THE STABLE AND UNSTABLE TYPES OF CLASSIFYING SPACES

HYANG-SOOK LEE

ABSTRACT. The main purpose of this paper is to study groups G_1 , G_2 such that $H^*(BG_1, \mathbb{Z}/p)$ is isomorphic to $H^*(BG_2, \mathbb{Z}/p)$ in U, the category of unstable modules over the Steenrod algebra A, but not isomorphic as graded algebras over \mathbb{Z}/p .

0. Introduction. Let *G* be a finite group. A classification of the stable homotopy type of *BG* is given by Martino and Priddy's paper [4] in purely algebraic terms. It is known that the stable type of *BG* does not determine *G* up to isomorphism; however [4] shows that for each prime *p*, the local stable type of *BG* depends on the conjugacy classes of homomorphisms from *p*-groups *Q* into *G*. One application to the classification theorem in [4] is the case G_1, G_2 are finite groups with normal Sylow *p*-subgroups P_1, P_2 . Then *BG*₁ and *BG*₂ have the same stable homotopy type, localized at *p*, if and only if $P_1 \cong P_2$ (say *P*) and $W_{G_1}(P)$ is pointwise conjugate to $W_{G_2}(P)$ in Out(*P*). The paper [4] gives the example of groups G_1, G_2 illustrating this theorem. For these groups $H^*(BG_1, \mathbb{Z}/p)$ and $H^*(BG_2, \mathbb{Z}/p)$ are isomorphic in *U*, the category of unstable modules over the Steenrod algebra *A*, but are not isomorphic in *K*, the category of unstable algebras over *A*. The goal of this note is to exhibit groups G_1, G_2 such that $H^*(BG_1, \mathbb{Z}/p)$ and $H^*(BG_2, \mathbb{Z}/p)$ are isomorphic in *U*, but are not even isomorphic even as graded algebras over \mathbb{Z}/p . These algebras have the added advantage of a much smaller Krull dimension than those of [4].

Section One gives some information on the classification of the *p*-local stable homotopy type of *BG*. This includes the main classification theorem and its application in case of finite groups with normal Sylow *p*-subgroups. We give an example of two finite groups with stably homotopy equivalent classifying spaces localized at p > 2. Then in Section Two, we demonstrate the cohomology of these classifying spaces which are necessarily isomorphic in U, are not isomorphic as graded algebras over \mathbb{Z}/p . To show this, we calculate the invariant elements of their cohomology groups in dimension 3 and 6, and then we compare cup products in dimension 6 so that we obtain the result that two cohomology rings have different algebra structures.

1. A classification of the stable type of *BG*. Let *G* be a finite group. We denote *BG* a classifying space of *G*, which has a contractible universal principal *G* bundle *EG*. With G. Carlsson's solution of the Segal conjecture it has become possible to determine the complete *p*-local stable decomposition $BG \simeq X_1 \lor X_2 \lor \cdots \lor X_n$. The suspension

Received by the editors April 18. 1996.

AMS subject classification: Primary: 55R35; secondary: 20J06.

[©]Canadian Mathematical Society 1997.

spectrum of *BG* and its wedge summands have played an important role in homotopy theory. In paper [5], the authors give a characterization of the indecomposable summands of *BG* in terms of modular representation theory of Out(Q) modules for Q < P the Sylow *p*-subgroup of *G*. This is the characterization which is used to study the stable type of *BG* in [4]. It is known that the stable type of *BG* does not determine *G* up to isomorphism. A simple example [due to N. Minami] is given by $Q_{4p} \times Z/2$ and $D_{2p} \times Z/4$ where *p* is an odd prime, Q_{4p} is the generalized quaternion group of order 4p and D_{2p} is the dihedral group of order 2p. It is even worse for *p*-local classifying spaces since *BG* and $BG/O_{p'}(G)$ have isomorphic mod *p* homology and hence equivalent stable types. Here $O_{p'}(G)$ is the maximal normal subgroup of *G* of order prime to *p*. But there is a good result in this direction by Nishida.

THEOREM 1.1 [6]. Let G_1, G_2 be finite groups with Sylow p-subgroups P_1, P_2 . If BG_1 and BG_2 are stably equivalent localized at p, then $P_1 \cong P_2$.

However the following classification theorem which is established by J. Martino and S. Priddy gives us a necessary and sufficient condition.

THEOREM 1.2 [4]. For two finite groups G_1, G_2 , the following are equivalent.

(1) Localized at p, BG_1 and BG_2 are stably equivalent.

(2) For every p-group Q, $F_p \operatorname{Rep}(Q, G_1) \cong F_p \operatorname{Rep}(Q, G_2)$ as $\operatorname{Out}(Q)$ modules. $\operatorname{Rep}(Q, G) = \operatorname{Hom}(Q, G)/G$ with G acting by conjugation.

(3) For every p-group Q, $F_p \operatorname{Inj}(Q, G_1) \cong F_p \operatorname{Inj}(Q, G_2)$ as $\operatorname{Out}(Q)$ modules. Inj $(Q, G) < \operatorname{Rep}(Q, G)$ consists of conjugacy classes of injective homomorphisms.

This classification simplifies if *G* has a normal Sylow *p*-subgroup. Then the stable homotopy type depends on the *Weyl group* of the Sylow *p*-subgroup.

DEFINITION 1.3. Two subgroups H, K < G are called *pointwise conjugate* in G if there is a bijection of sets $H \xrightarrow{\alpha} K$ such that $\alpha(h) = g_h^{-1}hg_h$ for $g_h \in G$ depending on $h \in H$.

Alternately it is easy to see that an equivalent condition is $|H \cap (g)| = |K \cap (g)|$ for all $g \in G$, where (g) denotes the conjugacy class of g. We assume G has a normal Sylow p-subgroup P. We set $G = P \rtimes H$ for p'-group H by Zassenhaus's theorem, and $G = P \cdot H$, $H \cap P = \{1\}$. Let $W_G(P)$ denote the Weyl group of P < G i.e. $W_G(P) = N_G(P)/P \cdot C_G(P)$ where $N_G(P)$ is the normalizer and $C_G(P)$ is the centralizer of P in G. Then $W_G(P) \leq$ Out(P).

THEOREM 1.4 [4]. Suppose G_1 and G_2 are finite groups with normal Sylow psubgroups P_1 and P_2 . Then BG_1 and BG_2 have the same stable homotopy type, localized at p, if and only if $P_1 \cong P_2 (\approx P \text{ say})$ and $W_{G_1}(P)$ is pointwise conjugate to $W_{G_2}(P)$ in Out(P).

To see the relation between Theorem 1.2 and 1.4 refer to the paper [4]. Let us give G_1, G_2 such that BG_1 is stably equivalent to BG_2 localized at p > 2.

EXAMPLE 1.5. Let p, l be different odd primes such that $p \equiv 1 \pmod{l}$. We set P be an elementary abelian p-group of rank l^2 , *i.e.* $P = (\mathbf{Z}/p)^{l^2}$. Then $\operatorname{Out} P = \operatorname{GL}_{l^2}(\mathbf{F}_p)$. Let $H'_1 = (\mathbf{Z}/l)^3$ and $H'_2 = U_3(\mathbf{F}_l)$ so that H'_1 is not isomorphic to H'_2 where $U_3(\mathbf{F}_l)$ is 3×3 upper triangular matrices over \mathbf{F}_l . Let Q_1, Q_2 be the subgroups of H'_1, H'_2 given by

$$Q_1 = \langle (1,0,0) \rangle, \ Q_2 = \Big\langle \left(egin{matrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{pmatrix} \Big\rangle.$$

Then up to isomorphism $Q_i \cong Q(= \mathbb{Z}/l)$ (i = 1, 2). Thus the inclusion $\rho: Q \hookrightarrow \operatorname{GL}_1(\mathbb{F}_p) = \mathbb{F}_p^*$ is a 1-dimensional representation where \mathbb{F}_p^* is a cyclic group of order p-1 which has a generator ζ . (In fact this is a primitive p-1-th root of unity.) Now $l \mid p-1$, hence we set $l \cdot k = p-1$ for some k. Then $\zeta^{\frac{p-1}{l}} = \zeta^k = \omega$ is a primitive l-th root of unity. We define $\rho(q) = \omega$ where q is the generator of Q. Then ρ induces representations $f_1 = \operatorname{Ind}_{Q_1}^{H'_1}(\rho): H'_1 \to \operatorname{GL}_{l^2}(\mathbb{F}_p)$ and $f_2 = \operatorname{Ind}_{Q_2}^{H'_2}(\rho): H'_2 \to \operatorname{GL}_{l^2}(\mathbb{F}_p)$. These induced representations are defined by the following composition maps.

$$(*) \qquad f_{i} = \operatorname{Ind}_{Q}^{H'_{i}}(\rho) : H'_{i} \xrightarrow{\alpha} Q^{l^{2}} \rtimes \Sigma_{l^{2}} \xrightarrow{\rho^{l^{2}} \times 1} \operatorname{GL}_{1}(\mathbf{F}_{p})^{l^{2}} \rtimes \Sigma_{l^{2}} \longrightarrow \operatorname{GL}_{l^{2}}(\mathbf{F}_{p})$$
$$h \xrightarrow{\alpha} (q_{1}, \dots, q_{l^{2}}, \sigma) \xrightarrow{\rho^{l^{2}} \times 1} (\rho(q_{1}), \dots, \rho(q_{l^{2}}), \sigma) \longrightarrow \mathbf{T}_{\bar{\sigma}}$$

where for fixed i = 1, 2 we define $q_k \in Q$ and $\sigma \in \Sigma_{l^2}$ by choosing coset representatives $\{s_k | k = 1, ..., l^2\}$ for H'_i/Q and then setting $hs_k = s_{\sigma(k)}q_k$. $\mathbf{T}_{\bar{\sigma}}$ is the $l^2 \times l^2$ matrix with the $\rho(q_i)$'s replacing the ones of the permutation matrix $\bar{\sigma}$ in $\mathrm{GL}_{l^2}(\mathbf{F}_p)$.

For $h \in H'_i$, $hs_k \in s_jQ$ for some $s_j \in \mathbb{R}_i$ $(1 \le i \le 2, 1 \le j, k \le l^2)$ where \mathbb{R}_i is a set of coset representatives of H'_i/Q , hence there exists σ such that $\sigma(k) = j$ and $hs_k = s_{\sigma(k)}q_k$ for some $q_k \in Q$. Here $s_{\sigma(k)}$ and q_k are uniquely determined. Thus α is injective. Therefore the induced representations f_i (i = 1, 2) are injective. Now we set $f_1(H'_1) = H_1$ and $f_2(H'_2) = H_2$. These groups H_1 and H_2 act on P. It follows that $G_i = P \rtimes H_i$ (i = 1, 2) are not isomorphic and satisfy $O_{p'}(G_i) = 1$. This implies $H_i \cap C_{G_i}(P) = \{1\}$. Thus $W_{G_i}(P) = P \cdot H_i/P \cdot C_{G_i}(P) \cong H_i/H_i \cap C_{G_i}(P) = H_i$. Now we need to show that H_1 is pointwise conjugate to H_2 in $GL_{l^2}(\mathbf{F}_p)$.

If *M* is an $m_1 \times n_1$ matrix and *N* is an $m_2 \times n_2$ matrix, then we note that the tensor product of *M* and *N* is a matrix of size $m_1m_2 \times n_1n_2$. For a given matrix *M*, we denote ωM by M_{ω} for some $\omega \in \mathbf{F}_p$.

Let $h'_1 = (1, 0, 0)$, $h'_2 = (0, 1, 0)$ and $h'_3 = (0, 0, 1)$ be the generators of H'_1 . Then by the representation map (*), we get the generators $f_1(h'_1) = I \otimes I_{\omega}$, $f_1(h'_2) = I \otimes M$, $f_1(h'_3) = M \otimes I$, where *I* is an $l \times l$ identity matrix and *M* is the $l \times l$ permutation matrix of $(12 \cdots l)$. We set the images of the generators h_1, h_2, h_3 . Therefore H_1 is generated by $\langle h_1, h_2, h_3 \rangle$. Let

$$\bar{h}_1' = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \bar{h}_2' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \bar{h}_3' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

be generators of H'_2 . Here $\bar{h}'_1 = [\bar{h}'_2, \bar{h}'_3]$. Then, similarly, we obtain the generators $\bar{h}_1 = I \otimes I_\omega, \bar{h}_2 = D \otimes M, \bar{h}_3 = M \otimes I$, where D is an $l \times l$ diagonal matrix with $\omega, \omega^2, \ldots, \omega^{l-1}$, 1 on the diagonal. We also have $\bar{h}_1 = [\bar{h}_2, \bar{h}_3]$. Thus H_2 is generated by $\langle \bar{h}_1, \bar{h}_2, \bar{h}_3 \rangle$.

We claim H_1 is pointwise conjugate to H_2 in $\operatorname{GL}_{l^2}(\mathbf{F}_p)$. First we notice $h_1 = \bar{h}_1$, $h_3 = \bar{h}_3$. Let J be a subgroup generated by $\langle h_1, h_3 \rangle$ in H_1 . Then for any $h \in J$, $(I \otimes I)^{-1}h(I \otimes I) = h \in H_2$. Now we consider the elements in $H_1 - J$ and $H_2 - J$. For the element $h \in H_1 - J$, h is of the form $\omega^k(I \otimes M^i)(M^j \otimes I) = \omega^k(M^j \otimes M^i)$ for some $1 \leq i \leq l - 1$, $1 \leq j$, $k \leq l$. Also for the element $\bar{h} \in H_2 - J$, \bar{h} is of the form $\omega^k(D \otimes M)^i(M^j \otimes I) = \omega^k(D^i \otimes M^i)(M^j \otimes I) = \omega^k(D^jM^j \otimes M^i)$ for some $1 \leq i \leq l - 1$, $1 \leq j, k \leq l$.

We show that $M^j \otimes M^i$ is similar to $D^i M^j \otimes M^i$ for each *i*, *j*. First it is enough to show that M^j is similar to $D^i M^j$. Here M^j is also a permutation matrix and $D^i M^j$ is a matrix replacing ones of M^j by $\omega^i, \omega^{2i}, \ldots, \omega^{(l-1)i}, 1$. Then both M^j and $D^i M^j$ have the same characteristic polynomial $f(t) = t^l - 1 = 0$. To see this, let $\lambda \in \mathbf{F}_p$ be an eigenvalue of M^j . Since M^j is a cyclic permutation matrix of order $l, \lambda^l = 1$ and λ is an l th root of unity. (*i.e.* λ is a root of $t^l - 1 = 0$.) Similarly, we can see $(D^i M^j)^l = I_{l \times l}$, since

$$(D^{i}M^{j})^{l} = D^{i}M^{j}D^{i}M^{j}\cdots D^{i}M^{j}$$

$$= D^{i}(M^{j}D^{i}M^{-j})(M^{2j}D^{i}M^{-2j})\cdots (M^{(l-1)j}D^{i}M^{-(l-1)j})M^{lj}$$

$$= D^{i}\prod_{k=1}^{l-1}(M^{kj}D^{i}M^{-kj})(M^{l})^{j}$$

$$= D^{i}\prod_{k=1}^{l-1}\tau_{0}^{kj}(D^{i}) \quad \text{since } M^{l} = I$$

$$= \prod_{k=1}^{l}\tau_{0}^{kj}(D^{i})$$

$$= \left(\prod_{k=1}^{l}\tau_{0}^{kj}(D)\right)^{i}$$

$$= I \quad \text{since each diagonal entry is } \prod_{i=1}^{l}\omega^{i} = 1, \text{ for odd prime } l.$$

Hence each eigenvalue of $D^i M^j$ is also a root of $t^l - 1 = 0$. We chose ω as a primitive l th root of unity. Then they have l distinct eigenvalues $\omega, \omega^2, \ldots, \omega^{l-1}, 1$ in \mathbf{F}_p , and hence they are diagonalizable. Thus there exist $P, Q \in \mathrm{GL}_l(\mathbf{F}_p)$ such that $P^{-1}M^jP = D$, $Q^{-1}D^iM^jQ = D$, and hence $QP^{-1}M^jPQ^{-1} = (PQ^{-1})^{-1}M^j(PQ^{-1}) = D^iM^j$. Thus M^j is similar to D^iM^j . Now we choose $PQ^{-1} \otimes I \in \mathrm{GL}_l(\mathbf{F}_p)$ such that

 $(PQ^{-1} \otimes I)^{-1}(M^{j} \otimes M^{i})(PQ^{-1} \otimes I) = (PQ^{-1})^{-1}M^{j}(PQ^{-1}) \otimes I^{-1}M^{i}I = D^{i}M^{j} \otimes M^{i}$. Therefore $M^{j} \otimes M^{i}$ is similar to $D^{i}M^{j} \otimes M^{i}$, $1 \leq i \leq l-1$, $1 \leq j \leq l$. Obviously $\omega^{k}(M^{j} \otimes M^{i})$ is similar to $\omega^{k}(D^{i}M^{j} \otimes M^{i})$ where $1 \leq k \leq l$. This completes our claim. Therefore by Theorem 1.4, BG_{1} is stably equivalent to BG_{2} at p > 2.

Thus we conclude $H^*(BG_1, \mathbb{Z}/p)$ is isomorphic to $H^*(BG_2, \mathbb{Z}/p)$ in U, the category of unstable modules over A. Now $H^*(BG_i, \mathbb{Z}/p) = H^*(BP \rtimes H_i, \mathbb{Z}/p) = H^*(BP, \mathbb{Z}/p)^{H_i}$. But we have $H^*(BP, \mathbb{Z}/p) = H^*(\beta \mathbb{Z}/p)^{l^2}, \mathbb{Z}/p) = \mathbb{Z}/p[y_1, \dots, y_{l^2}] \otimes E[x_1, \dots, x_{l^2}]$ where $|x_i| = 1, |y_i| = 2, y_i = \beta x_i$ and β is the Bockstein homomorphism. Thus $H^*(BG_i, \mathbb{Z}/p) = (\mathbb{Z}/p[y_1, \dots, y_{l^2}: 2] \otimes E[x_1, \dots, x_{l^2}: 1])^{H_i}$ (i = 1, 2).

2. Unstable homotopy type of *BG*. In this section, we demonstrate two groups such that $H^*(BG_1)$ is isomorphic to $H^*(BG_2)$ in *U*, but not isomorphic as graded algebras over \mathbb{Z}/p . From now on we consider the case l = 3, p = 7 in Example 1.8. Then $G_1 = P \rtimes H_1$, $G_2 = P \rtimes H_2$ where $P = (\mathbb{Z}/7)^9$, $H_1 \cong (\mathbb{Z}/3)^3$, $H_2 \cong U_3(\mathbf{F}_3)$ and $H_1, H_2 \leq GL_9(\mathbf{F}_7)$. According to the Theorem 1.4, *BG*₁ is stably homotopy equivalent to *BG*₂, localized at p = 7. However, we shall show that $H^*(BG_1, \mathbb{Z}/7)$ is not even isomorphic to $H^*(BG_2, \mathbb{Z}/7)$ as graded algebras over $\mathbb{Z}/7$. Note $H^*(BG_i, \mathbb{Z}/7) = H^*(BP, \mathbb{Z}/7)^{H_i} = (\mathbb{Z}/7[y_1, \dots, y_9 : 2] \otimes E[x_1, \dots, x_9 : 1])^{H_i}$ for i = 1, 2. By using the representation map (*) constructed in Section 1, we obtain the generators $h_1 = I \otimes 2I$, $h_2 = I \otimes M$, $h_3 = M \otimes I$ in H_1 and $\bar{h}_1 = I \otimes 2I$, $\bar{h}_2 = D \otimes M$, $\bar{h}_3 = I \otimes M$ in H_2 , where *I* is an 3×3 identity matrix, *M* is the permutation matrix of (123) and *D* is an 3×3 diagonal matrix with 2, 4, 1 on the diagonal.

First we give the straightforward calculation of the invariants of the action of H_1 and H_2 on $H^*(BP, Z/7)$ in dimension 3 and 6. (Here we give the invariants in dimension 6 relating to cup products.)

(1) Invariants in $H^*(BP, \mathbb{Z}/7)^{H_1}$ (i) dimension **3**

 $a_{1} = x_{1}x_{3}x_{2} + x_{4}x_{6}x_{5} + x_{7}x_{9}x_{8}$ $a_{2} = x_{1}x_{7}x_{4} + x_{2}x_{8}x_{5} + x_{3}x_{9}x_{6}$ $a_{3} = x_{1}x_{5}x_{9} + x_{2}x_{6}x_{7} + x_{3}x_{4}x_{8}$ $a_{4} = x_{1}x_{8}x_{6} + x_{2}x_{9}x_{4} + x_{3}x_{7}x_{5}$ $a_{5} = x_{1}x_{3}x_{5} + x_{2}x_{1}x_{6} + x_{3}x_{2}x_{4} + x_{7}x_{9}x_{2} + x_{8}x_{7}x_{3} + x_{9}x_{8}x_{1} + x_{4}x_{6}x_{8}$ $+x_{5}x_{4}x_{9} + x_{6}x_{5}x_{7}$ $a_{6} = x_{1}x_{3}x_{8} + x_{2}x_{1}x_{9} + x_{3}x_{2}x_{7} + x_{4}x_{6}x_{2} + x_{5}x_{4}x_{3} + x_{6}x_{5}x_{1} + x_{7}x_{9}x_{5}$ $+x_{8}x_{7}x_{6} + x_{9}x_{8}x_{4}$ $a_{7} = x_{1}x_{3}x_{4} + x_{2}x_{1}x_{5} + x_{3}x_{2}x_{6} + x_{7}x_{9}x_{1} + x_{8}x_{7}x_{2} + x_{9}x_{8}x_{3} + x_{4}x_{6}x_{7}$ $+x_{5}x_{4}x_{8} + x_{6}x_{5}x_{9}$

 $a_8 = x_1 x_3 x_7 + x_2 x_1 x_8 + x_3 x_2 x_9 + x_7 x_9 x_4 + x_8 x_7 x_5 + x_9 x_8 x_6 + x_4 x_6 x_1$ $+ x_5 x_4 x_2 + x_6 x_5 x_3$

HYANG-SOOK LEE

- $a_9 = x_1 x_3 x_6 + x_2 x_1 x_4 + x_3 x_2 x_5 + x_7 x_9 x_3 + x_8 x_7 x_1 + x_9 x_8 x_2 + x_4 x_6 x_9$ $+ x_5 x_4 x_7 + x_6 x_5 x_8$
- $a_{10} = x_1 x_3 x_9 + x_2 x_1 x_7 + x_3 x_2 x_8 + x_7 x_9 x_6 + x_8 x_7 x_4 + x_9 x_8 x_5 + x_4 x_6 x_3$ $+ x_5 x_4 x_1 + x_6 x_5 x_2$
- $a_{11} = x_1 x_4 x_9 + x_2 x_5 x_7 + x_3 x_6 x_8 + x_7 x_1 x_6 + x_8 x_2 x_4 + x_9 x_3 x_5 + x_4 x_7 x_3$ $+ x_5 x_8 x_1 + x_6 x_9 x_2$
- $a_{12} = x_1 x_4 x_8 + x_2 x_5 x_9 + x_3 x_6 x_7 + x_7 x_1 x_5 + x_8 x_2 x_6 + x_9 x_3 x_4 + x_4 x_7 x_2$ $+ x_5 x_8 x_3 + x_6 x_9 x_1$

(ii) dimension 6

- $e_1 = x_1 x_2 x_3 x_4 x_5 x_9 + x_2 x_3 x_1 x_5 x_6 x_7 + x_3 x_1 x_2 x_6 x_4 x_8 + x_4 x_5 x_6 x_7 x_8 x_3$ $+ x_5 x_6 x_4 x_8 x_9 x_1 + x_6 x_4 x_5 x_9 x_7 x_2 + x_7 x_8 x_9 x_1 x_2 x_6 + x_8 x_9 x_7 x_2 x_3 x_4$ $+ x_9 x_7 x_8 x_3 x_1 x_5$
- $e_{2} = x_{1}x_{2}x_{3}x_{4}x_{8}x_{9} + x_{2}x_{3}x_{1}x_{5}x_{9}x_{7} + x_{3}x_{1}x_{2}x_{6}x_{7}x_{8} + x_{4}x_{5}x_{6}x_{7}x_{2}x_{3}$ + $x_{5}x_{6}x_{4}x_{8}x_{3}x_{1} + x_{6}x_{4}x_{5}x_{9}x_{1}x_{2} + x_{7}x_{8}x_{9}x_{1}x_{5}x_{6} + x_{8}x_{9}x_{7}x_{2}x_{6}x_{4}$ + $x_{9}x_{7}x_{8}x_{3}x_{4}x_{5}$
- $e_{3} = x_{1}x_{2}x_{3}x_{4}x_{5}x_{8} + x_{2}x_{3}x_{1}x_{5}x_{6}x_{9} + x_{3}x_{1}x_{2}x_{6}x_{4}x_{7} + x_{4}x_{5}x_{6}x_{7}x_{8}x_{2}$ + $x_{5}x_{6}x_{4}x_{8}x_{9}x_{3} + x_{6}x_{4}x_{5}x_{9}x_{7}x_{1} + x_{7}x_{8}x_{9}x_{1}x_{2}x_{5} + x_{8}x_{9}x_{7}x_{2}x_{3}x_{6}$ + $x_{9}x_{7}x_{8}x_{3}x_{1}x_{4}$
- $e_4 = x_1 x_2 x_3 x_5 x_7 x_8 + x_2 x_3 x_1 x_6 x_8 x_9 + x_3 x_1 x_2 x_4 x_9 x_7 + x_4 x_5 x_6 x_8 x_1 x_2$ $+ x_5 x_6 x_4 x_9 x_2 x_3 + x_6 x_4 x_5 x_7 x_3 x_1 + x_7 x_8 x_9 x_2 x_4 x_5 + x_8 x_9 x_7 x_3 x_5 x_6$ $+ x_9 x_7 x_8 x_1 x_6 x_4$
- $e_{5} = x_{1}x_{2}x_{3}x_{4}x_{5}x_{7} + x_{2}x_{3}x_{1}x_{5}x_{6}x_{8} + x_{3}x_{1}x_{2}x_{6}x_{4}x_{9} + x_{4}x_{5}x_{6}x_{7}x_{8}x_{1}$ + $x_{5}x_{6}x_{4}x_{8}x_{9}x_{2} + x_{6}x_{4}x_{5}x_{9}x_{7}x_{3} + x_{7}x_{8}x_{9}x_{1}x_{2}x_{4} + x_{8}x_{9}x_{7}x_{2}x_{3}x_{5}$ + $x_{9}x_{7}x_{8}x_{3}x_{1}x_{6}$
- $e_{6} = x_{1}x_{2}x_{3}x_{4}x_{7}x_{8} + x_{2}x_{3}x_{1}x_{5}x_{8}x_{9} + x_{3}x_{1}x_{2}x_{6}x_{9}x_{7} + x_{4}x_{5}x_{6}x_{7}x_{1}x_{2}$ + $x_{5}x_{6}x_{4}x_{8}x_{2}x_{3} + x_{6}x_{4}x_{5}x_{9}x_{3}x_{1} + x_{7}x_{8}x_{9}x_{1}x_{4}x_{5} + x_{8}x_{9}x_{7}x_{2}x_{5}x_{6}$ + $x_{9}x_{7}x_{8}x_{3}x_{6}x_{4}$
- $e_{7} = x_{1}x_{2}x_{4}x_{6}x_{7}x_{9} + x_{2}x_{3}x_{5}x_{4}x_{8}x_{7} + x_{3}x_{1}x_{6}x_{5}x_{9}x_{8} + x_{4}x_{5}x_{7}x_{9}x_{1}x_{3}$ + $x_{5}x_{6}x_{8}x_{7}x_{2}x_{1} + x_{6}x_{4}x_{9}x_{8}x_{3}x_{2} + x_{7}x_{8}x_{1}x_{3}x_{4}x_{6} + x_{8}x_{9}x_{2}x_{1}x_{5}x_{4}$ + $x_{9}x_{7}x_{3}x_{2}x_{6}x_{5}$
- $e_8 = x_1 x_2 x_4 x_5 x_7 x_9 + x_2 x_3 x_5 x_6 x_8 x_7 + x_3 x_1 x_6 x_4 x_9 x_8 + x_4 x_5 x_7 x_8 x_1 x_3$ $+ x_5 x_6 x_8 x_9 x_2 x_1 + x_6 x_4 x_9 x_7 x_3 x_2 + x_7 x_8 x_1 x_2 x_4 x_6 + x_8 x_9 x_2 x_3 x_5 x_4$ $+ x_9 x_7 x_3 x_1 x_6 x_5$
- $e_9 = x_1 x_2 x_3 x_7 x_8 x_9 + x_4 x_5 x_6 x_1 x_2 x_3 + x_7 x_8 x_9 x_4 x_5 x_6$

 $e_{10} = x_1 x_2 x_5 x_6 x_7 x_9 + x_2 x_3 x_6 x_4 x_8 x_7 + x_3 x_1 x_4 x_5 x_9 x_8$ $e_{11} = x_1 x_2 x_4 x_8 x_6 x_9 + x_2 x_3 x_5 x_9 x_4 x_7 + x_3 x_1 x_6 x_7 x_5 x_8$ $e_{12} = x_1 x_3 x_4 x_6 x_7 x_9 + x_2 x_1 x_5 x_4 x_8 x_7 + x_3 x_2 x_6 x_5 x_9 x_8$

(2) Invariants in $H^*(BP, \mathbb{Z}/7)^{H_2}$

(i) dimension **3**

 $\bar{a}_1 = x_1 x_3 x_2 + x_4 x_6 x_5 + x_7 x_9 x_8$ $\bar{a}_2 = x_1 x_7 x_4 + x_2 x_8 x_5 + x_3 x_9 x_6$ $\bar{a}_3 = x_1 x_5 x_9 + x_2 x_6 x_7 + x_3 x_4 x_8$ $\bar{a}_4 = x_1 x_8 x_6 + x_2 x_9 x_4 + x_3 x_7 x_5$ $\bar{a}_5 = x_1 x_3 x_5 + 2 x_2 x_1 x_6 + 4 x_3 x_2 x_4 + x_7 x_9 x_2 + 2 x_8 x_7 x_3 + 4 x_9 x_8 x_1 + x_4 x_6 x_8$ $+2x_5x_4x_9+4x_6x_5x_7$ $\bar{a}_6 = x_1 x_3 x_8 + 4 x_2 x_1 x_9 + 2 x_3 x_2 x_7 + x_7 x_9 x_5 + 4 x_8 x_7 x_6 + 2 x_9 x_8 x_4 + x_4 x_6 x_2$ $+4x_5x_4x_3 + 2x_6x_5x_1$ $\bar{a}_7 = x_1 x_3 x_4 + 2 x_2 x_1 x_5 + 4 x_3 x_2 x_6 + x_7 x_9 x_1 + 2 x_8 x_7 x_2 + 4 x_9 x_8 x_3 + x_4 x_6 x_7$ $+2x_5x_4x_8 + 4x_6x_5x_9$ $\bar{a}_8 = x_1 x_3 x_7 + 4 x_2 x_1 x_8 + 2 x_3 x_2 x_9 + x_7 x_9 x_4 + 4 x_8 x_7 x_5 + 2 x_9 x_8 x_6 + x_4 x_6 x_1$ $+4x_5x_4x_2 + 2x_6x_5x_3$ $\bar{a}_9 = x_1 x_3 x_6 + 2 x_2 x_1 x_4 + 4 x_3 x_2 x_5 + x_7 x_9 x_3 + 2 x_8 x_7 x_1 + 4 x_9 x_8 x_2 + x_4 x_6 x_9$ $+2x_5x_4x_7 + 4x_6x_5x_8$ $\bar{a}_{10} = x_1 x_3 x_9 + 4 x_2 x_1 x_7 + 2 x_3 x_2 x_8 + x_7 x_9 x_6 + 4 x_8 x_7 x_4 + 2 x_9 x_8 x_5 + x_4 x_6 x_3$ $+4x_5x_4x_1 + 2x_6x_5x_2$

- $\bar{a}_{11} = x_1 x_4 x_9 + x_2 x_5 x_7 + x_3 x_6 x_8 + x_7 x_1 x_6 + x_8 x_2 x_4 + x_9 x_3 x_5 + x_4 x_7 x_3$ $+ x_5 x_8 x_1 + x_6 x_9 x_2$
- $\bar{a}_{12} = x_1 x_4 x_8 + x_2 x_5 x_9 + x_3 x_6 x_7 + x_7 x_1 x_5 + x_8 x_2 x_6 + x_9 x_3 x_4 + x_4 x_7 x_2$ $+ x_5 x_8 x_3 + x_6 x_9 x_1$

(ii) dimension 6

- $\bar{e}_1 = x_1 x_3 x_2 x_4 x_6 x_8 + 2 x_2 x_1 x_3 x_5 x_4 x_9 + 4 x_3 x_2 x_1 x_6 x_5 x_7 + x_4 x_6 x_5 x_7 x_9 x_2$ $+ 2 x_5 x_4 x_6 x_8 x_7 x_3 + 4 x_6 x_5 x_4 x_9 x_8 x_1 + x_7 x_9 x_8 x_1 x_3 x_5 + 2 x_8 x_7 x_9 x_2 x_1 x_6$ $+ 4 x_9 x_8 x_7 x_3 x_2 x_4$
- $\bar{e}_2 = x_1 x_3 x_2 x_5 x_7 x_9 + 4 x_2 x_1 x_3 x_6 x_8 x_7 + 2 x_3 x_2 x_1 x_4 x_9 x_8 + x_4 x_6 x_5 x_8 x_1 x_3$ $+ 4 x_5 x_4 x_6 x_9 x_2 x_1 + 2 x_6 x_5 x_4 x_7 x_3 x_2 + x_7 x_9 x_8 x_2 x_4 x_6 + 4 x_8 x_7 x_9 x_3 x_5 x_4$ $+ 2 x_9 x_8 x_7 x_1 x_6 x_5$
- $\bar{e}_3 = x_1 x_3 x_2 x_4 x_6 x_7 + 2 x_2 x_1 x_3 x_5 x_4 x_8 + 4 x_3 x_2 x_1 x_6 x_5 x_9 + x_4 x_6 x_5 x_7 x_9 x_1$

HYANG-SOOK LEE

 $+2x_5x_4x_6x_8x_7x_2+4x_6x_5x_4x_9x_8x_3+x_7x_9x_8x_1x_3x_4+2x_8x_7x_9x_2x_1x_5\\+4x_9x_8x_7x_3x_2x_6$

- $\bar{e}_4 = x_1 x_3 x_2 x_4 x_7 x_9 + 4 x_2 x_1 x_3 x_5 x_8 x_7 + 2 x_3 x_2 x_1 x_6 x_9 x_8 + x_4 x_6 x_5 x_7 x_1 x_3$ $+ 4 x_5 x_4 x_6 x_8 x_2 x_1 + 2 x_6 x_5 x_4 x_9 x_3 x_2 + x_7 x_9 x_8 x_1 x_4 x_6 + 4 x_8 x_7 x_9 x_2 x_5 x_4$ $+ 2 x_9 x_8 x_7 x_3 x_6 x_5$
- $\bar{e}_5 = x_1 x_3 x_2 x_4 x_6 x_9 + 2 x_2 x_1 x_3 x_5 x_4 x_7 + 4 x_3 x_2 x_1 x_6 x_5 x_8 + x_4 x_6 x_5 x_7 x_9 x_3$ $+ 2 x_5 x_4 x_6 x_8 x_7 x_1 + 4 x_6 x_5 x_4 x_9 x_8 x_2 + x_7 x_9 x_8 x_1 x_3 x_6 + 2 x_8 x_7 x_9 x_2 x_1 x_4$ $+ 4 x_9 x_8 x_7 x_3 x_2 x_5$
- $\bar{e}_6 = x_1 x_3 x_2 x_6 x_7 x_9 + 4 x_2 x_1 x_3 x_4 x_8 x_7 + 2 x_3 x_2 x_1 x_5 x_9 x_8 + x_4 x_6 x_5 x_9 x_1 x_3$ $+ 4 x_5 x_4 x_6 x_7 x_2 x_1 + 2 x_6 x_5 x_4 x_8 x_3 x_2 + x_7 x_9 x_8 x_3 x_4 x_6 + 4 x_8 x_7 x_9 x_1 x_5 x_4$ $+ 2 x_9 x_8 x_7 x_2 x_6 x_5$
- $\bar{e}_7 = x_1 x_2 x_4 x_6 x_7 x_9 + x_2 x_3 x_5 x_4 x_8 x_7 + x_3 x_1 x_6 x_5 x_9 x_8 + x_4 x_5 x_7 x_9 x_1 x_3$ $+ x_5 x_6 x_8 x_7 x_2 x_1 + x_6 x_4 x_9 x_8 x_3 x_2 + x_7 x_8 x_1 x_3 x_4 x_6 + x_8 x_9 x_2 x_1 x_5 x_4$ $+ x_9 x_7 x_3 x_2 x_6 x_5$
- $\bar{e}_8 = x_1 x_2 x_4 x_5 x_7 x_9 + x_2 x_3 x_5 x_6 x_8 x_7 + x_3 x_1 x_6 x_4 x_9 x_8 + x_4 x_5 x_7 x_8 x_1 x_3$ $+ x_5 x_6 x_8 x_9 x_2 x_1 + x_6 x_4 x_9 x_7 x_3 x_2 + x_7 x_8 x_1 x_2 x_4 x_6 + x_8 x_9 x_2 x_3 x_5 x_4$ $+ x_9 x_7 x_3 x_1 x_6 x_5$
- $\bar{e}_9 = x_1 x_2 x_3 x_7 x_8 x_9 + x_4 x_5 x_6 x_1 x_2 x_3 + x_7 x_8 x_9 x_4 x_5 x_6$
- $\bar{e}_{10} = x_1 x_2 x_5 x_6 x_7 x_9 + x_2 x_3 x_6 x_4 x_8 x_7 + x_3 x_1 x_4 x_5 x_9 x_8$
- $\bar{e}_{11} = x_1 x_2 x_4 x_8 x_6 x_9 + x_2 x_3 x_5 x_9 x_4 x_7 + x_3 x_1 x_6 x_7 x_5 x_8$
- $\bar{e}_{12} = x_1 x_3 x_4 x_6 x_7 x_9 + x_2 x_1 x_5 x_4 x_8 x_7 + x_3 x_2 x_6 x_5 x_9 x_8$

Next we compute cup products of the generators of $H^*(BG_i, \mathbb{Z}/7)$ in dimension 3. Table 1 and Table 2 show the cup products in dimension 6. Each a_j and \bar{a}_j (j = 1, ..., 12) is the generator of $H^3(BG_i, \mathbb{Z}/7)$. These cup product structures give the main clue for proving the Proposition 2.1.

With this information, we prove the following proposition.

PROPOSITION 2.1. $H^*(BP, \mathbb{Z}/7)^{H_1}$ and $H^*(BP, \mathbb{Z}/7)^{H_2}$ are not isomorphic as graded algebras over $\mathbb{Z}/7$.

PROOF. Suppose φ_* : $H^*(BP, \mathbb{Z}/7)^{H_1} \longrightarrow H^*(BP, \mathbb{Z}/7)^{H_2}$ is an isomorphism as graded algebras over $\mathbb{Z}/7$. We consider the following diagram.

where f_u and g_u are cup product maps and the rows are exact.

CLASSIFYING SPACES

	a_1	a_2	<i>a</i> ₃	a_4	a_5	a_6	<i>a</i> ₇	a_8	<i>a</i> 9	a_{10}	a_{11}	a_{12}
a_1	0	0	0	0	e_1	e_2	<i>e</i> ₃	e_4	e_5	e_6	0	0
a_2	0	0	0	0	0	0	<i>e</i> ₃	6 <i>e</i> ₄	6 <i>e</i> 5	e_6	e_7	e_8
a_3	0	0	0	0	6 <i>e</i> ₁	6 <i>e</i> ₂	<i>e</i> ₃	0	0	e_6	6 <i>e</i> ₇	6 <i>e</i> ₈
a_4	0	0	0	0	6 <i>e</i> ₁	6 <i>e</i> ₂	0	e_4	e_5	0	e_7	e_8
a_5	6 <i>e</i> ₁	0	e_1	e_1	0	α_1	0	0	0	0	0	0
a_6	6 <i>e</i> ₂	0	e_2	e_2	$6\alpha_1$	0	0	0	0	0	0	0
a_7	6 <i>e</i> ₃	6 <i>e</i> ₃	6 <i>e</i> ₃	0	0	0	0	0	0	α_2	0	0
a_8	6 <i>e</i> ₄	e_4	0	6 <i>e</i> ₄	0	0	0	0	α_3	0	0	0
<i>a</i> 9	6 <i>e</i> 5	e_5	0	6e5	0	0	0	$6\alpha_3$	0	0	0	0
a_{10}	6 <i>e</i> ₆	6 <i>e</i> ₆	6 <i>e</i> ₆	0	0	0	$6\alpha_2$	0	0	0	0	0
<i>a</i> ₁₁	0	6 <i>e</i> ₇	<i>e</i> ₇	6 <i>e</i> ₇	0	0	0	0	0	0	0	α_4
<i>a</i> ₁₂	0	6 <i>e</i> 8	e_8	6 <i>e</i> ₈	0	0	0	0	0	0	$6\alpha_4$	0

 ${}^{*}\alpha_{1} = 3e_{9} + 3e_{10} + 3e_{11}, \, \alpha_{2} = 3e_{9} + 4e_{10} + 3e_{12}, \, \alpha_{3} = 4e_{9} + 3e_{11} + 3e_{12},$

$$\alpha_4 = 3e_{10} + 4e_{11} + 3e_{12}$$

TABLE 1: Cup products in $H^6(BP, \mathbb{Z}/7)^{H_1}$

	\bar{a}_1	\bar{a}_2	\bar{a}_3	\bar{a}_4	\bar{a}_5	\bar{a}_6	\bar{a}_7	\bar{a}_8	\bar{a}_9	\bar{a}_{10}	\bar{a}_{11}	\bar{a}_{12}
\bar{a}_1	0	0	0	0	\bar{e}_1	\bar{e}_2	\bar{e}_3	\bar{e}_4	\bar{e}_5	\bar{e}_6	0	0
\bar{a}_2	0	0	0	0	0	0	$4\bar{e}_3$	$5\bar{e}_4$	$5\bar{e}_5$	$4\bar{e}_6$	\bar{e}_7	\bar{e}_8
\bar{a}_3	0	0	0	0	$5\bar{e}_1$	$5\bar{e}_2$	\bar{e}_3	0	0	\bar{e}_6	6ē7	6ē ₈
\bar{a}_4	0	0	0	0	$3\bar{e}_1$	$3\bar{e}_2$	0	\bar{e}_4	\bar{e}_5	0	\bar{e}_7	\bar{e}_8
\bar{a}_5	$6\bar{e}_1$	0	$2\bar{e}_1$	$4\bar{e}_1$	0	β_1	$4\bar{e}_4$	\bar{e}_7	6ē ₆	$3\bar{e}_8$	$5\bar{e}_3$	$5\bar{e}_5$
\bar{a}_6	$6\bar{e}_2$	0	$2\bar{e}_2$	$4\bar{e}_2$	$6\beta_1$	0	3ē ₇	6ē3	\bar{e}_8	$4\bar{e}_5$	$5\bar{e}_4$	$5\bar{e}_6$
\bar{a}_7	6ē3	$3\bar{e}_3$	6ē3	0	$3\bar{e}_4$	$4\bar{e}_7$	0	$5\bar{e}_8$	$2\bar{e}_2$	β_2	$3\bar{e}_5$	$3\bar{e}_1$
\bar{a}_8	6ē4	$2\bar{e}_4$	0	$6\bar{e}_4$	6ē7	\bar{e}_3	$2\bar{e}_8$	0	β_3	$5\bar{e}_1$	6ē ₆	$6\bar{e}_2$
\bar{a}_9	6ē5	$2\bar{e}_5$	0	$6\bar{e}_5$	\bar{e}_6	6ē ₈	$5\bar{e}_2$	$6\beta_3$	0	$2\bar{e}_7$	$6\bar{e}_1$	6ē3
\bar{a}_{10}	6ē ₆	$3\bar{e}_6$	6ē ₆	0	$4\bar{e}_8$	$3\bar{e}_5$	$6\beta_2$	$2\bar{e}_1$	$5\bar{e}_7$	0	$3\bar{e}_2$	$3\bar{e}_4$
\bar{a}_{11}	0	6ē ₇	\bar{e}_7	6ē7	$2\bar{e}_3$	$2\bar{e}_4$	$4\bar{e}_5$	\bar{e}_6	\bar{e}_1	$4\bar{e}_2$	0	β_4
\bar{a}_{12}	0 *@	6ē ₈	\bar{e}_8	6ē ₈	$2\bar{e}_5$	$2\bar{e}_6$	$4\bar{e}_1$	\bar{e}_2	\bar{e}_3	$4\bar{e}_4$	$6\beta_4$	0

 ${}^{*}\beta_{1} = 3\bar{e}_{9} + 6\bar{e}_{10} + 5\bar{e}_{11}, \ \beta_{2} = 6\bar{e}_{9} + \bar{e}_{10} + 3\bar{e}_{12}, \ \beta_{3} = 2\bar{e}_{9} + 5\bar{e}_{11} + 3\bar{e}_{12},$ $\beta_{4} = 3\bar{e}_{10} + 4\bar{e}_{11} + 3\bar{e}_{12}$

TABLE 2: Cup products in $H^6(BP, \mathbb{Z}/7)^{H_2}$

Therefore the diagram commutes, *i.e.* $\varphi_6 \circ f_u = g_u \circ (\varphi_3 \otimes \varphi_3)$. This implies $\varphi_6(a_i a_j) = \varphi_3(a_i)\varphi_3(a_j)$, that is, its algebraic structure is preserved under the map φ_* . Then Ker $f_u \cong$ Ker g_u . We consider Ker $f_u = \{\sum n_{ij}a_i \otimes a_j \mid f_u(\sum n_{ij}a_i \otimes a_j) = \sum n_{ij}a_ia_j = 0\}$. We briefly explain how to compute a basis \bar{X} for Ker f_u . By inspection of Table 1, if the cup product is zero, then it is obvious. Otherwise, we consider the elements whose image is a scalar multiple of e_i , $i = 1, \ldots, 9$. For example, in case of $e_1, f_u(n_1a_1 \otimes a_5 + n_2a_3 \otimes a_5 + n_3a_4 \otimes a_5) = n_1e_1 + 6n_2e_1 + 6n_3e_1 = (n_1 + 6n_2 + 6n_3)e_1$. To find basis elements in Ker f_u , we set $(n_1 + 6n_2 + 6n_3)e_1 = 0$. Then $(n_1, n_2, n_3) = (1, 1, 0)$ or (1, 0, 1) over Z/7. Therefore we

can let $a_1 \otimes a_5 + a_3 \otimes a_5$ and $a_1 \otimes a_5 + a_4 \otimes a_6$ belong to \bar{X} . Proceeding in a similar manner we determine the following basis.

 $\bar{X} = \{a_1 \otimes a_1, a_2 \otimes a_2, a_3 \otimes a_3, a_4 \otimes a_4, a_5 \otimes a_5, a_6 \otimes a_6, a_7 \otimes a_7, a_8 \otimes a_8, a_9 \otimes a_9, a_{10} \otimes a_{10}, a_{11} \otimes a_{11}, a_{12} \otimes a_{12}, a_1 \otimes a_2, a_1 \otimes a_3, a_1 \otimes a_4, a_1 \otimes a_{11}, a_1 \otimes a_{12}, a_2 \otimes a_3, a_2 \otimes a_4, a_2 \otimes a_5, a_2 \otimes a_6, a_3 \otimes a_4, a_3 \otimes a_8, a_3 \otimes a_9, a_4 \otimes a_7, a_4 \otimes a_{10}, a_5 \otimes a_7, a_5 \otimes a_8, a_5 \otimes a_9, a_5 \otimes a_{10}, a_5 \otimes a_{11}, a_5 \otimes a_{12}, a_6 \otimes a_7, a_6 \otimes a_8, a_6 \otimes a_9, a_6 \otimes a_{10}, a_6 \otimes a_{11}, a_6 \otimes a_{12}, a_7 \otimes a_8, a_7 \otimes a_9, a_7 \otimes a_{11}, a_7 \otimes a_{12}, a_8 \otimes a_{10}, a_8 \otimes a_{11}, a_8 \otimes a_{12}, a_9 \otimes a_{10}, a_9 \otimes a_{11}, a_9 \otimes a_{12}, a_{10} \otimes a_{11}, a_{10} \otimes a_{12}, a_1 \otimes a_5 + a_3 \otimes a_6, a_1 \otimes a_6 + a_4 \otimes a_6, a_1 \otimes a_7 + 6(a_3 \otimes a_7), a_2 \otimes a_7 + 6(a_3 \otimes a_7), a_1 \otimes a_3 + 6(a_4 \otimes a_8), a_2 \otimes a_8 + a_4 \otimes a_8, a_1 \otimes a_9 + 6(a_4 \otimes a_9), a_2 \otimes a_9 + a_4 \otimes a_9, a_1 \otimes a_{11}, a_2 \otimes a_{12} + 6(a_4 \otimes a_{12}), a_3 \otimes a_{12} + a_4 \otimes a_{12} \}.$

Here $|\bar{X}| = 66$. Thus the dimension of Ker f_u is 66.

Next we consider Ker $g_u = \{\sum n_{ij}\bar{a}_i \otimes \bar{a}_j \mid g_u(\sum n_{ij}\bar{a}_i \otimes \bar{a}_j) = \sum n_{ij}\bar{a}_i\bar{a}_j = 0\}$. We use the same method as \bar{X} to compute a basis \bar{Y} for Ker g_u . Thus by inspection of Table 2, \bar{Y} consists of the following elements.

 $\bar{Y} = \{\bar{a}_1 \otimes \bar{a}_1, \bar{a}_2 \otimes \bar{a}_2, \bar{a}_3 \otimes \bar{a}_3, \bar{a}_4 \otimes \bar{a}_4, \bar{a}_5 \otimes \bar{a}_5, \bar{a}_6 \otimes \bar{a}_6, \bar{a}_7 \otimes \bar{a}_7, \bar{a}_8 \otimes \bar{a}_8, \bar{a}_9 \otimes \bar{a}$ $\bar{a}_9, \bar{a}_{10} \otimes \bar{a}_{10}, \bar{a}_{11} \otimes \bar{a}_{11}, \bar{a}_{12} \otimes \bar{a}_{12}, \bar{a}_1 \otimes \bar{a}_2, \bar{a}_1 \otimes \bar{a}_3, \bar{a}_1 \otimes \bar{a}_4, \bar{a}_1 \otimes \bar{a}_{11}, \bar{a}_1 \otimes \bar{a}_{12}, \bar{a}_1 \otimes \bar{a}_{12}, \bar{a}_{11} \otimes \bar{a}_{12}, \bar{a}_{12} \otimes \bar{a}$ $\bar{a}_{12}, \bar{a}_2 \otimes \bar{a}_3, \bar{a}_2 \otimes \bar{a}_4, \bar{a}_2 \otimes \bar{a}_5, \bar{a}_2 \otimes \bar{a}_6, \bar{a}_3 \otimes \bar{a}_4, \bar{a}_3 \otimes \bar{a}_8, \bar{a}_3 \otimes \bar{a}_9, \bar{a}_4 \otimes \bar{a}_7, \bar{a}_4 \otimes \bar{a}_7, \bar{a}_4 \otimes \bar{a}_7, \bar{a}_8 \otimes \bar{a}_8, \bar{a}_8 \otimes \bar{a}_8 \otimes \bar{a}_8, \bar{a}_8 \otimes \bar{a}_8, \bar{a}_8 \otimes \bar{a}_8 \otimes \bar{a}_8, \bar{a}_8 \otimes \bar{a}_8, \bar{a}_8 \otimes \bar{a}_8, \bar{a}_8 \otimes \bar{a}_8 \otimes \bar{a}_8, \bar{a}_8 \otimes \bar{a}_8 \otimes \bar{a}_8, \bar{a}_8 \otimes \bar{a}_8$ $\bar{a}_{10}, \bar{a}_1 \otimes \bar{a}_5 + \bar{a}_9 \otimes \bar{a}_{11}, \bar{a}_3 \otimes \bar{a}_5 + 5(\bar{a}_9 \otimes \bar{a}_{11}), \bar{a}_4 \otimes \bar{a}_5 + 3(\bar{a}_9 \otimes \bar{a}_{11}), \bar{a}_7 \otimes \bar{a}_{10}$ $\bar{a}_{12} + 3(\bar{a}_9 \otimes \bar{a}_{11}), \bar{a}_8 \otimes \bar{a}_{10} + 5(\bar{a}_9 \otimes \bar{a}_{11}), \bar{a}_1 \otimes \bar{a}_6 + 2(\bar{a}_{10} \otimes \bar{a}_{11}), \bar{a}_3 \otimes \bar{a}_6 + 2(\bar{a}_{10} \otimes \bar{a}_{11}), \bar{a}_6 \otimes \bar{a}_{11}), \bar{a}_6 \otimes \bar{a}_{11} + 2(\bar{a}_{10} \otimes \bar{a}_{11}), \bar{a}_6 \otimes \bar$ $3(\bar{a}_{10} \otimes \bar{a}_{11}), \bar{a}_4 \otimes \bar{a}_6 + 6(\bar{a}_{10} \otimes \bar{a}_{11}), \bar{a}_7 \otimes \bar{a}_9 + 4(\bar{a}_{10} \otimes \bar{a}_{11}), \bar{a}_8 \otimes \bar{a}_{12} + 5(\bar{a}_{10} \otimes \bar{a}_{11}), \bar{a$ $(\bar{a}_{11}), \bar{a}_1 \otimes \bar{a}_7 + \bar{a}_9 \otimes \bar{a}_{12}, \bar{a}_2 \otimes \bar{a}_7 + 4(\bar{a}_9 \otimes \bar{a}_{12}), \bar{a}_3 \otimes \bar{a}_7 + \bar{a}_9 \otimes \bar{a}_{12}, \bar{a}_5 \otimes \bar{a}_{12}$ $\bar{a}_{11} + 5(\bar{a}_9 \otimes \bar{a}_{12}), \bar{a}_6 \otimes \bar{a}_8 + 6(\bar{a}_9 \otimes \bar{a}_{12}), \bar{a}_1 \otimes \bar{a}_8 + 2(\bar{a}_{10} \otimes \bar{a}_{12}), \bar{a}_2 \otimes \bar{a}_8 + 6(\bar{a}_9 \otimes \bar{a}_{12}), \bar{a}_1 \otimes \bar{a}_1 \otimes \bar{a}_2 \otimes \bar{a}_1 \otimes \bar{a}_2 \otimes \bar{a}_2 \otimes \bar{a}_1 \otimes \bar{a}_2 \otimes \bar{a}_2 \otimes \bar{a}_2 \otimes \bar{a}_1 \otimes \bar{a}_2 \otimes \bar{$ $3(\bar{a}_{10} \otimes \bar{a}_{12}), \bar{a}_4 \otimes \bar{a}_8 + 2(\bar{a}_{10} \otimes \bar{a}_{12}), \bar{a}_5 \otimes \bar{a}_7 + \bar{a}_{10} \otimes \bar{a}_{12}, \bar{a}_6 \otimes \bar{a}_{11} + 3(\bar{a}_{10} \otimes \bar{a}_{12}), \bar{a}_6 \otimes \bar{a}_{12} + 3(\bar{a}_{10} \otimes \bar{a}_{12}), \bar{a}_6 \otimes \bar{a}_{12} + 3(\bar{a}_{10} \otimes \bar{a}_{12}), \bar{a}_6 \otimes \bar{a}_{11} + 3(\bar{a}_{10} \otimes \bar{a}_{12}), \bar{a}_6 \otimes \bar{a}_{12} + 3(\bar{a}_{10} \otimes \bar{a}_{12}), \bar{a}_6$ \bar{a}_{12}), $\bar{a}_1 \otimes \bar{a}_9 + 2(\bar{a}_7 \otimes \bar{a}_{11})$, $\bar{a}_2 \otimes \bar{a}_9 + 3(\bar{a}_7 \otimes \bar{a}_{11})$, $\bar{a}_4 \otimes \bar{a}_9 + 2(\bar{a}_7 \otimes \bar{a}_{11})$, $\bar{a}_5 \otimes \bar{a}_{12}$ $\bar{a}_{12} + 3(\bar{a}_7 \otimes \bar{a}_{11}), \bar{a}_6 \otimes \bar{a}_{10} + \bar{a}_7 \otimes \bar{a}_{11}, \bar{a}_1 \otimes \bar{a}_{10} + \bar{a}_8 \otimes \bar{a}_{11}, \bar{a}_2 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a}_{11}), \bar{a}_2 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a}_{11}), \bar{a}_1 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a}_{11}), \bar{a}_2 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a}_{11}), \bar{a}_2 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a}_{11}), \bar{a}_2 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a}_{11}), \bar{a}_1 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a}_{10}), \bar{a}_1 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a}_{10}), \bar{a}_2 \otimes \bar{a}_{10} + 4(\bar{a}_8 \otimes \bar{a$ \bar{a}_{11}), $\bar{a}_3 \otimes \bar{a}_{10} + \bar{a}_8 \otimes \bar{a}_{11}$, $\bar{a}_5 \otimes \bar{a}_9 + 6(\bar{a}_8 \otimes \bar{a}_{11})$, $\bar{a}_6 \otimes \bar{a}_{12} + 5(\bar{a}_8 \otimes \bar{a}_{11})$, $\bar{a}_2 \otimes \bar{a}_{11}$ $\bar{a}_{11} + 3(\bar{a}_9 \otimes \bar{a}_{10}), \bar{a}_3 \otimes \bar{a}_{11} + 4(\bar{a}_9 \otimes \bar{a}_{10}), \bar{a}_4 \otimes \bar{a}_{11} + 3(\bar{a}_9 \otimes \bar{a}_{10}), \bar{a}_5 \otimes \bar{a}_8 + 3(\bar{a}_9 \otimes \bar{a}_{10}), \bar{a}_5 \otimes \bar{a}_{10} + 3(\bar{a}_9 \otimes \bar{a}_{10}), \bar{a}_6 \otimes \bar{a}_{10} + 3(\bar{a}_9 \otimes \bar{a}_{10}), \bar{a}_6$ $3(\bar{a}_9 \otimes \bar{a}_{10}), \bar{a}_6 \otimes \bar{a}_7 + 2(\bar{a}_9 \otimes \bar{a}_{10}), \bar{a}_2 \otimes \bar{a}_{12} + 4(\bar{a}_7 \otimes \bar{a}_8), \bar{a}_3 \otimes \bar{a}_{12} + 3(\bar{a}_7 \otimes \bar{a}_{10}), \bar{a}_1 \otimes \bar{a}_{12} + 3(\bar{a}_7 \otimes \bar{a}_{12}), \bar{a}_2 \otimes \bar{a}_{12} + 4(\bar{a}_7 \otimes \bar{a}_8), \bar{a}_3 \otimes \bar{a}_{12} + 3(\bar{a}_7 \otimes \bar{a}_{12}), \bar{a}_1 \otimes \bar{a}_{12} \otimes \bar{a}_{12} + 3(\bar{a}_7 \otimes \bar{a}_{12}), \bar{a}_2 \otimes \bar{a}_{12} + 4(\bar{a}_7 \otimes \bar{a}_8), \bar{a}_3 \otimes \bar{a}_{12} + 3(\bar{a}_7 \otimes \bar{a}_{12}), \bar{a}_2 \otimes \bar{a}_{12} + 4(\bar{a}_7 \otimes \bar{a}_8), \bar{a}_3 \otimes \bar{a}_{12} + 3(\bar{a}_7 \otimes \bar{a}_{12}), \bar{a}_2 \otimes \bar{a}_{12} + 3(\bar{a}_7 \otimes \bar{a}_{12}),$ \bar{a}_8), $\bar{a}_4 \otimes \bar{a}_{12} + 4(\bar{a}_7 \otimes \bar{a}_8)$, $\bar{a}_5 \otimes \bar{a}_{10} + 5(\bar{a}_7 \otimes \bar{a}_8)$, $\bar{a}_6 \otimes \bar{a}_9 + 4(\bar{a}_7 \otimes \bar{a}_8)$, $5(\bar{a}_5 \otimes \bar{a}_{10} + 5(\bar{a}_7 \otimes \bar{a}_8))$, $5(\bar{a}_5 \otimes \bar{a}_{10} + 5(\bar{a}_7 \otimes \bar{a}_{10} + 5(\bar{a}_1 \otimes \bar{a}_{10}$ $[\bar{a}_6) + (\bar{a}_7 \otimes \bar{a}_{10}) + 6(\bar{a}_{11} \otimes \bar{a}_{12}), 4(\bar{a}_5 \otimes \bar{a}_6) + (\bar{a}_8 \otimes \bar{a}_9) + 6(\bar{a}_{11} \otimes \bar{a}_{12})\}.$

Here $|\bar{Y}| = 68$. Thus the dimension of Ker g_u is 68.

Since Ker f_u and Ker g_u have different dimensions, Ker f_u is not isomorphic to Ker g_u . Thus our assumption leads to a contradiction. Therefore $\varphi_6(a_i a_j) \neq \varphi_3(a_i)\varphi_3(a_j)$. This means the algebraic structure is not preserved under the map φ_* . This completes the proof.

ACKNOWLEDGMENTS. This paper is based on part of my thesis written under the supervision of Professor Stewart Priddy at Northwestern University. I am pleased to acknowledge my sincere thanks to him for his advice, encouragement and help.

CLASSIFYING SPACES

REFERENCES

- 1. L. Evens, The Cohomology of Groups, Oxford Science Publications, 1991.
- H. W. Henn, J. Lannes and L. Schwartz, Analytic functors unstable algebras and cohomology of classifying spaces, Contemporary Math. 96, Amer. Math. Soc. (1989), 197–220.
- 3. P. Landrock, *Finite Group Algebra and Their Modules*, London Math. Soc. Lecture Note Series, Cambridge Univ. Press, Cambridge, 1983.
- 4. J. Martino and S. Priddy, A classification of the stable type of BG, Bull. Amer. Math. Soc. (1) 27(1992), 165–170.
- 5. _____, The complete stable splitting of the classifying space of a finite group, Topology 31(1992), 143–156.
- 6. G. Nishida, *Stable homotopy type of classifying spaces of finite groups*, Algebraic and Topological Theories (1985), 391–404.
- S. Priddy, *Recent progress in stable splittings*, Homotopy Theory, Proc. of Durham Symposium 1985, London Math. Soc. Lecture Note Series 117(1987), 149–174.
- 8. J. P. Serre, Linear Representations of Finite Groups, Springer Verlag, New York, 1977.
- 9. N. Steenrod and D. B. A. Epstein, *Cohomology Operations*, Ann. Math. Studies 50, Princeton Univ. Press, Princeton, 1962.
- R. Switzer, Algebraic Topology—Homotopy and Homology, Springer Verlag, Berlin, Heidelberg, New York, 1975.

Department of Mathematics Ewha Women's University Seoul, 120 - 750 Korea e-mail: hsl@mm.ewha.ac.kr