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Introduction. Let X be a compact metric space with metric d. A complex-
valued function / on X is said to satisfy a Lipschitz condition if, for all points 
x and y of X, there exists a constant K such that 

|/(x) -f(y)\ £Kd(x,y). 

The smallest constant for which the above inequality holds is called the 
Lipschitz constant fo r / and is denoted by ||/||<z, that is, 

x,y£X\ 

d(x,y) 
The space of Lipschitz functions, denoted by Lip(X, d) as in (7), consists of 
all functions/ for which ||/||d is finite. I t is clear that Lip(X, d) is a vector 
space over the complex numbers C and we make it a Banach space by defining 

Il/H = maxfll/IL, H/IU), 
where 

I l/l I co = SUp^x | / (x) | . 

In §1, we show that if X is connected, then the isometries of Lip(X, d) are 
precisely those induced by the isometries of the metric space X. In §2, we 
prove that if X is the ^-dimensional cube in Rn and d is the metric given by 
the Zi-norm of Rn, then Lip(X, d) is a conjugate space, that is, it is isometrically 
isomorphic to the conjugate space of another Banach space. Here the method 
of proof is a close imitation of one used by de Leeuw in (4). 

The results of §2 and the Kreîn-Milman theorem suggest that when X is 
the ^-dimensional cube, the unit ball of Lip(X, d) has quite a few extreme 
points. In §3, we explicitly determine these extreme points when X is the unit 
interval on the real line and prove that the unit ball of Lip[0, 1] is the closed 
convex hull of these extreme points in the norm topology. 

1. Linear isometries. By a linear isometry of Lip(X, d) we mean, of 
course, a norm-preserving linear transformation of Lip(X, d) onto itself. It is 
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L1PSCHITZ FUNCTIONS 1151 

necessary to give some definitions and establish several lemmas before we 
can state and prove the main result of this section. 

Let W be the complement of the diagonal in the Cartesian product space 
XXX. Let Y = X U (3W, where fiW is the Stone-Cech compactification 
(1, p. 276) of W. Then F is a compact Hausdorff space. 

If C(Y) denotes the space of continuous functions on F, define/ on C(Y) 
as follows: 

/(*) =f(x), xG X, 

where 

is defined on W and fif* is its norm-preserving extension to (3W. 

LEMMA 1.1. The map f—*f establishes a linear and norm-preserving corres­
pondence between Lip(X, d) and the closed subspace S of C(Y), 

5 = {/: /€ Up(X,d)}. 

Proof. This follows from the definition of the function / . 

LEMMA 1.2. If Lip*(X, d) denotes the conjugate space of Lip(X, d), then all 
the extreme points of the unit ball of Lip*(X, d) are contained in 

{eidLx: x G X) \J {e^Lw: w G 0W}, 

where Lx, Lw are 'point evaluations' at x, w respectively, and 6, r\ range over 
[0, 2T). Moreover, every eieLx is an extreme point of the unit ball of Lip*(X", d). 

Proof. It is well known (see, e.g., 1, p. 441) that every extreme point L of 
the unit ball of 5* is of the form 

LCD = e«J(y), 

where a G [0, 2T) and y G F. From the definition of / it follows that each 
extreme point of the unit ball of Lip*(X, d) is of the form described in the 
statement of the lemma. 

The proof that every eieLx (or every Lx equivalently) is an extreme point 
will be based on the following fact which is a special case of a somewhat more 
general result proved by de Leeuw (4): Let X be any compact Hausdorff 
space and let B be a closed subspace of C(X) and let x G X. If there exists 
an / e B such that f(x) = ll/IL and \f(y)\ ^ \\f\\œ, y G X, y ^ x, with 
equality holding only for those y G X for which 

g (y) = g(x) 
or 

giy) = -g(x) 
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1152 ASHOKE K. ROY 

for all g G B, then the linear functional Lx(h) = h(x), h £ B, is an extreme 
point of the unit ball of B*. 

To use the above result, let x0 be a point in our compact metric space X 
and define f(x) = d(x, x0). T h e n / Ç C(X), thus it attains its maximum at a 
point x, 

| l / l loo = ^ f e * o ) . 

Let 
g(x) = 2 + d(x, XQ) — d{x, x0). 

Then it is clear that g 6 Lip(X, d), g(x) ^ 2 for all # € X and that ||g||d = 1. 
The function g G 5 fulfills the conditions of de Leeuw's theorem and this 
proves our lemma. 

LEMMA 1.3. Assume that in addition to being compact, X is connected with 
diameter at most 1. Let Bi, . . . , Bn be open, pairwise disjoint, and proper 
subsets of X, Define the functions 

6i(x) = d(x, X ~ B^, i = 1, . . . , n. 

Suppose that 
(i) A* 6 C, \\i\ = 1 and |1 + X*| S 1, 

(ii) m i n w d C B f , B f) ^ 2 sup* HôiH». 
Then 1 + 221=A*^ ^ an extreme point of U, where U is the unit ball of 
LiptX\d) . 

Proof. I t is quite easy to check that 

(gMiJW - ( t x ^ j Cv) g d(x,y) 

for all x, y £ X. This means that ||1 + ]CM*||<z ^ 1. I t is also clear from the 
assumptions made in the lemma that 111 + £ X ^ l ^ ^ 1. Hence, 1 +^t\iôi G U, 
where £/ is the unit ball of Lip(X, d). 

Let 

l + E x,«, = k + *A, 
where g, h £ U. Ii x £ UiBt, we must have 

i = k W + èA(x), 

which implies that g(x) = h(x) = 1. Ii x £ Bk, choose j Ç I ^ ^ such that 

8k(x) = d(x, y). 

Now we maintain that y G Ul=i •#* for otherwise if y G 2^ for some j , then 

d(B*,B,) £d(*>30 ^ INL 
which contradicts hypothesis (ii) of the lemma. This yields 

hg(y) + hHy) = 1 
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and therefore g(y) = h(y) = 1. Now, 

\g(x) - 1| = \g(x) - g(y)\ è d(x,y) = |(AA)(x)| = | ( £ À^) (x ) | 

and similarly 

\h(x) - 1| ^ | ( £ \ ^ ) ( x ) | . 

From 

i(g(«) - i) + *(*(*) - i) = Œ x^)(*) 
we get 

g(x) - 1 = h(x) - 1 = ( I M J W 
and therefore 

g(x) = &(x). 

Since we have proved that g(x) = A(x) for all x G X, we can conclude 
that 1 + £ \i<$i is an extreme point of U. 

We assume from now on that X is connected. 

LEMMA 1.4. If f G U andf is not a constant, then there exists a g £ E such that 
I \eief + g| I > 1/°^ att 6 ë [0, 27r), ze/fore £ denotes the set of extreme points of U. 

Proof. Let Ci, . . . , c3i be distinct points oif(X) (these exist because/ is not 
identically equal to a constant a n d / ( X ) is connected). Then 

f-^ct), i= 1, . . . , 3 1 , 

are disjoint closed, hence compact, subsets of X. Let 

min^jdif-^c^j-^cj)) = 8e > 0. 

/_ 1(ci) is a non-empty, closed, and proper subset of X. From the connectedness 
of X, there exist Xi G/ - 1 ( c i ) and 3>i G B(xi) such thatjf(xi) ^f(yi)9 where 
J5(xi) is the open ball of radius e with Xi as centre. Choosing (x2, 3̂ 2), . . . , 
(#31, y si) in a similar manner we get 31 non-zero complex numbers 

(f(xk), f(yk))f k = 1, . . . , 3 1 . 

Divide C ~ {0} into six equal wedges. One of these wedges (call it P) contains 
at least six of these complex numbers, say 

(f(*0,/(?<)), * = i , . . . , 6 . 
Let zt G {xit ji} and let 

Bzi = {y G X: d(y} zt) < d(xi9yt)}, i = 1, . . . , 6. 

I t is easy to check that d(zu Zj) ^ 6e (i ^j), from which it follows that 
d(Bzi, Bzj) ^ 4e. If, as before, Ôzi(x) = d(x, X ~ Bzi), then 2e ^ ||ô„|U. We 
then have that 

i n f w d ( 5 2 . , £ 2 i ) ^ 2sup<||ô„||cof 
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1154 ASHOKE K. ROY 

showing that condition (ii) of Lemma 1.3 is satisfied. Note that 

bzi(zt) = d{xuyi) 

and bzi{zi) = 0, where zt = [xu Ji] ~ {**}. Let 

X2* = X2/C-1 = e x p ( i ( l + & ) T T / 3 ) , k = 1, 2, 3 . 

Then |X*| = 1 and |1 + X€| S 1, where i = 1, . . . , 6. Let 

g(x) = 1 + ^ Ç X2k-Au_l + X2A2/J(^). 

By Lemma 1.3, g G JE. Fix 6. Then ( — 1)"X„ G eieP for exactly one 

* G { i , 2 , . . . , 6} . 
Now, 

(ei9f+g)(x,)- (eief+g)(yv) 
d(xV} yv) 

eief(xv) -f(y„) (-iy\v
d^x^y^ 

d(xp,yv)
 v d{xv, yv) 

> 1. 

This means that \\eief + g\\ > 1 for all S G [0, 2TT). 

LEMMA 1.5. If T is a linear isometry of Lip(X, d), then T(l) is the constant 
function eido, 60 G [0, 2T). 

Proof. Since the constant function 1 G E and a linear isometry carries 
extreme points onto themselves, we get that 7X1) G E. 

Let 7X1) = / and suppose t h a t / is not identically equal to a constant. By 
Lemma 1.4, there exists a g G E such that 

for all 6 G [0, 2ir). Since T~lg G E, it is quite easy to see that there exists a 
0i G [0, 2TT) such that 

\\T~lg + eiei\\ S 1. 
We then have that 

\\T{T-lg + e»)\\ = | | g + e " / | | > 1 
for all 0, but 

l | r ( r - 1 g + e«.) | | = | | r - ' g + e'»i|| ^ 1, 

which is a contradiction. 

LEMMA 1.6. T preserves lsupnorms\ that is, | |7y||œ = \\f\\œfor all 

feup(x,d), 
T as in Lemma 1.5. 

Proof. Let T* be the adjoint of T. T* is also a linear isometry and it carries 
the extreme points of the unit ball of Lip*(X, d) onto themselves. We claim 
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that T*LX = eir]Lx> for some rj £ [0, 2ir) and some xr Ç X. If this were not 
true, then by Lemma 1.2, T*LX — eiriLWJ where w 6 /3W. Therefore, 

(T*LX)(1) = (e^Lw)(l) = 0 
or, 

Lx(T(l)) = 0. 

Since T{\) is a non-zero constant function by Lemma 1.5, this yields a con­
tradiction and proves the above claim. 

Consider now an / Ç Lip(X, d). If xQ is a point at which Tf attains its 
maximum modulus, then we may write 

(77)(*o) = ||r/|U«. 
for some 80 Ç [0, 2w). By what was just proved, 

T*LX0 = e ^ 

for some rj £ [0, 2ir) and some X\ 6 X. Hence 

c'y(*i) = lir/iu»., 
showing that ||7y||co = ll/IU- Since T_ 1 is also an isometry, the same inequality 
holds for it, which gives the reverse inequality for T. This proves the lemma. 

We are now in a position to state and prove the main result of this section. 

THEOREM 1.7. Let (X, d) be a compact, connected metric space with diameter 
at most 1. Then 

T: Lip(X,d) ->Lip(X,d) 

is a linear isometry if and only if 

(1) (Tf)(x) = e « / ( r * ) , 

where r: X —» X is an isometry of X onto itself and 6 is a constant in [0, 2w). 

Proof. I t is an easy matter to check that every isometry r of X induces an 
isometry T of Lip(X, d) if T is defined as in (1). I t remains to prove that 
every isometry T of Lip(X, d) is of the above type. Without loss of generality, 
we can assume that T(l) = 1 by Lemma 1.5. By Lemma 1.6, T preserves 
supnorms. Since Lip(X, d) C C(X) is a complex linear algebra (as the product 
of two Lipschitz functions is also a Lipschitz function), we can quote a well-
known result to conclude that T is an algebra automorphism, that is, 

T(fg) = T(f)T(g) 

for a l l / , g G Lip(X, d). The result that we have in mind is stated as follows: 
Let X be a compact Hausdorff space and let A be a complex linear subalgebra 
of C(X). Suppose that T is a one-to-one linear map of A onto A which is 
isometric: 

\\Tf\L = ll/iU-
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1156 ASHOKE K. ROY 

If T( l ) = 1, then T is multiplicative. (For a proof, see 3, p. 144.) 
We have proved that T(fg) = T(f)T(g). Now T is also a bounded operator 

on Lip(X, d) with the norm ||/| |i = \\f\\œ + ||/||d which is in fact a Banach 
algebra norm. Since T is a Banach algebra automorphism, we have, by (6), 
that 

(7J) (x) = / ( rx ) , / G Lip(X,d), x G X, 

where r: X —> X is a homeomorphism such that 

Kid(x, y) S d(rx, ry) S K2d(x, y) 

for all x, y Ç X and for some constants K± and X"2. 
Define, for fixed y, f(x) = d(x, ry). T being an isometry, | |I/ | |d ^ 1. Now 

| ( r / ) (x) - (Tf)(y)\ = \d(rx,ry) - d(ry, ry)\ g d(*f y). 

We have thus proved that 
d(rx, ry) g d(x, y) 

for all x, y £ X. The reverse inequality follows by applying this to T~1 and 
r"1, and we can conclude that d is an isometry of X onto itself. This completes 
the proof of our theorem. 

2. Lipschitz functions as a dual space. Our aim in this section is to 
show that when (X, d) is the w-dimensional cube in Rn and d is the metric 
induced by the /i-norm of Rn, Lip(X, d) is a dual space. The theorem of 
Krein-Milman (1, p. 440) then shows that the unit ball U of Lip(X, d) not 
only has extreme points but sufficiently many to span U in a weak sense. 

For x, y G X with x = (xi, . . . , x„) and y = (yx, . . . , yw), 

d(x,y) =Y, \xt- yt\. 

This ensures that for a Lipschitz function / defined on X, 

\\f\\d= m a x l f Y 

it being well known that the partial derivatives of / exist and are bounded 
measurable functions. Let C1 be the linear space of functions on X with 
continuous first-order partial derivatives normed by 

II/II ^ O ^ 1 - I I toll) 
l^i^n \ \\OXi\\œ/ C1 is a closed (and therefore complete) subspace of Lip(X, d). 

Let 5 be the norm-closure, with the norm on (C1)* induced by C1, of the 
linear span of the point evaluations <j>x of C1, 

Then we have the following theorem. 
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THEOREM 2.1. Lip(X, d) is isometrically isomorphic to 5*. 

Proof. As we remarked in the Introduction, the proof is almost identical 
with that given by de Leeuw in (4) and therefore the details need not be 
repeated here. The only fact that requires a little proof is the following: given 
a Lipschitz function h on X, there is a sequence of functions {hm\ in Cl such that 

\\hm\\ S ||A||, ro = 1 , 2 , . . . , 
and 

limm hm = h 

uniformly on X. We obtain the functions hm by using the Fourier series for 
h. To this end, make the function h periodic in each variable with period 1 
(this clearly will not affect anything). Let am be the rath Cesàro (rectangular) 
sum of the Fourier series for h. Then (see 9, p. 302) 

x) = (Km * h)(x) = I h(t)Km(x - t) dt, 
**x 

where dt is an ^-dimensional Lebesgue measure and Km is Fejer's kernel. 
Recall that Km satisfies 

(i) Km(x) è 0 for all x f l , 
(ii) fxKm(t) dt = 1, 

(iii) Km e C\ 
It follows (again see 9, p. 304) that am—^h uniformly on X. Moreover, am G C1 

for all m and 

k»(*)| ^ f Hx - t)\Km{t) dt ^ ||A|U 

Wm(pc) - <rm(y)\ = I [h(x - t) - h(y - t)]Km(t) dt 

^ ||A||d||^ - y| | 

for all x, y £ X. Therefore, \\am\\ g ||A||. 

3. Extreme points of Lip[0, 1]. We now wish to describe all the extreme 
points of Lip[0, 1], the metric d being the standard Euclidean metric on 
[0, 1]. We have that 

11/11- =11/11». 
As before, U denotes the unit ball of Lip[0, 1] and E the set of extreme points 
of U. The first thing to note is that if / Ç U and \f(x)\ = 1 for all x G [0, 1], 
then f £ E. This is because / is already extreme in C[0, 1]. The following 
theorem completely describes the other members of E. 

THEOREM 3.1. If f is not a constant function and if f is not of modulus one 
everywhere, then a necessary and sufficient condition for f to belong to E is that 
\f'\ = 1 a.e. on [0, 1] ~ Mf, where Mf is the maximum set for / , i.e., 

M,= [xe [0,1]: |/(x)| = ll/IU). 
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Proof. First note that for / to belong to E, it is necessary that | | / | |œ = 1 for 
otherwise, just add and subtract a suitable constant to / to show that it is 
not extreme. 

Let |/' | < 1 on a set .Fof positive measure, F being contained in [0, 1] ^ Mf. 
Since the latter set is open, we may assume that F is contained in some interval 
I. We may also assume that 

(i) F \s compact because Lebesgue measure is regular, 
(ii) ess sup^F \f (x)\ = OL < 1, 

(iii) | /(x)| ^ 1 — e for all x in I and for some e > 0. 
The function 

g(x) = f CF(£)d£, xG [0,1], 
«Jo 

where CF{x) is the characteristic function of F, is a continuous function on 
[0, 1] and hence there exists a point x0 such that 

J C F ( f ) ^ = | J o CF(Z)dl;= hrn(F), 

m denoting the Lebesgue measure on [0, 1]. Define 

/o(x) = CF(x)C[o,XO](x) — CF(x)CiX0,i](x), x e [0, 1], 

and let 

go(x) = \ fofàdl;. 
•Jo 

Then go Ç Lip[0, 1], it vanishes off / , and go' = 0 off F. Thus, if ô is small 
enough, then / db ôg0 G U and 

/ = Hf+àgo) + h(f-*Zo), 

showing that / is not extreme. Therefore the condition is necessary. 
Now suppose that |/ ' | = 1 a.e. on [0, 1] ~ Mf. Let 

2f = g + h, g,ht U. 
Clearly, 

g = h = f on Mf. 
Also, 

2f = g' + h' a.e. 
and hence 

g' = h' = f a.e. on [0, 1] ~ Mf. 

If x d Mf, let y be the closest point of Mf to the left (or the right as the case 
may be) of x. Then g' = h! a.e. on (y, x) and wre can integrate from y to x to 
deduce that 

g(x) = h(x). 

Thus the condition is also sufficient. 
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We propose to prove now that the unit ball U of Lip[0, 1] is the closed 
convex hull, denoted henceforth by co, of its extreme points E. More precisely, 
given e > 0 and / £ U, there exist ft G E, at £ R, at ^ 0 (1 ^ i ^ n), 
YIi=i a% — 1 such that 

n 

/ - - Z a<fi\ 
i=i 1 

Before we prove this theorem, we have to state and summarize some special 
results about Banach spaces. Suppose that X is a Banach space. Let 

S* = {L e X*: \\L\\ = 1} 

be the unit sphere in X*. Let U be the unit ball of X and D a subset of U. 
Then a necessary and sufficient condition that 

U = œ (D) 

is that 

sup Re L(Z>) = 1 

for all Lin a norm-dense subset of S*. This is easily proved by the 'separation' 
theorem for locally convex topological vector spaces. For a Banach space X, 
it is known (see 6) that the set 

P = {L G S*: there exists x G U such that L(x) = 1 = \\L\\} 

is dense in 5*. When X happens to be a closed subspace of some C(Y), where 
F is a compact Hausdorff space, then the elements of P can be represented by 
measures on Y. This is done as follows (again see 6): Suppose that 

L(f) = | |i | | = 1 
for some/ c U C X C C(Y). By the Hahn-Banach theorem, we can extend 
L with preservation of norm to the whole of C(Y). Then by the Riesz repre­
sentation theorem (1, p. 265) and the so-called 'polar decomposition' of 
complex measures, it is easy to see that 

L(g) = jYgfd», gec(F) , 

where /x is a positive, regular Borel measure on Y of total mass 1 and |/| = 1 
on the closed support of n. 

WTe are now in a position to prove the following theorem. 

THEOREM 3.2. The unit ball of Lip[0, 1] is the closed convex hull of its extreme 
points. 

Proof. Consider 

qo, l] e Lœ[o, i] 
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with the norm 

\\(f,g)\\ = max(||/|U, ||g||J. 
Define the map: 

Lip[0, 1 ] ^ C [ 0 , 1] 0L œ [O, 1] given by / - > (/,/ ')• 

This is a linear and isometric map and the image of Lip[0, 1] under it is a 
closed (and hence complete) subspace of C[0, 1] ©L°°[0, 1]. Let A denote 
this image and, as before, let U be its unit ball and E the set of extreme 
point of U. 

In the following discussion, we shall identify L°°[0, 1] with the space of 
continuous functions C(M) on its maximal ideal space M. (For results con­
cerning M, see 3.) 

By what was stated above, a necessary and sufficient condition for 

U = co(£) 
is that 

sup ReL(E) = 1 

for all L G P , P being the set we defined earlier. By what was discussed on 
page 1159, L has the form 

(1) L(f,f')= f (ff0)d»+ f (fhTdvL, 
t / o «/ M 

where /x is a positive, regular Borel measure on [0, 1] \J M of total mass 1 
and /o belongs to the unit ball of Lip[0, 1] and has the following properties: 

I/o| = 1 on the closed support of /x in [0, 1] and 
I/o'| = 1 on the closed support of n in M. 

Here fQ
f denotes the Gelfand transform of/V. 

In order to prove our theorem, we have to show that 

sup Re L(f . / ' ) = 1, ( / . / ' ) € £ 

for all L £ P. We shall, in fact, show this sup is actually attained for some 

We have now to establish some preliminary lemmas. 

LEMMA 3.3. Let </>, \p belong to the unit ball of L°°[0, 1]. Then a necessary and 
sufficient condition for 

4> = $ on [|0| = 1] 

is that, given e > 0, there exists 5(e) such that 

\(t> — \l/\ < e a.e. on [\<t>\ > 1 — ô]. 

Proof. The condition is sufficient: Let p Ç [|<£| = 1] and suppose, if possible, 
that \3>(p) - ij/(p)\ ^ 0 . Choose e < \$(p) - $(p)\. Let Ô be the positive 
number given by the stated condition. Then [J0| > 1 — ô] is an open set 
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containing [|^| = 1]. Since the sets 

[CE = 1], E Lebesgue measurable, E C [0, 1], 

form a basis for the topology of the maximal ideal space M of LT, we can 
find an E such t h a t 

P e [CE = 1] C [|*| > 1 - Ô]. 

This means t h a t barring a set of measure zero, 

E C [|*| > 1 - Ô]. 

Then |<£ — \f/\ < e a.e. on E by the given condition which implies t h a t 
|0 — ^ | < e on [CE = 1]. Bu t as p £ [C# = 1], this yields a contradiction. 

T h e condition is necessary. Suppose t h a t for a certain e > 0 no such <5 exist. 
Choose a monotone increasing sequence of <5n's such t h a t 

limw 5n = 1. 

If 

£» = [|* - ^ | > e] H [|*| > dn = 1 - (1 - O L 

then, by our assumption, m(En) > 0 and En[. Let 

Fw = [ C ^ = 1] C M, 

then the TVs are compact and decreasing and therefore have non-empty 
intersection. B u t this intersection is contained in [|^| = 1], which shows t h a t 
0 9e \j/ on [|^| = 1]. This completes the proof of Lemma 3.3. 

Let us examine (1). If we can find a g in E which coincides w i t h / 0 on its 
maximum set and which is also such tha t g' = f0' on [\fo'\ = 1], then our 
proof will be complete. By Lemma 3.3, g has to have the property t ha t for 
every e > 0, there exists a ô > 0 such t h a t 

I/o' - g'\ < e a.e. on [|/0'| > 1 - 8]. 

If we can construct such a g on each of the disjoint intervals comprising the 
complement of Mfo, then the proof will be complete. We should note t h a t 
g = /o on MfQ ensures t ha t gf = f0' a.e. on Mfo. This is because Mfo can be 
wri t ten as the union of a perfect set Xi, and a countable set X2: as g a n d / 0 are 
Lipschitz functions, their derivatives will exist and agree a.e. on X1} and 
therefore a.e. on Mfo since m(X2) = 0. Therefore the problem is reduced to 
proving the following lemma. 

LEMMA 3.4. Given an interval [a, b] C [0, 1] and a (complex-valued) Lipschitz 
function fo defined on it which is such that | /O(Û0| = l/o(&)| = 1» | /o(#)| < 1 for 
all x in (a, b), | /0 ' | S 1 a.e. on [a, 6], we can construct another Lipschitz function 
g with the following properties: 

(i) g(a) =fo(a),g(b) = / „ ( i ) , 
(ii) |g| ^ 1 on [a, b], 
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(iii) |g'| = 1 a.e. on [a, b], and 
(iv) for every e > 0, there exists a ô such that 

I/o' - g'\ < e a.e. on [|/0'| > 1 - Ô]. 

Proof. T a k e any subinterval [a,\, bi] d [a, b], a ^ #i, b ^ &i. T h e image of 
this subinterval under / 0 is a compact subset of the uni t disc which does not 
meet the boundary of the disc. Therefore, this compact set has positive 
distance, say r, from the boundary of the disc. Subdivide [a^ bi] into intervals 
of length smaller than r. Le t [a, /3] be a typical interval . Define the function 
0(x) on [a, fi] as follows: 

W h e n / ( / ( # ) 9e 0 there is a unique chord of the uni t circle perpendicular to 
(and having as midpoint) fo (x). Le t 6(x) be one of the vectors defining half 
this chord, so t h a t 

djx) •/</(*) = 0 and \f0'(x) ±6(x)\ = 1 

(hence |0|2 + | / 0 ? = 1). When /</(*) = 0, let 6(x) = 1. Now define 

g' =fof + hd on [ t t |/3], 

where h is a real-valued, measurable function assuming only the values ± 1 
and satisfying 

I hddx = 0. 

(We shall presently indicate how h can be constructed.) I t is clear t h a t 
\g'\ = 1 a.e. on [a, ft] and t h a t it is a measurable function. Le t 

g(x) = f0(a) + J g'(£) dt-, x e k 0]. 

T h e n 

g(fi) = /„(«) + J] fo'(x) dx = f0(fi). 

Moreover, 

\g(x) - / „ ( « ) | ^ | * - a | < r 

which means t h a t \g(x)\ ^ 1 for all x in [a, /3]. Also, 

Is' -/o'l = \e\ = VU - !/o'|)V(i + I/o'!) ^ 2>/(i - |/«'|), 
whence 

| « ' - / o ' | < « a.e. on [|/„'I > 1 - Ô] 

if à ^ e2/4. Performing a similar construction on the other intervals of [ai, &i], 
we can define a g on [a±f bi] which has all the propert ies ( i ) - ( iv) of Lemma 3.4. 
Now take an increasing sequence of intervals [an, bn]y a < an and bn < b, 

limn an = a, limn bn = b (n = 1, 2, 3, . . .) 
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and by the method explained above, define functions gn on [an, bn] which have 
all the properties listed in Lemma 3.4. Evidently, 

gn+1 = gn On K , bn]. 
Define g on [a, b] by 

g(x) = gn(x), x G K , bn], 

g (a) = limn gn(an) = limB/(o„) = / ( a ) , 

g(6) = limngn(&w) = limn/(Jn) =/(&). 

I t is clear that g has all the required properties. Thus the lemma is proved. 

We now show how h can be chosen so that 

J A0 dx = 0. 

For this, we appeal to a theorem due to Liapunov (see 5) in which it is 
stated that the range of a finite non-atomic, countably additive vector-valued 
set function (assuming values in Rn), is a closed convex set. Let 

v(E) = I 6 dm, 
*J E 

where m denotes Lebesgue measure and E runs through all the Lebesgue 
measurable sets in [a, 13]. Clearly, v is a non-atomic complex measure. Since 
the range of v contains the complex numbers 0 and J a 6 dm, it also contains 
%jl 0 dm by LiapounofFs theorem. Therefore there is a measurable set 
E C [a, 13] such that 

J 6 dm = - I 6 dm. 

Define 
h = 1 on E, 

= - 1 on [a, 0] ~ E, 
Then 

r >dm = 0. 

Finally, the referee has kindly pointed out that a much more general result 
than Theorem 2.1 is valid: 

Lip(X, d) is a dual space for any compact X and d 

Proof. By Ascoli's theorem, the unit ball B of hvp(X,d) is uniformly, 
hence pointwise, compact. If E denotes Lip(X, d) in the pointwise topology, 
F its dual, then B is w(E, F) compact. By Smulian's theorem (3, p. 142) the 
polar B° C F is radial at 0, and if L is a linear functional on F which is bounded 
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on B°, then there is an / £ E such that L{u) = (u,f), u £ F. If G denotes 
the space F with the norm defined by B°, then it may be readily verified that 
Lip(X, d) is isometric with G*. [Define T: Lip(X, d) -» G* by (r/)(w) = (f, u), 
u Ç T7; 7" is an isometry.] 
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