x_{2} x_{3}+x_{6} x_{4} x_{5} x_{7} x_{3} x_{1}+x_{7} x_{8} x_{9} x_{2} x_{4} x_{5}+x_{8} x_{9} x_{7} x_{3} x_{5} x_{6} \\
& +x_{9} x_{7} x_{8} x_{1} x_{6} x_{4} \\
& e_{5}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{7}+x_{2} x_{3} x_{1} x_{5} x_{6} x_{8}+x_{3} x_{1} x_{2} x_{6} x_{4} x_{9}+x_{4} x_{5} x_{6} x_{7} x_{8} x_{1} \\
& +x_{5} x_{6} x_{4} x_{8} x_{9} x_{2}+x_{6} x_{4} x_{5} x_{9} x_{7} x_{3}+x_{7} x_{8} x_{9} x_{1} x_{2} x_{4}+x_{8} x_{9} x_{7} x_{2} x_{3} x_{5} \\
& +x_{9} x_{7} x_{8} x_{3} x_{1} x_{6} \\
& e_{6}=x_{1} x_{2} x_{3} x_{4} x_{7} x_{8}+x_{2} x_{3} x_{1} x_{5} x_{8} x_{9}+x_{3} x_{1} x_{2} x_{6} x_{9} x_{7}+x_{4} x_{5} x_{6} x_{7} x_{1} x_{2} \\
& +x_{5} x_{6} x_{4} x_{8} x_{2} x_{3}+x_{6} x_{4} x_{5} x_{9} x_{3} x_{1}+x_{7} x_{8} x_{9} x_{1} x_{4} x_{5}+x_{8} x_{9} x_{7} x_{2} x_{5} x_{6} \\
& +x_{9} x_{7} x_{8} x_{3} x_{6} x_{4} \\
& e_{7}=x_{1} x_{2} x_{4} x_{6} x_{7} x_{9}+x_{2} x_{3} x_{5} x_{4} x_{8} x_{7}+x_{3} x_{1} x_{6} x_{5} x_{9} x_{8}+x_{4} x_{5} x_{7} x_{9} x_{1} x_{3} \\
& +x_{5} x_{6} x_{8} x_{7} x_{2} x_{1}+x_{6} x_{4} x_{9} x_{8} x_{3} x_{2}+x_{7} x_{8} x_{1} x_{3} x_{4} x_{6}+x_{8} x_{9} x_{2} x_{1} x_{5} x_{4} \\
& +x_{9} x_{7} x_{3} x_{2} x_{6} x_{5} \\
& e_{8}=x_{1} x_{2} x_{4} x_{5} x_{7} x_{9}+x_{2} x_{3} x_{5} x_{6} x_{8} x_{7}+x_{3} x_{1} x_{6} x_{4} x_{9} x_{8}+x_{4} x_{5} x_{7} x_{8} x_{1} x_{3} \\
& +x_{5} x_{6} x_{8} x_{9} x_{2} x_{1}+x_{6} x_{4} x_{9} x_{7} x_{3} x_{2}+x_{7} x_{8} x_{1} x_{2} x_{4} x_{6}+x_{8} x_{9} x_{2} x_{3} x_{5} x_{4} \\
& +x_{9} x_{7} x_{3} x_{1} x_{6} x_{5} \\
& e_{9}=x_{1} x_{2} x_{3} x_{7} x_{8} x_{9}+x_{4} x_{5} x_{6} x_{1} x_{2} x_{3}+x_{7} x_{8} x_{9} x_{4} x_{5} x_{6}
\end{aligned}
$$

$$
\begin{aligned}
e_{10} & =x_{1} x_{2} x_{5} x_{6} x_{7} x_{9}+x_{2} x_{3} x_{6} x_{4} x_{8} x_{7}+x_{3} x_{1} x_{4} x_{5} x_{9} x_{8} \\
e_{11} & =x_{1} x_{2} x_{4} x_{8} x_{6} x_{9}+x_{2} x_{3} x_{5} x_{9} x_{4} x_{7}+x_{3} x_{1} x_{6} x_{7} x_{5} x_{8} \\
e_{12} & =x_{1} x_{3} x_{4} x_{6} x_{7} x_{9}+x_{2} x_{1} x_{5} x_{4} x_{8} x_{7}+x_{3} x_{2} x_{6} x_{5} x_{9} x_{8}
\end{aligned}
$$

(2) Invariants in $H^{*}(B P, \mathbf{Z} / 7)^{H_{2}}$
(i) dimension 3

$$
\begin{aligned}
\bar{a}_{1}= & x_{1} x_{3} x_{2}+x_{4} x_{6} x_{5}+x_{7} x_{9} x_{8} \\
\bar{a}_{2}= & x_{1} x_{7} x_{4}+x_{2} x_{8} x_{5}+x_{3} x_{9} x_{6} \\
\bar{a}_{3}= & x_{1} x_{5} x_{9}+x_{2} x_{6} x_{7}+x_{3} x_{4} x_{8} \\
\bar{a}_{4}= & x_{1} x_{8} x_{6}+x_{2} x_{9} x_{4}+x_{3} x_{7} x_{5} \\
\bar{a}_{5}= & x_{1} x_{3} x_{5}+2 x_{2} x_{1} x_{6}+4 x_{3} x_{2} x_{4}+x_{7} x_{9} x_{2}+2 x_{8} x_{7} x_{3}+4 x_{9} x_{8} x_{1}+x_{4} x_{6} x_{8} \\
& +2 x_{5} x_{4} x_{9}+4 x_{6} x_{5} x_{7} \\
\bar{a}_{6}= & x_{1} x_{3} x_{8}+4 x_{2} x_{1} x_{9}+2 x_{3} x_{2} x_{7}+x_{7} x_{9} x_{5}+4 x_{8} x_{7} x_{6}+2 x_{9} x_{8} x_{4}+x_{4} x_{6} x_{2} \\
\quad & +4 x_{5} x_{4} x_{3}+2 x_{6} x_{5} x_{1} \\
\bar{a}_{7}= & x_{1} x_{3} x_{4}+2 x_{2} x_{1} x_{5}+4 x_{3} x_{2} x_{6}+x_{7} x_{9} x_{1}+2 x_{8} x_{7} x_{2}+4 x_{9} x_{8} x_{3}+x_{4} x_{6} x_{7} \\
& \quad+2 x_{5} x_{4} x_{8}+4 x_{6} x_{5} x_{9} \\
\bar{a}_{8}= & x_{1} x_{3} x_{7}+4 x_{2} x_{1} x_{8}+2 x_{3} x_{2} x_{9}+x_{7} x_{9} x_{4}+4 x_{8} x_{7} x_{5}+2 x_{9} x_{8} x_{6}+x_{4} x_{6} x_{1} \\
\quad & +4 x_{5} x_{4} x_{2}+2 x_{6} x_{5} x_{3} \\
\bar{a}_{9}= & x_{1} x_{3} x_{6}+2 x_{2} x_{1} x_{4}+4 x_{3} x_{2} x_{5}+x_{7} x_{9} x_{3}+2 x_{8} x_{7} x_{1}+4 x_{9} x_{8} x_{2}+x_{4} x_{6} x_{9} \\
\quad & +2 x_{5} x_{4} x_{7}+4 x_{6} x_{5} x_{8} \\
\bar{a}_{10}= & x_{1} x_{3} x_{9}+4 x_{2} x_{1} x_{7}+2 x_{3} x_{2} x_{8}+x_{7} x_{9} x_{6}+4 x_{8} x_{7} x_{4}+2 x_{9} x_{8} x_{5}+x_{4} x_{6} x_{3} \\
\quad & +4 x_{5} x_{4} x_{1}+2 x_{6} x_{5} x_{2} \\
\bar{a}_{11}= & x_{1} x_{4} x_{9}+x_{2} x_{5} x_{7}+x_{3} x_{6} x_{8}+x_{7} x_{1} x_{6}+x_{8} x_{2} x_{4}+x_{9} x_{3} x_{5}+x_{4} x_{7} x_{3} \\
& \quad+x_{5} x_{8} x_{1}+x_{6} x_{9} x_{2} \\
\bar{a}_{12}= & x_{1} x_{4} x_{8}+x_{2} x_{5} x_{9}+x_{3} x_{6} x_{7}+x_{7} x_{1} x_{5}+x_{8} x_{2} x_{6}+x_{9} x_{3} x_{4}+x_{4} x_{7} x_{2} \\
& +x_{5} x_{8} x_{3}+x_{6} x_{9} x_{1}
\end{aligned}
$$

(ii) dimension 6

$$
\begin{aligned}
\bar{e}_{1}= & x_{1} x_{3} x_{2} x_{4} x_{6} x_{8}+2 x_{2} x_{1} x_{3} x_{5} x_{4} x_{9}+4 x_{3} x_{2} x_{1} x_{6} x_{5} x_{7}+x_{4} x_{6} x_{5} x_{7} x_{9} x_{2} \\
& +2 x_{5} x_{4} x_{6} x_{8} x_{7} x_{3}+4 x_{6} x_{5} x_{4} x_{9} x_{8} x_{1}+x_{7} x_{9} x_{8} x_{1} x_{3} x_{5}+2 x_{8} x_{7} x_{9} x_{2} x_{1} x_{6} \\
\quad & +4 x_{9} x_{8} x_{7} x_{3} x_{2} x_{4} \\
\bar{e}_{2}= & x_{1} x_{3} x_{2} x_{5} x_{7} x_{9}+4 x_{2} x_{1} x_{3} x_{6} x_{8} x_{7}+2 x_{3} x_{2} x_{1} x_{4} x_{9} x_{8}+x_{4} x_{6} x_{5} x_{8} x_{1} x_{3} \\
& +4 x_{5} x_{4} x_{6} x_{9} x_{2} x_{1}+2 x_{6} x_{5} x_{4} x_{7} x_{3} x_{2}+x_{7} x_{9} x_{8} x_{2} x_{4} x_{6}+4 x_{8} x_{7} x_{9} x_{3} x_{5} x_{4} \\
& +2 x_{9} x_{8} x_{7} x_{1} x_{6} x_{5} \\
\bar{e}_{3}= & x_{1} x_{3} x_{2} x_{4} x_{6} x_{7}+2 x_{2} x_{1} x_{3} x_{5} x_{4} x_{8}+4 x_{3} x_{2} x_{1} x_{6} x_{5} x_{9}+x_{4} x_{6} x_{5} x_{7} x_{9} x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& +2 x_{5} x_{4} x_{6} x_{8} x_{7} x_{2}+4 x_{6} x_{5} x_{4} x_{9} x_{8} x_{3}+x_{7} x_{9} x_{8} x_{1} x_{3} x_{4}+2 x_{8} x_{7} x_{9} x_{2} x_{1} x_{5} \\
& +4 x_{9} x_{8} x_{7} x_{3} x_{2} x_{6} \\
& \bar{e}_{4}=x_{1} x_{3} x_{2} x_{4} x_{7} x_{9}+4 x_{2} x_{1} x_{3} x_{5} x_{8} x_{7}+2 x_{3} x_{2} x_{1} x_{6} x_{9} x_{8}+x_{4} x_{6} x_{5} x_{7} x_{1} x_{3} \\
& +4 x_{5} x_{4} x_{6} x_{8} x_{2} x_{1}+2 x_{6} x_{5} x_{4} x_{9} x_{3} x_{2}+x_{7} x_{9} x_{8} x_{1} x_{4} x_{6}+4 x_{8} x_{7} x_{9} x_{2} x_{5} x_{4} \\
& +2 x_{9} x_{8} x_{7} x_{3} x_{6} x_{5} \\
& \bar{e}_{5}=x_{1} x_{3} x_{2} x_{4} x_{6} x_{9}+2 x_{2} x_{1} x_{3} x_{5} x_{4} x_{7}+4 x_{3} x_{2} x_{1} x_{6} x_{5} x_{8}+x_{4} x_{6} x_{5} x_{7} x_{9} x_{3} \\
& +2 x_{5} x_{4} x_{6} x_{8} x_{7} x_{1}+4 x_{6} x_{5} x_{4} x_{9} x_{8} x_{2}+x_{7} x_{9} x_{8} x_{1} x_{3} x_{6}+2 x_{8} x_{7} x_{9} x_{2} x_{1} x_{4} \\
& +4 x_{9} x_{8} x_{7} x_{3} x_{2} x_{5} \\
& \bar{e}_{6}=x_{1} x_{3} x_{2} x_{6} x_{7} x_{9}+4 x_{2} x_{1} x_{3} x_{4} x_{8} x_{7}+2 x_{3} x_{2} x_{1} x_{5} x_{9} x_{8}+x_{4} x_{6} x_{5} x_{9} x_{1} x_{3} \\
& +4 x_{5} x_{4} x_{6} x_{7} x_{2} x_{1}+2 x_{6} x_{5} x_{4} x_{8} x_{3} x_{2}+x_{7} x_{9} x_{8} x_{3} x_{4} x_{6}+4 x_{8} x_{7} x_{9} x_{1} x_{5} x_{4} \\
& +2 x_{9} x_{8} x_{7} x_{2} x_{6} x_{5} \\
& \bar{e}_{7}=x_{1} x_{2} x_{4} x_{6} x_{7} x_{9}+x_{2} x_{3} x_{5} x_{4} x_{8} x_{7}+x_{3} x_{1} x_{6} x_{5} x_{9} x_{8}+x_{4} x_{5} x_{7} x_{9} x_{1} x_{3} \\
& +x_{5} x_{6} x_{8} x_{7} x_{2} x_{1}+x_{6} x_{4} x_{9} x_{8} x_{3} x_{2}+x_{7} x_{8} x_{1} x_{3} x_{4} x_{6}+x_{8} x_{9} x_{2} x_{1} x_{5} x_{4} \\
& +x_{9} x_{7} x_{3} x_{2} x_{6} x_{5} \\
& \bar{e}_{8}=x_{1} x_{2} x_{4} x_{5} x_{7} x_{9}+x_{2} x_{3} x_{5} x_{6} x_{8} x_{7}+x_{3} x_{1} x_{6} x_{4} x_{9} x_{8}+x_{4} x_{5} x_{7} x_{8} x_{1} x_{3} \\
& +x_{5} x_{6} x_{8} x_{9} x_{2} x_{1}+x_{6} x_{4} x_{9} x_{7} x_{3} x_{2}+x_{7} x_{8} x_{1} x_{2} x_{4} x_{6}+x_{8} x_{9} x_{2} x_{3} x_{5} x_{4} \\
& +x_{9} x_{7} x_{3} x_{1} x_{6} x_{5} \\
& \bar{e}_{9}=x_{1} x_{2} x_{3} x_{7} x_{8} x_{9}+x_{4} x_{5} x_{6} x_{1} x_{2} x_{3}+x_{7} x_{8} x_{9} x_{4} x_{5} x_{6} \\
& \bar{e}_{10}=x_{1} x_{2} x_{5} x_{6} x_{7} x_{9}+x_{2} x_{3} x_{6} x_{4} x_{8} x_{7}+x_{3} x_{1} x_{4} x_{5} x_{9} x_{8} \\
& \bar{e}_{11}=x_{1} x_{2} x_{4} x_{8} x_{6} x_{9}+x_{2} x_{3} x_{5} x_{9} x_{4} x_{7}+x_{3} x_{1} x_{6} x_{7} x_{5} x_{8} \\
& \bar{e}_{12}=x_{1} x_{3} x_{4} x_{6} x_{7} x_{9}+x_{2} x_{1} x_{5} x_{4} x_{8} x_{7}+x_{3} x_{2} x_{6} x_{5} x_{9} x_{8}
\end{aligned}
$$

Next we compute cup products of the generators of $H^{*}\left(B G_{i}, \mathbf{Z} / 7\right)$ in dimension 3 . Table 1 and Table 2 show the cup products in dimension $\mathbf{6}$. Each a_{j} and $\bar{a}_{j}(j=1, \ldots, 12)$ is the generator of $H^{3}\left(B G_{i}, \mathbf{Z} / 7\right)$. These cup product structures give the main clue for proving the Proposition 2.1.

With this information, we prove the following proposition.
PROPOSITION 2.1. $H^{*}(B P, \mathbf{Z} / 7)^{H_{1}}$ and $H^{*}(B P, \mathbf{Z} / 7)^{H_{2}}$ are not isomorphic as graded algebras over $\mathbf{Z} / 7$.

Proof. Suppose $\varphi_{*}: H^{*}(B P, \mathbf{Z} / 7)^{H_{1}} \longrightarrow H^{*}(B P, \mathbf{Z} / 7)^{H_{2}}$ is an isomorphism as graded algebras over $\mathbf{Z} / 7$. We consider the following diagram.

where f_{u} and g_{u} are cup product maps and the rows are exact.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{10}	a_{11}	a_{12}
a_{1}	0	0	0	0	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	0	0
a_{2}	0	0	0	0	0	0	e_{3}	$6 e_{4}$	$6 e_{5}$	e_{6}	e_{7}	e_{8}
a_{3}	0	0	0	0	$6 e_{1}$	$6 e_{2}$	e_{3}	0	0	e_{6}	$6 e_{7}$	$6 e_{8}$
a_{4}	0	0	0	0	$6 e_{1}$	$6 e_{2}$	0	e_{4}	e_{5}	0	e_{7}	e_{8}
a_{5}	$6 e_{1}$	0	e_{1}	e_{1}	0	α_{1}	0	0	0	0	0	0
a_{6}	$6 e_{2}$	0	e_{2}	e_{2}	$6 \alpha_{1}$	0	0	0	0	0	0	0
a_{7}	$6 e_{3}$	$6 e_{3}$	$6 e_{3}$	0	0	0	0	0	0	α_{2}	0	0
a_{8}	$6 e_{4}$	e_{4}	0	$6 e_{4}$	0	0	0	0	α_{3}	0	0	0
a_{9}	$6 e_{5}$	e_{5}	0	$6 e_{5}$	0	0	0	$6 \alpha_{3}$	0	0	0	0
a_{10}	$6 e_{6}$	$6 e_{6}$	$6 e_{6}$	0	0	0	$6 \alpha_{2}$	0	0	0	0	0
a_{11}	0	$6 e_{7}$	e_{7}	$6 e_{7}$	0	0	0	0	0	0	0	α_{4}
a_{12}	0	$6 e_{8}$	e_{8}	$6 e_{8}$	0	0	0	0	0	0	$6 \alpha_{4}$	0

TABLE 1: Cup products in $H^{6}(B P, \mathbf{Z} / 7)^{H_{1}}$

TABLE 2: Cup products in $H^{6}(B P, \mathbf{Z} / 7)^{H_{2}}$
Therefore the diagram commutes, i.e. $\varphi_{6} \circ f_{u}=g_{u} \circ\left(\varphi_{3} \otimes \varphi_{3}\right)$. This implies $\varphi_{6}\left(a_{i} a_{j}\right)=$ $\varphi_{3}\left(a_{i}\right) \varphi_{3}\left(a_{j}\right)$, that is, its algebraic structure is preserved under the map φ_{*}. Then $\operatorname{Ker} f_{u} \cong$ $\operatorname{Ker} g_{u}$. We consider $\operatorname{Ker} f_{u}=\left\{\sum n_{i j} a_{i} \otimes a_{j} \mid f_{u}\left(\sum n_{i j} a_{i} \otimes a_{j}\right)=\sum n_{i j} a_{i} a_{j}=0\right\}$. We briefly explain how to compute a basis \bar{X} for $\operatorname{Ker} f_{u}$. By inspection of Table 1, if the cup product is zero, then it is obvious. Otherwise, we consider the elements whose image is a scalar multiple of $e_{i}, i=1, \ldots, 9$. For example, in case of $e_{1}, f_{u}\left(n_{1} a_{1} \otimes a_{5}+n_{2} a_{3} \otimes a_{5}+n_{3} a_{4} \otimes a_{5}\right)=$ $n_{1} e_{1}+6 n_{2} e_{1}+6 n_{3} e_{1}=\left(n_{1}+6 n_{2}+6 n_{3}\right) e_{1}$. To find basis elements in $\operatorname{Ker} f_{u}$, we set $\left(n_{1}+6 n_{2}+6 n_{3}\right) e_{1}=0$. Then $\left(n_{1}, n_{2}, n_{3}\right)=(1,1,0)$ or $(1,0,1)$ over $Z / 7$. Therefore we
can let $a_{1} \otimes a_{5}+a_{3} \otimes a_{5}$ and $a_{1} \otimes a_{5}+a_{4} \otimes a_{6}$ belong to \bar{X}. Proceeding in a similar manner we determine the following basis.

$$
\begin{array}{r}
\bar{X}=\left\{a_{1} \otimes a_{1}, a_{2} \otimes a_{2}, a_{3} \otimes a_{3}, a_{4} \otimes a_{4}, a_{5} \otimes a_{5}, a_{6} \otimes a_{6}, a_{7} \otimes a_{7}, a_{8} \otimes a_{8}, a_{9} \otimes a_{9}, a_{10} \otimes\right. \\
a_{10}, a_{11} \otimes a_{11}, a_{12} \otimes a_{12}, a_{1} \otimes a_{2}, a_{1} \otimes a_{3}, a_{1} \otimes a_{4}, a_{1} \otimes a_{11}, a_{1} \otimes a_{12}, a_{2} \otimes \\
a_{3}, a_{2} \otimes a_{4}, a_{2} \otimes a_{5}, a_{2} \otimes a_{6}, a_{3} \otimes a_{4}, a_{3} \otimes a_{8}, a_{3} \otimes a_{9}, a_{4} \otimes a_{7}, a_{4} \otimes a_{10}, a_{5} \otimes \\
a_{7}, a_{5} \otimes a_{8}, a_{5} \otimes a_{9}, a_{5} \otimes a_{10}, a_{5} \otimes a_{11}, a_{5} \otimes a_{12}, a_{6} \otimes a_{7}, a_{6} \otimes a_{8}, a_{6} \otimes a_{9}, a_{6} \otimes \\
a_{10}, a_{6} \otimes a_{11}, a_{6} \otimes a_{12}, a_{7} \otimes a_{8}, a_{7} \otimes a_{9}, a_{7} \otimes a_{11}, a_{7} \otimes a_{12}, a_{8} \otimes a_{10}, a_{8} \otimes \\
a_{11}, a_{8} \otimes a_{12}, a_{9} \otimes a_{10}, a_{9} \otimes a_{11}, a_{9} \otimes a_{12}, a_{10} \otimes a_{11}, a_{10} \otimes a_{12}, a_{1} \otimes a_{5}+a_{3} \otimes \\
a_{5}, a_{1} \otimes a_{5}+a_{4} \otimes a_{5}, a_{1} \otimes a_{6}+a_{3} \otimes a_{6}, a_{1} \otimes a_{6}+a_{4} \otimes a_{6}, a_{1} \otimes a_{7}+6\left(a_{3} \otimes\right. \\
\left.a_{7}\right), a_{2} \otimes a_{7}+6\left(a_{3} \otimes a_{7}\right), a_{1} \otimes a_{3}+6\left(a_{4} \otimes a_{8}\right), a_{2} \otimes a_{8}+a_{4} \otimes a_{8}, a_{1} \otimes a_{9}+6\left(a_{4} \otimes\right. \\
\left.a_{9}\right), a_{2} \otimes a_{9}+a_{4} \otimes a_{9}, a_{1} \otimes a_{10}+6\left(a_{3} \otimes a_{10}\right), a_{2} \otimes a_{10}+6\left(a_{3} \otimes a_{10}\right), a_{2} \otimes a_{11}+ \\
\\
\left.6\left(a_{4} \otimes a_{11}\right), a_{3} \otimes a_{11}+a_{4} \otimes a_{11}, a_{2} \otimes a_{12}+6\left(a_{4} \otimes a_{12}\right), a_{3} \otimes a_{12}+a_{4} \otimes a_{12}\right\} .
\end{array}
$$

Here $|\bar{X}|=66$. Thus the dimension of $\operatorname{Ker} f_{u}$ is 66 .
Next we consider $\operatorname{Ker} g_{u}=\left\{\sum n_{i j} \bar{a}_{i} \otimes \bar{a}_{j} \mid g_{u}\left(\sum n_{i j} \bar{a}_{i} \otimes \bar{a}_{j}\right)=\sum n_{i j} \bar{a}_{i} \bar{a}_{j}=0\right\}$. We use the same method as \bar{X} to compute a basis \bar{Y} for $\operatorname{Ker} g_{u}$. Thus by inspection of Table 2, \bar{Y} consists of the following elements.

$$
\begin{aligned}
& \bar{Y}=\left\{\bar{a}_{1} \otimes \bar{a}_{1}, \bar{a}_{2} \otimes \bar{a}_{2}, \bar{a}_{3} \otimes \bar{a}_{3}, \bar{a}_{4} \otimes \bar{a}_{4}, \bar{a}_{5} \otimes \bar{a}_{5}, \bar{a}_{6} \otimes \bar{a}_{6}, \bar{a}_{7} \otimes \bar{a}_{7}, \bar{a}_{8} \otimes \bar{a}_{8}, \bar{a}_{9} \otimes\right. \\
& \bar{a}_{9}, \bar{a}_{10} \otimes \bar{a}_{10}, \bar{a}_{11} \otimes \bar{a}_{11}, \bar{a}_{12} \otimes \bar{a}_{12}, \bar{a}_{1} \otimes \bar{a}_{2}, \bar{a}_{1} \otimes \bar{a}_{3}, \bar{a}_{1} \otimes \bar{a}_{4}, \bar{a}_{1} \otimes \bar{a}_{11}, \bar{a}_{1} \otimes \\
& \bar{a}_{12}, \bar{a}_{2} \otimes \bar{a}_{3}, \bar{a}_{2} \otimes \bar{a}_{4}, \bar{a}_{2} \otimes \bar{a}_{5}, \bar{a}_{2} \otimes \bar{a}_{6}, \bar{a}_{3} \otimes \bar{a}_{4}, \bar{a}_{3} \otimes \bar{a}_{8}, \bar{a}_{3} \otimes \bar{a}_{9}, \bar{a}_{4} \otimes \bar{a}_{7}, \bar{a}_{4} \otimes \\
& \bar{a}_{10}, \bar{a}_{1} \otimes \bar{a}_{5}+\bar{a}_{9} \otimes \bar{a}_{11}, \bar{a}_{3} \otimes \bar{a}_{5}+5\left(\bar{a}_{9} \otimes \bar{a}_{11}\right), \bar{a}_{4} \otimes \bar{a}_{5}+3\left(\bar{a}_{9} \otimes \bar{a}_{11}\right), \bar{a}_{7} \otimes \\
& \bar{a}_{12}+3\left(\bar{a}_{9} \otimes \bar{a}_{11}\right), \bar{a}_{8} \otimes \bar{a}_{10}+5\left(\bar{a}_{9} \otimes \bar{a}_{11}\right), \bar{a}_{1} \otimes \bar{a}_{6}+2\left(\bar{a}_{10} \otimes \bar{a}_{11}\right), \bar{a}_{3} \otimes \bar{a}_{6}+ \\
& 3\left(\bar{a}_{10} \otimes \bar{a}_{11}\right), \bar{a}_{4} \otimes \bar{a}_{6}+6\left(\bar{a}_{10} \otimes \bar{a}_{11}\right), \bar{a}_{7} \otimes \bar{a}_{9}+4\left(\bar{a}_{10} \otimes \bar{a}_{11}\right), \bar{a}_{8} \otimes \bar{a}_{12}+5\left(\bar{a}_{10} \otimes\right. \\
& \left.\bar{a}_{11}\right), \bar{a}_{1} \otimes \bar{a}_{7}+\bar{a}_{9} \otimes \bar{a}_{12}, \bar{a}_{2} \otimes \bar{a}_{7}+4\left(\bar{a}_{9} \otimes \bar{a}_{12}\right), \bar{a}_{3} \otimes \bar{a}_{7}+\bar{a}_{9} \otimes \bar{a}_{12}, \bar{a}_{5} \otimes \\
& \bar{a}_{11}+5\left(\bar{a}_{9} \otimes \bar{a}_{12}\right), \bar{a}_{6} \otimes \bar{a}_{8}+6\left(\bar{a}_{9} \otimes \bar{a}_{12}\right), \bar{a}_{1} \otimes \bar{a}_{8}+2\left(\bar{a}_{10} \otimes \bar{a}_{12}\right), \bar{a}_{2} \otimes \bar{a}_{8}+ \\
& 3\left(\bar{a}_{10} \otimes \bar{a}_{12}\right), \bar{a}_{4} \otimes \bar{a}_{8}+2\left(\bar{a}_{10} \otimes \bar{a}_{12}\right), \bar{a}_{5} \otimes \bar{a}_{7}+\bar{a}_{10} \otimes \bar{a}_{12}, \bar{a}_{6} \otimes \bar{a}_{11}+3\left(\bar{a}_{10} \otimes\right. \\
& \left.\bar{a}_{12}\right), \bar{a}_{1} \otimes \bar{a}_{9}+2\left(\bar{a}_{7} \otimes \bar{a}_{11}\right), \bar{a}_{2} \otimes \bar{a}_{9}+3\left(\bar{a}_{7} \otimes \bar{a}_{11}\right), \bar{a}_{4} \otimes \bar{a}_{9}+2\left(\bar{a}_{7} \otimes \bar{a}_{11}\right), \bar{a}_{5} \otimes \\
& \bar{a}_{12}+3\left(\bar{a}_{7} \otimes \bar{a}_{11}\right), \bar{a}_{6} \otimes \bar{a}_{10}+\bar{a}_{7} \otimes \bar{a}_{11}, \bar{a}_{1} \otimes \bar{a}_{10}+\bar{a}_{8} \otimes \bar{a}_{11}, \bar{a}_{2} \otimes \bar{a}_{10}+4\left(\bar{a}_{8} \otimes\right. \\
& \left.\bar{a}_{11}\right), \bar{a}_{3} \otimes \bar{a}_{10}+\bar{a}_{8} \otimes \bar{a}_{11}, \bar{a}_{5} \otimes \bar{a}_{9}+6\left(\bar{a}_{8} \otimes \bar{a}_{11}\right), \bar{a}_{6} \otimes \bar{a}_{12}+5\left(\bar{a}_{8} \otimes \bar{a}_{11}\right), \bar{a}_{2} \otimes \\
& \bar{a}_{11}+3\left(\bar{a}_{9} \otimes \bar{a}_{10}\right), \bar{a}_{3} \otimes \bar{a}_{11}+4\left(\bar{a}_{9} \otimes \bar{a}_{10}\right), \bar{a}_{4} \otimes \bar{a}_{11}+3\left(\bar{a}_{9} \otimes \bar{a}_{10}\right), \bar{a}_{5} \otimes \bar{a}_{8}+ \\
& 3\left(\bar{a}_{9} \otimes \bar{a}_{10}\right), \bar{a}_{6} \otimes \bar{a}_{7}+2\left(\bar{a}_{9} \otimes \bar{a}_{10}\right), \bar{a}_{2} \otimes \bar{a}_{12}+4\left(\bar{a}_{7} \otimes \bar{a}_{8}\right), \bar{a}_{3} \otimes \bar{a}_{12}+3\left(\bar{a}_{7} \otimes\right. \\
& \left.\bar{a}_{8}\right), \bar{a}_{4} \otimes \bar{a}_{12}+4\left(\bar{a}_{7} \otimes \bar{a}_{8}\right), \bar{a}_{5} \otimes \bar{a}_{10}+5\left(\bar{a}_{7} \otimes \bar{a}_{8}\right), \bar{a}_{6} \otimes \bar{a}_{9}+4\left(\bar{a}_{7} \otimes \bar{a}_{8}\right), 5\left(\bar{a}_{5} \otimes\right. \\
& \left.\left.\bar{a}_{6}\right)+\left(\bar{a}_{7} \otimes \bar{a}_{10}\right)+6\left(\bar{a}_{11} \otimes \bar{a}_{12}\right), 4\left(\bar{a}_{5} \otimes \bar{a}_{6}\right)+\left(\bar{a}_{8} \otimes \bar{a}_{9}\right)+6\left(\bar{a}_{11} \otimes \bar{a}_{12}\right)\right\} .
\end{aligned}
$$

Here $|\bar{Y}|=68$. Thus the dimension of $\operatorname{Ker} g_{u}$ is 68 .
Since $\operatorname{Ker} f_{u}$ and $\operatorname{Ker} g_{u}$ have different dimensions, $\operatorname{Ker} f_{u}$ is not isomorphic to $\operatorname{Ker} g_{u}$. Thus our assumption leads to a contradiction. Therefore $\varphi_{6}\left(a_{i} a_{j}\right) \neq \varphi_{3}\left(a_{i}\right) \varphi_{3}\left(a_{j}\right)$. This means the algebraic structure is not preserved under the map φ_{*}. This completes the proof.

ACKNOWLEDGMENTS. This paper is based on part of my thesis written under the supervision of Professor Stewart Priddy at Northwestern University. I am pleased to acknowledge my sincere thanks to him for his advice, encouragement and help.

References

1. L. Evens, The Cohomology of Groups, Oxford Science Publications, 1991.
2. H. W. Henn, J. Lannes and L. Schwartz, Analytic functors unstable algebras and cohomology of classifying spaces, Contemporary Math. 96, Amer. Math. Soc. (1989), 197-220.
3. P. Landrock, Finite Group Algebra and Their Modules, London Math. Soc. Lecture Note Series, Cambridge Univ. Press, Cambridge, 1983.
4. J. Martino and S. Priddy, A classification of the stable type of BG, Bull. Amer. Math. Soc. (1) 27(1992), 165-170.
5. The complete stable splitting of the classifying space of a finite group, Topology 31(1992), 143-156.
6. G. Nishida, Stable homotopy type of classifying spaces of finite groups, Algebraic and Topological Theories (1985), 391-404.
7. S. Priddy, Recent progress in stable splittings, Homotopy Theory, Proc. of Durham Symposium 1985, London Math. Soc. Lecture Note Series 117(1987), 149-174.
8. J. P. Serre, Linear Representations of Finite Groups, Springer Verlag, New York, 1977.
9. N. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. Math. Studies 50, Princeton Univ. Press, Princeton, 1962.
10. R. Switzer, Algebraic Topology-Homotopy and Homology, Springer Verlag, Berlin, Heidelberg, New York, 1975.

Department of Mathematics

Ewha Women's University
Seoul, 120-750
Korea
e-mail: hsl@mm.ewha.ac.kr

